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Abstract Extending the definition of Lie algebroid from one base manifold to a pair of diffeomorphic base man-
ifolds, we obtain the generalized Lie algebroid. When the diffeomorphisms used are identities, then we obtain the
definition of Lie algebroid. We extend the concept of tangent bundle, and the Lie algebroid generalized tangent
bundle is obtained. In the particular case of Lie algebroids, a similar Lie algebroid with the prolongation Lie
algebroid is obtained. A new point of view over (linear) connections theory of Ehresmann type on a fiber bundle is
presented. These connections are characterized by a horizontal distribution of the Lie algebroid generalized tangent
bundle. Some basic properties of these generalized connections are investigated. Special attention to the class of
linear connections is paid. The recently studied Lie algebroids connections can be recovered as special cases within
this more general framework. In particular, all results are similar with the classical results. Formulas of Ricci and
Bianchi type and linear connections of Levi-Civita type are presented.

MSC 2010: 00A69, 58B34, 53B05

1 Introduction

In general, if C is a category, then we denote |C| the class of objects. For any A, B € |C|, we denote C(A, B) the
set of morphisms of A source and B target, and Isoc (A, B) the set of C-isomorphisms of A source and B target.
Let Liealg, Mod, Man, B, and B be the category of Lie algebras, modules, manifolds, fiber bundles, and vector
bundles, respectively.

We know that if (E,n,M) € [B¥|, ['(E,m,M) = {u € Man(M,FE) : wor =Idps} and F(M) = Man(M,R),
then (I'(E,7,M),+,-) is a F(M)-module. If (¢, p0) € BY((E,7,M),(E',«’,M")) such that ¢y € Isoman (M, M’),
then, using the operation,

FM)xT(E,«',M') — T(E' 7', M)
(fu) = fougg'u/
it results that (I'(E', 7', M"),+,-) is a 7 (M )-module and we obtain the Mod-morphism:

I(p,
D(E,m M) — 2% (g )

U F(go,gpo)u

defined by:
L(.0)uy) = (ug11,) = (pouowy ) (v),

forany y € M'.

The theory of connections constitutes one of the most important chapter of differential geometry, which has been
explored in the literature (see [2,3,4,5,6,9,12,13,20,21]). Connections theory has become an indispensable tool in
various branches of theoretical and mathematical physics.
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If (E,m,M) is a fiber bundle with paracompact base, then, using the pull-back action, we obtain the B"-
morphisms:

™ TM ——TM ™ (T*M) —— T*M

7r*‘r]\4l lT]\/I and ﬂ*(;M)i l;M

If (VTE, g, E) is the kernel vector bundle of the tangent BY-morphism (7', ), then we obtain the short exact
sequence:

!

0¢ VTE € TE ™ TM —=0
lTE lTE lﬂ*w (1.1)
Id Id
E—2sp—LsE

where 7! is the projection of T'E onto 7*T'M.

We know that a split to the right in the previous short exact sequence—i.e., a smooth map I' € Man(7*T' M, TE)
so that 7! oI" = Id .+ ps—iS a connection in the Ehresmann sense.

If (HTE,7g,FE) is the image vector bundle of the BY-morphism (T",Idg), then the tangent vector bundle
(TE,Tg, E) is a Whitney sum between the horizontal vector bundle (HTE, g, E) and the vertical vector bundle
(VTE,7g,E).

From the above notion of connection, one can easily derive more specific types of connections by imposing
additional conditions. In the literature, one can find several generalizations of the concept of Ehresmann connection
obtained by relaxing the conditions on the horizontal vector bundle.

e First of all, we are thinking here of the so-called partial connections, where (HTE, 7, E') does not determine a
full complement of (VT E,7g, E). More precisely, I'(HT E,7g, E) has zero intersection with (VT E, 15, E),
but (HTE, T, E) projects onto a vector subbundle of (T'M, 1y, M) (see [3]).

e Second, there also exists a notion of pseudo-connection, introduced under the name of quasi-connection in a
paper by Wong [21]. Linear pseudo-connections and generalization of it have been studied by many authors
(see [5]).

Popescu built the relative tangent space, and using that, he obtained a new generalized connection on a vector
bundle [12] (see also [13]).

In the paper [6] by Fernandes, a contravariant connection in the framework of Poisson geometry is presented.
Given a Poisson manifold M with tensor A, which does not have to be of constant rank, a covariant connection
on the principal bundle (P, 7, M) is a G-invariant bundle map I' € Man(7x*(T*M),TP) so that the diagram is
commutative:

= (T*M) —— TP

ﬂ*(;M)i J{T”
fA

"M —>TM

where (#5,1dyy) is the natural vector bundle morphism induced by the Poisson tensor. In the paper [6], Fernandez has
extended this theory by replacing the cotangent bundle of a Poisson manifold by a Lie algebroid over an arbitrary
manifold and the map f by the anchor map of the Lie algebroid. This resulted into a notion of Lie algebroid
connection, which, in particular, turns out to be appropriate for studying the geometry of singular distributions.

Langerock and Cantrijn [2] proposed a general notion of connection on a fiber bundle (E,m, M) as being a
smooth linear bundle map I' € Man(7*(F),TE) so that the diagram is commutative:

(F) —>TE
l lTTr
F—2 sTM

where (F,v, M) is an arbitrary vector bundle and (p,Ids) is a vector bundle morphism of (F,v, M) source and
(TM,Tpr, M) target.
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Different equivalent definitions of a (linear) connection on a vector bundle are known, and there are in current
usage. We know the following:

Theorem 1. If we have a short exact sequence of vector bundles over a paracompact manifold M

0 C E‘l E J E " 0
i / \L i '
Id Id
M AI) M M M

then there exists a right split if and only if there exists a left split.

So a split to the left in the short exact sequence (1.1)—i.e. a smooth map I' € Man(T'E,VTE) so that ' o4 =
Id7rp—is an equivalent definition with the Ehresmann connection.
We know that a Lie algebroid is a vector bundle (F,v, N') € |BY| such that there exists:

(p,Jdn) € BY((F,v,N),(TN,7n,N))
and an operation:

I(F,v,N) xI(F,v,N) e I'(F,v,N)
(u,v) —— [u,v]p
with the following properties:
LA; the equality holds good
[u, f-v]F = flu,v]p +T(p,IdN) (u)f v,

for all u,v € I'(F,v,N) and f € F(N),
LA, the 4-tuple (I'(F,v,N),+,-,[,]r) is a Lie 7 (V)-algebra,
LAj3 the Mod-morphism I'(p,1d ) is a LieAlg-morphism of

(C(F,v,N),+,- [, ]F)
source and
(D(TN, 78, N+, [, J7w)
target.
The triple
(P.v.N)Lr (p.1dx )

is called Lie algebroid, and the couple ([, |, (p,1dy)) is called Lie algebroid structure.
We remark that the secret of the Ehresmann connection is given by the following diagrams:

1d

E (TM,[ ) — (TM. [, ]7)

A
1dy, 1d

M M M M M

where (E, 7, M) is a fiber bundle and ((T'M,7pr, M), [, l7ar, (Id7as,1dpy)) is the standard Lie algebroid.
It was the first time that there appeared an idea to change the standard Lie algebroid with an arbitrary Lie
algebroid as in the following diagrams:

(F.[.]r) s (TM,[,]rm)

E

Id
M M M M
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For the second time there appeared an idea to change in the previous diagrams the identities morphisms with
arbitrary Man-isomorphisms h and 7 as in the following diagrams:

Th

T (Fv[v]F,h)L>(TM7[’]TM)*>(TN7[7}TN)
NN SR SR
where

(p,n) € BY((F,v,M),(TM,rpr,M))
and

[IF,
[(F,v,N) xT(F,y,N) ——% T(F,u,N)
(u,v) —— [u,v]Fp
is an operation with the following properties:
GLA the equality holds good
[uvf 'U}F,h = .f[uﬂ)}F,h +F(Thop’h'on)(u)fv7

forallu,v € T(F,v,N) and f € F(N).
GLA; the 4-tuple (I'(F,v,N),+,-,[,|r ) is a Lie F(N)-algebra,
GLAj3 the Mod-morphism T'(Tho p,hon) is a LieAlg-morphism of

(C(F v, N),+, [ mn)
source and
(T(TN, 75, N),+,-[,l7n)
target.
We will say that the triple
((Fv,N), L e, (1))

is a generalized Lie algebroid. The couple ([, |, (p,n)) will be called generalized Lie algebroid structure.
So we extend the notion of Lie algebroid from one base manifold to a pair of diffeomorphic base manifolds, and
we obtain the notion of generalized Lie algebroid.

Remark 2. 1In the particular case, (n,h) = (Idps,Idps), we obtain the definition of Lie algebroid.

We can define the set of morphisms of

((FvVvN)’[v }F,h,(lh’?))

source and

((Flvl//vN/)a [7 }F’,h/v (Plaﬁ/))
target as being the set

{(#,0) €BY((F,v,N),(F',v',N")) }

such that ¢ € IsOpan (N, N') and the Mod-morphism I'(¢, ¢g) is a LieAlg-morphism of

(F(F7 VvN)7+"’ [7 ]F,h)
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source and
(C(E V' N+, [ )

target.

So we can discuss about the category GLA of generalized Lie algebroids. Examples of objects of this category
are presented in Section 2. We remark that GLA is a subcategory of the category BY.

Using this new notion, we build the Lie algebroid generalized tangent bundle in Theorems 7 and 10. Particularly,
if ((F,v,N),[,]r,(p,Idx)) is a Lie algebroid, (E,m,M) = (F,v,N) and h = Id, then we obtain a similar Lie
algebroid with the prolongation Lie algebroid (see [7]). New and important results are presented in [8,10,11,17,19].
See also [14,15,16,18]. Using this general framework, in Section 4, we propose and develop a (linear) connections
theory of Ehresmann type for fiber bundles in general and for vector bundles in particular. It covers all types of
connections mentioned. In this general framework, we can define the covariant derivatives of sections of a fiber
bundle (E, 7, M) with respect to sections of a generalized Lie algebroid

((F7 V7N)7 [7 ]F,h? (Pﬂ]))
In particular, if we use the generalized Lie algebroid structure:
([, Jras1dp, - (1dpar,Idar )

for the tangent bundle (T'M,7);, M) in our theory, then the linear connections obtained are similar with the classical
linear connections.

It is known that in Yang-Mills theory, the set

0
Covig r.an)
of covariant derivatives for the vector bundle (F,m, M) such that
X((u,v>E) = <DX(u),v>E + <u,DX(v)>E,

for any X € X (M) and u,v € I'(E,w, M), is very important, because the Yang-Mills theory is a variational theory
that use (see [1]) the Yang-Mills functional:

0 YM
CoVigmay — R
D 2
Dy > 1 [ [RPx |,
M
where RPX is the curvature.
0

Using our linear connections theory, we succeed to extend the set Cov( B, M) of Yang-Mills theory, because
using all generalized Lie algebroid structures for the tangent bundle (7'M, Tz, M), we obtain all possible linear
connections for the vector bundle (E,m, M).

More importantly, it may bring within the reach of connection theory certain geometric structures that have not
yet been considered from such a point of view. Finally, using our theory of linear connections, the formulas of Ricci
and Bianchi type and linear connections of Levi-Civita type are presented.

2 Preliminaries
Let ((F,v,N),[,]rn,(p,n)) € |GLA]| be.
o Locally, forany o, 8 € 1, p, we set [t 5] p,n = L, gt We easily obtain that L] ; = — L}, forany a, 8,7 € T,p.

The real local functions L, PRCNCRYS 1, p will be called the structure functions of the generalized Lie algebroid
((F7V7N)7 [7 ]F,h7 (Pﬂ?))
e We assume the following diagrams:

F—"L sy TN
| | |
n h
N M N
(x",2%) (z',y") (x",2")

where i,7€ 1,m and o € 1,p.
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If
(2% — (7 (), 2% (2%), (2l y)) — (27 (27),y7 (,9))
and
(Xi7zi) — (X’Zl(xi)vzil(xi7zi))7
then
! ! ! ((9 3 ;
ZO( :Ag ZO(7 y’L — axxl y’L
and
7?/
Z,Zl _ 8X~ i.
ox*

We assume that (6, 1) Pt (Thop,hon). If 2%, € T'(F,v,N) is arbitrary, then

of
P

Jnono9) = ((6hom e om 22 ),

D(Tho p.hon)(=ta) f(hon()) = (ezza

forany f € F(N)and > € N. _
The coefficients p, and ¢;, change to p?, and 0 ,, respectively, according to the rule:

s/

i - Ox*
PZ/ = Ag/pé D’
and
5 = 8%77
;/ - Ag/eg 8%i 5
where
-1
A= [As ]
Remark 3. The following equalities hold good:
; Ofoh ; Of
pooh S (0; 6%7') oh, YfeF(N).
and
d(pfoh) d(pkohn)

(£ 0m) (o oh) = (ghon) “27 — (ghom) 22T,

Theorem 4. Let M,N € |Man|, h € Isoyan(M, N) and 1 € Isoman(N, M) be. Using the tangent BY-morphism
(Tm,m) and the operation

LlrN,h
I'(T'N,7n,N)xT(T'N,7ny,N) —— I['(T'N,7n,N)
(u,v) P [Uﬂ)}TN,h
where
[w, ol =T (T(hon) ™! (hon) ) ([D(T(hon),hon)u, T (T(hom), hon)u] 1y ).
Sforany u,v € T(TN,7n,N), we obtain that

((TN7TN7N)7(T77a77)a[’ }TN,h)

is a generalized Lie algebroid.
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For any Man-isomorphisms 7 and i, new and interesting generalized Lie algebroid structures for the tangent vec-
tor bundle (T'N, 7y, N) are obtained. For any base {t,, o € 1,m} of the module of sections (I'(T'N,7n,N),+,-),
we obtain the structure functions

o’ 909\ .
L *(61 @—016 a>07, o, B,y € 1,m

* Ot oxt ) I

where

are real local functions so that

;0
F(T(hon)ﬂoﬁ) (toz) =0, Ot

and

are real local functions so that

P(T(hon) ™, (hon) ™) (ai) i,

In particular, using arbitrary isometries (Symmetries, translations, rotations, etc.) for the Euclidean three-
dimensional space ¥, and arbitrary basis for the module of sections, we obtain a lot of generalized Lie algebroid
structures for the tangent vector bundle (T3, 75, %0).

Remark 5. 1f (E,w, M) € |BJ, then we obtain the BY-morphism

™ (h*'F) ——F
Tr*(h*u)l iv 2.1
E hom N

In particular, if (E,7, M) € |BY| and (E, 7, M) is its dual, then we obtain the BY-morphism:

& (WF)——F
E\ ho N

3 The Lie algebroid generalized tangent bundle

We consider the following diagram:
E
M—" N

where (E,7,M) € |B| and ((F,v,N), [, ]rn, (p,n)) € |GLA|. o
We take (z*,y®) as canonical local coordinates on (E,m, M), where i € 1,m and a € 1,r. Let

(@',y)

be a change of coordinates on (F,, M ). Then the coordinates y* change to ya' according to the rule:

! : !

(',y%) — (2" (2"),y"

I 8:{/&/
= aya

a

Y

a

Y.
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In particular, if (E,m, M) is vector bundle, then the coordinates y® change to ya/ according to the rule:

Easily, we obtain the following

*(h* )

F
Theorem 6. Let (Tr p ,1dg) be the BY-morphism of (7*(h*F),n*(h*v), E) source and (TE,Tg, E) target, where

7 (h*F)
~(h'F) — > TE
: P
7%y (ug) ——> (ZO"pQOhOﬂ')ﬁ(ux)
xr

Using the operation

Ll (rr P

I'(x* (W*F),7*(h*v), E)? I'(7*(h*F),7* (h*v), E)

defined by
=17 _ 7 i of
(TaTs) ooy = Lag ohom Ty, [Ta, T3] ey = FLEg o homTy + g, ohomo T,
[fTaaTﬁ] 7*(h*F) = - [Tﬁvaoz} T (R*F)

forany f € F(E), it results that
* (7% ® (7% w*(h*F)
(= Fyr (00) B). Doy (79 1))

is a Lie algebroid that is called the pull-back Lie algebroid of the generalized Lie algebroid

(Fov, N, [ 1 ms (pym)) -
If z = 2%, € I'(F,v,N), then we obtain the section
Z = (z%chom)T, €eT(x"(W'F),n*(h*v),E)

so that Z(uz) = z(h(z)), for any u, € 7~ (UNKA™'V).

Let
<\ put 1o} d
(81'78(1 = (8971’@)

be the base sections for the Lie 7 (E)-algebra

((TE, 75, E),+,- [, |TE)-
For any sections
Z%T, €T(x*(W*F),n* (W' F),E)
and
Y%, eT(VTE, g, E)
we obtain the section
280+ Y8, =: Z(To ® (pl, 0 hom)d;) + Y * (O 1+ ) ® Do)
= Z°To & (Z%(p, o hom)d; + Y0,) € T(n* (W' F) & TE, . E).
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Since we have

Z%06a+Y"0a =0
i)
Z%T0 =0 NZ%(pl, 0ohom)d; + Y9, =0,
it implies Z* =0, a € I,pand Y* =0,a € 1,7.

Therefore, the sections dy,...,0,,91,...,0, are linearly independent.

We consider the vector subbundle ((p,n)TE, (p,n)7E, E) of the vector bundle (7*(h*F) & TE, 7, E), for which
the F(E)-module of sections is the F(E)-submodule of (I'(7*(h*F) EBTE,%E),—&—,-), generated by the set of
sections (9, dq ).

The base sections (9, 8,) will be called the natural (p,n)-base.

The matrix of coordinate transformation on ((p,n)TE, (p,n)7E, E) at a change of fibred charts is

AY ohor 0
oy oy

Loh :
(pOé © Oﬂ') afEZ 8ya

In particular, if (E,m, M) is a vector bundle, then the matrix of coordinate transformation on ((p,n)TE,
(p,n)7E, E) at a change of fibred charts is

AY ohor 0

(63
/
; OM® om ’ .
b b
(plohom) ooy Mg om

Easily, we obtain

Theorem 7. Let (p,1dg) be the BY-morphism of ((p,n)TE,(p,n)7E, E) source and (TE,Tg, E) target, where

(pmTE —"> TE
(2% +Y4q) (uz) —— (Z%(pl, 0hom)d;+ Y dy)(uz).
Using the operation

Lo,
(o, TE, (p,n)7, E)* ——2"2Z5 T ((p,n)TE, (p,n)7, E)

defined by

[Z{X ~oz + Ylagaa Zzﬁéﬂ + Yzbgb](p,n)TE
= [Z?TQ’ZgTB]‘n'*(h*F) D [Zfl(pg o hoﬂ)ai +Ylaal(lv Zzﬁ(pf/a © hO’fr)aj +)/2b3b]TE’

forany Z{0q+Y*0, and Zzﬂ&g + Y78y, we obtain that the couple ([, l(o.nTE: (5,1dE)) is a Lie algebroid structure
for the vector bundle ((p,n)TE,(p,n)TE, E).

Remark 8. In particular, if h = Id,;, then the Lie algebroid

(((drar,Xda)TE, (ld7ar, 1da) 7, B), [ dp oy 1da) 7B, Adrar,1dg))
is isomorphic with the usual Lie algebroid
(TE,75,E),[,|rE,(drEp,1dR)).
This is a reason for which the Lie algebroid

(((p,)TE, (p,n)TE, E), [, }(p,n)TEv (p,1dR)),

will be called the Lie algebroid generalized tangent bundle.
The vector bundle ((p,n)TE, (p,n)7E, F) will be called the generalized tangent bundle.



10 Journal of Generalized Lie Theory and Applications

3.1 The Lie algebroid generalized tangent bundle of dual vector bundle

Let (E,m, M) € |BY| be. We build the generalized tangent bundle of dual vector bundle (E, M ) using the diagram:

(F7[7 ]F,h»(Pﬂl))

E
\L;r lu
M—" o N,

where ((F,v,N),[,rn,(p,n)) € |GLA|.

. * - -
We take (z*,p,) as canonical local coordinates on (E,;?,M), wherei € 1,manda € 1,r.
Consider

(@', pa) — (" (%), par (2*,pa))

*
a change of coordinates on (F, 7*r7 M). Then the coordinates p, change to p,s according to the rule:

Pa = Mg/pa .
Easily, we obtain the following
** W F % % * * *
Theorem 9. Let (7r (p ),Idé) be the BY-morphism of (= (h*F), = (h*v), E) source and (TE, e E) target, where
)

» (WF) —2 > TE

Z%To(uy) ———— (Z%-pl, ohow)@(ur)

Using the operation

[’]fr*(h*F)

TG (WF), % (W), B)? T (WF),% (h*v), E)

defined by
[Ta,Tﬁ];*(h*m:Lgﬁohow'Tw [Ta,ng]T*r*(h*F):f~LZBOhO7T‘T,y+p;OhO7r-@~Tﬁ,
[fT(I?TﬁL’;_*(h*F) = _[Tﬁ7fT0¢];‘r*(h*F)7

*
forany f € F(E), it results that

%

(6" 0 E) ) B (w $a,))

s

is a Lie algebroid that is called the pull-back Lie algebroid of the generalized Lie algebroid

((F7 V?N)v [: ]F,h>(p7n))'

If z = 2%, € ['(F,v, N), then we obtain the section
* * * * *
Z=(z"ohon)Ta €T(x (h*F),x (h'v),E)

-1
so that Z(tz) = z(h(z)), forany u, € 7 (UNK~'V).

Let
8i7 o° p:t i) o
( ) <(9J:Z Opa )
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*
be the base sections for the Lie 7 (E)-algebra

<( TE )+ []TE

For any sections
20T, e T(F (WF), % (W'v), B)
and
Yad € F(VTE‘,TE,E>,

we obtain the section

. a

* - . ¥ .
20+ Vel = 2 (Ta® (phohoR) + a0, ©3")
T *

= 29T, & (Z°(p, o hom)d; + Yo0%) € T(x (W'F)&T

Since we have

a

Z%,+Y,0 =0

)

A Z%(pl, 0hom)d; +Y,0% = OTE’

+ (W F)eTE
@ = *
27T = 0% (h*F)

itimplies Z* =0, a € 1l,pand Y, =0,a € 1,7.
Therefore, the sections

Qe *
i

are linearly independent.
‘We consider the vector subbundle

of vector bundle

* *
for which the F(E) module of sections is the F(E)-submodule of

(F(?% (h*F)@TE,w,E),+,~),

a

.
generated by the family of sections (94,0 ), which is called the natural (p,n)-base.
The matrix of coordinate transformation on ((p,n)TE, (p,n)

T
E
Ag/ohow 0
: MY o
(p', ohom) 8?0/4 py Ml om
3

Easily, we obtain

E) at a change of fibred charts is
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* * *

* *
Theorem 10. Let ([),Idg) be the BY-morphism of ((p,n)TE, (p,n)TE,E) source and (TE,TE,E) target, where
(p.M)TE —>~ TE

a

% L , x s
(Z%Bq+Yad V(1) —> (Z%(pl, 0hom)d;i+ Yad?) (tz).
Using the operation

3 *
x * (pn)TE x *

T((pTE, (pn)7, B) —===T((p.))TE, (p,n)7. , F)

defined by
% .a ﬁ* b
Z00a0+Y,0 2505+ YD
(2100 +Y,0 , 2,05+ }(M)TE
a B Qi R laa B¢ J X 2 Ab
=[Z1'Tw, Zy Tﬁ]?r*(h*F) 21 (P o hom)0;i +Y, 0% Z) (pyohom)0; + Yy 0 ]Tﬁ’
% .a % b "
forany Z80,+Y) 0 and Zfaﬂ +Y29 , we obtain that the couple ([, ]( oy ([),Idg)) is a Lie algebroid structure
pi
* *
for the vector bundle ((p,n)TE, (p,n)T+,E).

T
E

The Lie algebroid generalized tangent bundle of the dual vector bundle (F, ;r, M) will be denoted:
* * *
TE, (p, E) , *,(”,Id*))
(((p nTE,(p)7:,E),| ](M)TE pld,

4 (Linear) (p,n)-connections

We consider the diagram:

I‘ (F7[7]F,h7(p7n))
M—" N

where (E,7, M) € [B| and ((F,v,N),[,]rn, (p,1)) € |GLAJ.
Let

(((PW)TEv (P777)7'E7 E)7 [7 ](p,n)TEv (ﬁaIdE))
be the Lie algebroid generalized tangent bundle of the fiber bundle (E,m, M).

We consider the BY-morphism ((p,n)n!,Idg) given by the commutative diagram:

(o) TE L% (1 )
(pm)TEl lﬂ*(h*l')
EF——F

This is defined as:

(o, ((Z%00 + Y80 (uz)) = (Z%T ) (ug),

for any Z%9, +Y %3, € T((p,n)TE, (p,n)7E, E).
Using the BY-morphism ((p,n)w!,Idg), and the B¥-morphism (2.1), we obtain the tangent (p,n)-application
((p,n)Tw,hom)of ((p,n)TE,(p,n)7E, E) source and (F,v, N) target.
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Definition 11. The kernel of the tangent (p,n)-application is written:

(V(p,n)TE,(p,n)7E, E)

and it is called the vertical subbundle.
We remark that the set {J,, a € 1,7} is a base of the F(F)-module:
(F(V(P:U)TEy (p777)7_E7E)7+7 )

Proposition 12. The short sequence of vector bundles

0 V(p,))TE — (p,)TE L% 2t (h*F) — >0

I T T

E E E E

is exact.
Definition 13. A Man-morphism (p,n)T" of (p,n)TE source and V (p,n)TE target defined by:

(p, n)F(Z’*gw + Y“5a) (uz) = (Y 4+ (p,n)FfLyZ'y)éa(ux),

so that the BY morphism ((p,n)[",Idg) is a split to the left in the previous exact sequence, will be called (p,n)-
connection for the fiber bundle (E,m, M).

The (p,Idps)-connection will be called p-connection and will be denoted pI" and the (Idzas,1das)-connection
will be called connection and will be denoted I
Definition 14. If (p,n)T is a (p,n)-connection for the fiber bundle (E,m, M), then the kernel of the BY-morphism
((p,mT,1dg) is written (H (p,n)TE, (p,n)7E, E) and will be called the horizontal vector subbundle.

Definition 15. If (E,m,M) € |B

, then the B-morphism (II,7) defined by the commutative diagram

V(pn)TE ——E
(PVU)TE\L i”
E M

so that the components of the image of the vector Y %, (u) are the real numbers Y (u,),...,Y" (u,) will be called
the canonical projection B-morphism.

In particular, if (F, 7, M) € |B¥| and {s4,a € 1,7} is a base of the (M )-module of sections (I'(E,7, M), +,),
then IT is defined by:

II
™

-

(Y %04 (ug)) =Y (ug)sae(x).
Theorem 16. If (p,n)T is a (p,n)-connection for the fiber bundle (E,7, M), then its components satisfy the law of

transformation:

!/

a a

B
{p,’johowa—;Jr(p,n)rg}Az,ohom (@.1)

_ 9y
= o

!
(p7 77)11%/

If (p,n)T is a (p,n)-connection for the vector bundle (E,7, M), then its components satisfy the law of transfor-
mation:
7 7 k 8MG; oT b,

(9777)ng' =Mg om [pW o how#y + (p,n)f‘g A::, ohom. 4.1

In the particular case of Lie algebroids, (n,h) = (1dpz,1dpy), the relations (4.1") become:

(?M‘? o /
#kﬂyb +pF$:| A2 or. .1

a

pF%Z :Ma/Oﬂ'|:p,]§O7T

In the classical case, (p,n,h) = (Idrar,1dps,1dpyg), the relations (4.17) become:

!

N o [ o' S ] oxk
b =G er e (o o7 414 G om @
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Proof. Let (I1, ) be the canonical projection B-morphism.
Obviously, the components of

Mo (pm)T( 27 3y + Y 3,0 (ug)
are the real numbers
(Y + (oI5 27 ) (ug).
Since

/

(27

5 Ly9d — 27 AV, ohond 27 o onon Vs L O v\
 +YC00) (uz) = ZV A) 0 homdy (ug) + | Z7 ply o T o (uz),

it results that the components of
k I~
IIo (p,n)P(Z’Y 87/ +Y® 8a/)(u$)

are the real numbers

!/

(27 ohomyly + 8L (D327 AT o hom)(u) 5
where
ol -I5El
oy || || oy®
Therefore, we have:
(Zv’pg’, oho wgz:, i 37;:, Y9 4 (p)L22Y A] o ho 7r) sz =Y+ (o 2"

After some calculations, we obtain:

y(l
?‘F(p,n)r‘g)Az,OhOﬂ'. D
Remark 17. If we have a set of real local functions (p, n)F% that satisfies the relations of passing (4.1), then we have

a (p,n)-connection (p,n)I for the fiber bundle (E, 7, M)

Example 18. If T' is an Ehresmann connection for the vector bundle (E,7, M) on components I'}, then the
differentiable real local functions (p,n)I'5 = ( pf“y ohom)I'{ are the components of a (p,n)-connection (p,n)T" for the
vector bundle (E,m, M). This (p,n)-connection will be called the (p,n)-connection associated to the connection I

Definition 19. If (p,7)I" is a (p,n)-connection for the vector bundle (E, 7, M) and z = 27ty € I'(F,v, M), then the
application

m)D-
r(E,m M) 2% (g )

u=u'sq ——— (p,n)D,u

where
.y k 8u“ a
(py,m)Dyu=2"0h p,yoh—axk +(p,mTS ou |sq 4.2)

will be called the covariant (p,n)-derivative associated to (p,n)-connection (p,n)T with respect to the section z.
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Remark 20. 1In the particular case of Lie algebroids, (n,h) = (Idpz,1dps), the relations (4.2) become:
ou®
pDu =27 (psﬁ—i—pff/ou)sa. 4.2
In the classical case, (p,n,h) = (Idppr,1dar,1d s ), the relations (4.2") become:
oY
DyxY = Xx* (a—w )ai. 42"

Definition 21. Let (p,n)T be a (p,n)-connection for the fiber bundle (F,, M). If for each local vector (m +r)-
chart (U, sy7) and for each local vector (n + p)-chart (V,y/) so that U Nh~! (V) # ¢, it exists the differentiable real
functions (p,n)I'y, defined on U N h~1(V) such that

(pmT%ou=(p,m)Tg, -u’, Vu=uls, €T(E,x,M),

then we say that (p,n)T is linear.
The differentiable real local functions (p,n)F‘bl,Y will be called the Christoffel coefficients of linear (p,n)-
connection (p,n)T.

Theorem 22. If (p,n)T is a linear (p,n)-connection for the fiber bundle (E,m, M), then its components satisfy the
law of transformation
a b

N o [0y Ay
(p,n) g/,yl = Tya |:p,ky Ohw (@) + (p,n)Fb,Y8 o A / oh. (43)

If (p,n)T is a linear (p,n)-connection for the vector bundle (E,m, M), then its components satisfy the law of
transformation

) , OME
k / b
(o, )Ty = M {% o haT}; + (p,n)ngMb,} Al oh. (4.3

In the particular case of Lie algebroids, (n,h) = (1dpz,1dpy), the relations (4.3") become:

oMy

PLy :Mg |:pA/ 5 k + pr,YMb/:|A 4.3")

In the classical case, (p,n,h) = (Idrar,1dps,1dayg), the relations (4.3") become:

s 92t [ 9 [ ox 929 ] 9z
e, = —|— S i (e 43"
I i [axk <3x3 >+ ¥ Oad }amk 437

Theorem 23. If (p,n)T is a linear (p,n)-connection for the vector bundle (E,n, M), then, for any z = 27t €
['(F,v, M), we obtain the covariant (p,n)-derivative associated to the linear (p,n)-connection (p,n)T" with respect
to the section z

0B, M) 25 (g )

u=usq —— (p,n)D,u

defined by
D, Toh R re ub 4.4
(Pn) U=z 0 p’yo ox k (P777) b’y'u Sa- ( . )
In the particular case of Lie algebroids, (n,h) = (Idps,1dpy), the relations (4.4) become:
ou®
pDu =27 (p];a? + ol -ub> Sq. 4.4
In the classical case, (p,n,h) = (Idrar,1d s, Idpy), the relations (4.4") become:

oY
DXY:Xk(
ak

+T%, >ai. (4.4")
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4.1 (Linear) (p,n)-connections for dual vector bundle

Let (E,m, M) € |BY| be. We consider the following diagram:

E’ (F>[:]F,h>(P77I))
M h

!

_ >
5

where ((F,I/,N),[, ]F,h;(ﬁﬂ?)) € |GLA|
Let

(((pm)TE, (p,n)Tﬁ,E) 1 ](M)TE (E,Idﬁ))

* *
be the Lie algebroid generalized tangent bundle of the vector bundle (E,m, M).
We consider the BY-morphism ((p, n);r!,ldé) given by the commutative diagram:

« (om)m!
p))TE — =7 (h*F)

(
(M)Tél l?ﬁ(h*u)
1d,
* E *
E E
Using the components, this is defined as:

(Pﬂ?);f! (Za‘%a +Yaéa) (Zm) = (ZaTOé) (Z‘ﬂi)v

a

i ~ * *
forany 20 +Ya0 € ((p,n)TE, (p,0)7y, E).

Using the BY-morphism ((p,n);’!,ldg) and the BY-morphism (2.2), we obtain the tangent (p,n)-application

(o) T, ko) of ((0,m)TE, (p,n)

e E) source and (F,v, N) target.
Definition 24. The kernel of the tangent (p,n)-application

((p,n)T;’,ho;r)

is written as

(V(p, n)TE, (p, T E)

and will be called the vertical subbundle.
a

~ _ *
The set {0 , a € 1,7} is a base for the F(F)-module

(F(V(p,n)TZl (pm)%ﬁ’)ﬁn )

Proposition 25. The short sequence of vector bundles

c e « (el
B V(pn)TE (p,n)TE > (hF) ——>0
l Id « \L Id « l Id « l Id « l
* E * E * E * E *
E E E E E

is exact.
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* *
Definition 26. A Man-morphism (p,n)T of (p,n)TE source and V (p,n)TE target defined by:
% - b
(p,n)I’(Z'Y@W +Y,0 ) (uI) = (Yb - (p,n)Fbe’Y)a (ugc)7
such that the BY-morphism ((p,n)F,IdE) is a split to the left in the previous exact sequence, will be called (p,n)-

ok
connection for the dual vector bundle (E,m, M).
The differentiable real local functions (p,n)I'y, will be called the components of (p,n)-connection (p,n)T.

* * .
The (p,Idps)-connection for the dual vector bundle (E, 7, M) will be called p-connection for the dual vector
* % .
bundle (E,7, M) and will be denoted pI".

* ok
The (Id7 s, 1d s )-connection for the dual vector bundle (E, 7, M) will be called connection for the dual vector

bundle (E, %, M) and will be denoted T
Let {s*, a € 1,7} be the dual base of the base {s,, a € 1,7}

The BY-morphism ( 7) defined by the commutative diagram

. I
V(p,n)TE ’

FE

(py)T l l
E T

g M

s
-

where, I*I is defined by

is canonical projection BY-morphism.

Theorem 27. If (p,n)T is a (p,n)-connection for the vector bundle (E, M ), then its components satisfy the law
of transformation

!
* 6Mg OTl'

(0, Ty :Mf,ofr{—pﬁohoTr. Par + (p, U)Fbw]/\ ,o(how) 4.5)

In the particular case of Lie algebroids, (n,h) = (Idps,1dpy), the relations (4.5) become:

* * oM 07T *
Pl :Mé’/ow{—psow %pa —i—prV]A , OT. 4.5

In the classical case, (p,n,h) = (Idrar,1dps,1dpg), the relations (4.5") become:

o9 8 [ox" . dz
ik = 5a7 OTM[ g (856] TM)p ! ”J’“]a woTa 45"

Proof. Let (I1,7) be the canonical projection BY-morphism.
Obviously, the components of

* x SN s
o (p,m)T (270, +Yad ) (i)

are the real numbers

(Yb’ — (p, n)I‘b/V/ZW,) (’Zz) .
Since

s I , P X oM b
(Z787/+Yb/8 )(ux) =Z" Az,ohow-aa(um)—l—(ZVp ,ohom—2

RO+ MYy )3 (i),
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it results that the components of:

are the real numbers:

!
« OM o

(Z”/p,'ii ohom— t—pa + M{ oYy — (p,n)Ty 27 A, 0 ho;) My om(ug),

where || M} || = |||~
Therefore, we have:

1ok
*aM{fow

(Z”/pﬁi ohom—0 T pa+ MY oYy —(p, n)FbyZV,AL oho 7*r> M} ow =Yy —(p,n)Tyy 27 .

After some calculations we obtain:

oMY or
(o.M = Mpyom ( —plohor- Wpa/ + (ps n)sz) Al oho . O

Remark 28. If we have a set of real local functions (p,7)I', that satisfies the relations of passing (4.5), then we
have a (p,n)-connection (p,n)T" for the dual vector bundle (E, 7, M).

Example 29. If T" is an Ehresmann connection for the vector bundle (E,7*r,M ) on components 'y, then the
differentiable real local functions

(p:m)Ty = (ph o hom) Ty

*
are the components of a (p,n)-connection (p,n)T for the vector bundle (E, 7, M), which will be called the (p,n)-
connection associated to the connection I.

Definition 30. If (p, )T is a (p,n)-connection for the vector bundle (£, 7, M), then for any
z=2"t, €T(F,v,N)

the application

T(E, %, M) Pz T(E, %, M)
U= Ugs® ———> (p,n)DZ&
defined by
+ L, Oup o
(pym)Dzu = 2" oh(py o hop —(p,n) Ty 0w)s”, (4.6)

will be called the covariant (p,n)-derivative associated to (p,n)-connection (p,n)T" with respect to section z.

Remark 31. In the particular case of Lie algebroids, (,h) = (Idps,Idps), the relations (4.6) become:

ouy,

ko v k
i (32

—pLpy0 ﬂ) sP. 4.6")

In the classical case, (p,n,h) = (Id7pr,1dar,1d s ), the relations (4.6") become:

9w;

DXw:Xk(a S jkow)dzj. 4.6")
X
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Definition 32. Let (p,n)I" be a linear (p,n)-connection for the vector bundle (B, 7, M ). If for each local vector

(m +r)-chart (U, sy) and for each local vector (n + p)-chart (V,ty) such that U Nk~ (V) # ¢, there exists the
differentiable real functions pI'y defined on U'N h~1(V) such that

(P, Ty ou= (p,m)Thy - Ua, Vi, = ugs® € F(E,;,M)

then we say that (p,n)T" is linear.
The differentiable real local functions (p,n)I'y, will be called the Christoffel coefficients of linear (p,n)-
connection (p,n)T.

*
Theorem 33. If (p,n)T is a linear (p,n)-connection for the vector bundle (E, x, M ), then its components satisfy the
law of transformation

!’

/ oM} /
(p,n)Fg/A// = Mé’, |:— pf/ oh BJ}Z + (p,n)FZ,yMg j| Az, oh. “4.7)

In the particular case of Lie algebroids, (n,h) = (Idps,1dpy), the relations (4.7) become:

a b kaMl(;l/ a a’ ¥ !
pr/,Y/:Mb/ 7p,), 6:)3]‘: +pr’7Ma A’Y,. (4.7)

In the classical case, (p,n,h) = (Idrar,1dps,1dpyg), the relations (4.7") become:

o Ozl o (oz" . 0z’ ] 02k
M =—5|—=—+ . I o 4.7"
IR 9 { 8wk(8x7)+ Ik 8x1:|8:vk 7
Remark 34. Since
oMy oMb
Oa My + p My =0,

it results that the relations (4.7) are equivalent with the relations (4.3').

*
Theorem 35. If (p,n)T is a linear (p,n)-connection for the dual vector bundle (E,, M), then, for any z = 27t €
[(F,v, M), we obtain the covariant (p,n)-derivative associated to the linear (p,n)-connection (p,n)T with respect
to the section z

* s DZ *
v, M) 225 ek

U= 1ugs® —— (p,n)D.u
defined by

Ouy,

* k
(p,n)Dru=2"0 h(p7 o h@xk

—(p,m)TE, - u) 5. (4.8)
In the particular case of Lie algebroids, (n,h) = (Idps,1das), the relations (4.8) become:
* v k Auy, a b /
pDu=z pwﬁ_prbv'u“ s”. 4.8")

In the classical case, (p,n,h) = (Idrar,1dps, Idpy), the relations (4.8") become:

9w;

Dyw= X"
X <8xk

—T, w) da’. (4.8")

In the next section, we use the same notation (p,n)I" for the linear (p,n)-connection for the vector bundle
*
(E,m, M) or for its dual (E,m, M).
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*

Remark 36. 1f (p,n)T is a linear (p,n)-connection for the vector bundle (E, 7, M) or for its dual (E,, M) then, the
tensor fields algebra:

(T(E, 7 M), +,-©)
is endowed with the (p,n)-derivative:
D(F,v,N) x T(B,m M) —2"2 o (B, x, M)
(2,T) —" (p,n)D-T
defined for a tensor field T € 7 (E,n, M) by the relation:
(p,n)DzT(ﬂl,...,ﬂp,ul,...,uq)
=T(p,n) (2)(T (W1, tp, w1, ug)) = T((pyn)Datit, ... tup,ut, ... ug) —
fT(q*u Seens (pm)DZﬂp,ul,...,uq) 7T(2217.. . ,{lp, (p,n)Dzuh.. . ,uq) — .

—T(ﬂl,...,ﬂp,ul,...,(p,n)Dzuq).

(4.9)

Moreover, it satisfies the condition

(oM D2+ fon T = f1(0s1) D2 T+ f2(p,m) D2, T (4.10)

Consequently, if the tensor algebra (7 (E,m, M), +,-,®) is endowed with a (p, n)-derivative defined for a tensor
field T € T/ (E,n, M) by (4.9), which satisfies the condition (4.10), then we can endowed (F, 7, M) with a linear
(p,m)-connection (p,n)I" such that its components are defined by the equality:

(p,n) Dy sp = (p,1)Thy 54
or
(p,n) Dy, s = —(p,n)Tf 5"

The (p,n)-derivative defined by (4.9) will be called the covariant (p,n)-derivative.
After some calculations, we obtain:

(psn) D> (T" by Say @ @80, @@ ®sb‘1>

Qap,...,ap
bi,...,b
:zvoh(pjoha" =+ (ol Ty ’ap+(p, 2T,y ’“"+
(TR T — e = ()T T ™ = (o) Ty Ty 2 = 4D

A1,02;.-,0p

(,0 U)qu’)’Tln by,....b >5‘ll - ®Sﬂ ®s b @ ®qu

pt zvohT

AyeeesQp

b b
5 \75a1®"'®3ap®3 Q.- ® s,

We remark that if (p,n)T is the linear (p,n)-connection associated to the Ehresmann linear connection I', namely
(p.m)Tf = (pk o M)y, then

ajy.-yGp

ap,...,a
b b = (PO

byy..ybglk”
In the particular case of Lie algebroids, (n,h) = (Idps,Idps), the relations (4.11) become:

Als---,0p

P (T3 50, @ @50, @511 @ 051 )

ap,...,ap
bi,...,b EAR) sQyees
—Z’Y<P—I§W+PFQITGM P LR TP g pTGE T2

@.11)

a1,02;.. A1,02;.-,0p ap,a;.-

~a b b
=Ly Ty bg — P T by T — L Ty >5a1®“'®3ap®51®“'®5q

PUC o ar .. by by
= AT s @ @50, @ @ B s
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In the classical case, (p,n,h) = (Idrar,Idps,Idps), the relations (4.117) become:

T

Dy (lel_._._.;sa’il Q- ®aip QRde ®--- ®d3:j‘1)

i]...ip
_ vk Ji---Jq iy piioedp ip il eeip_ti
=X < Tl TGy Tt lady

ok ~Jq
4.11")
it pd e R ®0; ... J
Uikt g quijl..‘quj)‘?ll@ ®0ip ®dz’! @+~ @ dz’

5 Torsion and curvature. Formulas of Ricci and Bianchi type
We apply our theory for the diagram:

E (F 1R, (p1dN))

M1 N,
where (E,m,M) € [BY| and ((F,v,N),[,]rn, (p,1dN)) € |GLA|.
Let pI be a linear p-connection for the vector bundle (£,7, M) by components pI'f., .

Using the components of linear p-connection pI', then we obtain a linear p-connection pI" for the vector bundle
(E,m, M) given by the diagram:

E (h*F,[,]h*E(h*PF,IdM))
[
M il M

If (E,7,M) = (F,v,N), then, using the components of linear p-connection pI', we can consider a linear p-
connection pI for the vector bundle (h* E,h*7, M) given by the diagram:

hE
h'E (W*E,[, nE,(p ,1dpr))
h*ﬂ'l lh*ﬂ'
1d
M M M

Definition 37. If (E, 7, M) = (F,v,N), then the application
)T
L(h*E,h*m, M)? GO D(k*E,h*r, M)
(U, V) —— pT(U,V)
defined by:
(p,W)T(U,V) = pDyV = pDyU —[U,V]p- i,

for any U,V € T'(h*E,h*m, M), will be called (p, h)-torsion associated to the linear p-connection pl'.
In the particular case of Lie algebroids, h = Id;;, we obtain the application:

T
D(E,mM)? ——~ D(E,x M)
(u,v) ——— pT(u,v)
defined by:
pT(u,v) = pDyv — pDyu— [u,v] g,

for any u,v € I'(E,m, M), which will be called the p-rorsion associated to the linear p-connection pI'.
In the classical case, (p,h) = (Idppz,1dps), we obtain the torsion T associated to the linear connection T'.
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Proposition 38. The (p, h)-torsion (p, h)T associated to the linear p-connection pi is R-bilinear and antisymmetric.
If
(0, )T (Sa, S5) ™= (p,h) TS, Sc
then
(p,h) TS, = pl'sy — pl's, — LS o h. (5.1
In the particular case of Lie algebroids, h =1d s, we have pT (s, sp) = pT¢,sc and
pTap = plap = PL%a — Lap- (5.1
In the classical case, (p,h) = (Idrar,1dpy), the equality (5.1") becomes:

e =T —T%; (5.1"

J°

Definition 39. The application

)R
D(h* Fyhv, M)? x (B, m, M) —225 p(B,m, )

(Z,V),u) — (p,h)R(Z,V)u
defined by

(0, W)R(Z,V)u= pDz(pDyu) — pDy (pDzu) = pDiz v},

for any Z,V € T'(h*F,h*v,M) and v € T'(E,m, M), will be called (p, h)-curvature associated to the linear p-
connection pl.
In the particular case of Lie algebroids, h = Id s, we obtain the application:

R
D(F,u,M)* xT(E,x,M) —~—> T(E,x, M)

((z,v),u) — pR(z,v)u
defined by
pR(z,0)u= pD.(pDyu) — pDy(pDtt) = pDp 0

for any z,v € T'(F,v,M) and w € T'(E, 7, M), which will be called p-curvature associated to the linear p-connection
ol
In the classical case, (p,h) = (Id7ar,Idps), we obtain the curvature R associated to the linear connection T

Proposition 40. The (p, h)-curvature (p, h)R associated to the linear p-connection pX, is R-linear in each argument
and antisymmetric in the first two arguments.

If
(o, )R(T5,Ta)sp = (p,h)RE 550
then
opl'y B
oz

opl’
(0, P)Rf5 = plyoh i Lo +plegplh, — pooh——-

—plearlhs —i—pr,YLlBoh. (5.2)

In the particular case of Lie algebroids, h = 1d s, we obtain pR(tg,ta)sp m pR‘gaB Sq, and

a 8 Fba e 0 8prg/3 a e a 7y !
pr aB = pﬁ 8 +pF Bpra—paW—pfeaprﬂ —I—prvLaIB. (52)

In the classical case, (p,h) = (Idppr,Idpr), we obtain R(O, Or) sp = R} . Sa, and the equality (5.2") becomes:

6I‘gh argk
b hk = Bk T ekLon — b enlbk- (5.2")
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Theorem 41. For any u®s, € I'(E,m, M), we will use the notation

0
Ul = Ph g7 () + Ly s

and we verify the equality:
—uM L7 oh.

a
Uap ~ Uiga = v (P WRGGs — Ul Lag

After some calculations, we obtain:

(p.)REL 5 = (u“gﬁ ufl, —|—u|a‘LaBoh),

where uqs® € T(E,x, M) such that uqu® = 6%,
In the particular case of Lie algebroids, h = 1dyy, the relations (5.3) become
aj ay al
PRons = (“IaB T Uiga T Uy Laﬁ)

(Id7ar,Xdpy), the relations (5.3") become:

In the classical case, (p,h) =
— aj ajy
=u, (ulij u|ji> .

RL

aij

Proof. Since
i 7] . ou? oub
u‘aoiﬁ:p%oh(ﬁ(p;oh +plolu >>+pF <pa o )
. 9pt oh OuM o [ Oou™ ;
_ Y J
=P +pﬁ°hpa°hT(axz) P3O 5

ay

ua

oub
+p(ythFbﬂa - +pF

and
ou™ oul
—|—pI’aBu —|—pr@ pBOhW—l—pFaﬁu

, 9 [ .
ar _ J
u‘ﬁlafpﬁloh<8 i('oBOh’@

dpl o h gy o [ oum 9ol
=plo ;xl B —}—pﬁohpaoh8 (8xJ )—l—pfxoh i Y +paohpF
oub
«}pﬁohplﬂba8 v +pF pFaBu ,
it results that
a a j 8pfx oh du™ 8PJB oh gym
ul —ut =phLo : — —pl o . ,
e Tl 7B oxJ Oz oz* Ozl
\ 2 a) oh , Pt 82ua1
(R el AL
opr¥!
p .
( aaua pzaoh 5 lzlﬂua)
@ ; ou
a _J ap 77
(pBohpl"m')(a 5 pBthFbocaxj)
Aub a ou?
-ﬁ-(paohpf‘bﬁ8 - ohp Falﬁa )
+pFZépFaau pI‘bapI‘aﬁu
After some calculations, we obtain:
Ou . 9pr . Oply)
a a; j ao aﬁ
Ula ~ Yo = thvoha % (pﬁoh O u® = paoh O +ply5pl

opl’
p STul ohpF

(%
aﬁaz

(5.3)

(5.3)

(5.3")

a

—pF pFaﬁu
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Since
i Oplat ; Lol
(p,h)Raaﬂ =u (p% oh am‘;‘l +pFZ'6pFZa —pLoh 81’(; pLebplos — pFZ}nga oh |.
and
ou™

ap oy _ k 2l

|’>} Ljgoh= <p7 oh ok +ng%,ua> L)goh
it results that

u(p h)Ralaﬁ |1La oh
ou® . QprY . Opry
=-L] ohpWOh Dk (p%oh 8;;0‘ u®—pLoh ax?ﬁ u® +pFle3pFaau —pFZ(llpFZﬂua. O

Lemma 42. If (E,m,M) =
nents of a tensor field of (1,1) type.

(F,v,N), then, for any u®s, € T'(E,m, M), we have that ulac, a,c € 1,n are the compo-

Proof. Let U and U’ be two vector local (m +n) charts such that U N U’ # ¢.

(z)u”

Since u? (z) = M2

. ou (x) i 0

(x), forany z € UNU’, it results that

o on(e) 2 = o o) = (M ())u ) + M (@) o hla) 22— (54)
Since, for any = € UNU’, we have
/ / 0
L (@) = Mg (z)(pl o h(z) 55 (M () +pLe () My () MG (x),
and
a a a 8 a/ a a 8 a
= W(Ma (z) My (z)) = w(Ma (2)) My () + My (f)w(Mb/ (2))
it results that
! / 8 ! /
Pl (x)u? (z) = —pk o h(z)—— ol (MZ (2))u®(z) + M2 () pT (x)u® (z) M (x). (5.5)
Summing the equalities (5.4) and (5.5), it results the conclusion of lemma. O
Theorem 43. If (E, 7, M) = (F,v,N), then, for any
usq €T(E,m, M),
we will use the notation
u™ =u™ —prd u®
lalb — Yjab — Pt ab¥q
and we verify the formulas of Ricci type
Uy — Uyl + (0 h)?l‘gbuﬁil =ul(p, )RS, — uLLgyoh. (5.6)
In the particular case of Lie algebroids, h = 1dy, the relations (5.6) become:
ural|b ‘b‘a-l-pTabu‘d =u deab—u‘ 'LSy (5.6
In the classical case, (p,h) = (Idppr,1d s ), the relations (5.6") become:
i k
ujh; — ujiy + Thyulp = v R, (56"
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Theorem 44. For any u,s® € T'(E, 7, M) we will use the notation:

Up |af = Pﬁ o haa (up)a) — prglﬁub\a
and we verify the equality:
Up,|af — Ub,|Ba = —ub(p,h)nglag — ubthlB oh.
After some calculations, we obtain:
(0, MRS, 5 = u” (—tup | + Uy | — Upy | Lt g O B, (5.7)

where u®s, € T(E, 7, M) such that u,u® = &2.
In the particular case of Lie algebroids, h = 1dyy, the relations (5.7) become:

PRY = U (= by o + Uy |Ba — b, L) (5.7
In the classical case, (p,h) = (Idppr,1d s ), the relations (5.7") become:
R, iy = u’ (=i + w ji)- (5.7")
Proof. Since
; 0 . oup duy,
Upy o = P O h(@ (p& oh (w‘ - nglaw))) Pl 5 (pa o ha ﬂFbaua)

b
o h@pa h Oup, 3} (6ub1>7 j 6‘pr Oup

=ppyo 07 O +p hpaOhaxJ py pﬁoh 9 ub*ﬂgohPFblaa v
; Ouy,
~Pa© hPFblg By +PFb15PFbaua
and
; 0 ; ouy, b ouy,
Upy|Ba = P © h(@ (pé Ohﬁ - pr]Bub)) TS 0 (Pg oho—7 pr,B“ll)
 Ophohouw, . . 0 [du  opl} B
_ B by J by b8 up
= pach Oxt Ozt +p50hpg®h%(3xj)_p30h z? ub_pathFblﬁa i
; ou
b b b
_ p% o hprla@ + T, 0Pl p5ta
it results that
i 9pl oh Quy ; 3,0% oh Juy, 0 [ Ouy
ubl\aﬁ_ubl\ﬂa:p]ﬁo ac;j amil ~Pa© ozt axj] TP thaohaij ozt l

: o (Ouy . OpLy s o 2PPbya Oy
—ijthaOh,?(anl)—&—paOh l"l ub_p'ZaOh O ub"'pﬁohprb]aa j
i ou, ; Ouy Ouy
b b
,p?gohpl_‘b]a@ +pt 0ohp Fblaa 7 pa ohp Fblaa - +pr1ﬁpraua pr.aprﬁua

After some calculations, we obtain:

=~
S@‘

duy, apfg . Op
Up,|aB — Ub,|Ba = Lﬁaohpvoh 1 + ( oh ,lﬁub —p% oh up —l—nglﬁpFZaua —prglapfgﬁua.

Oxk ox? ox

<.

Since

b b
up(p, )R o5 = johapr @ 4 plb s pls oha Plos 08, pl5 5 —pl% L) oh
b0 biaf = b\ P3 Ol PLegPlvia— Pa Ot “PleaPl v g T PLbypa
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and

Ouyp,
oxk

k b
ubthzﬁoh: (pvoh —prl,yub>Llﬁoh

it results that

Oxk ox®
+ pl’glﬁpfgaua - nglangﬁua, O

duy, o 0pl? o oprY
—up(p, R)RY, 5 —upy |y LY g ol = —L7 gohpl oh——L + (PZ oh— 0y, —ppoh m-'OéUb

Lemma 45. If (E,n,M) = (F,v,N), then, for any
b X
ups’ € N(E, 7, M),
we have that uy., b,c € 1,n are the components of a tensor field of (0,2) type.

Proof. Let U and U’ be two vector local (m+n) charts such that U N U’ # ¢.
Since uy (z) = M} (z)uy(2), for any = € UNU, it results that

/ Auy () J 3} / Aup(x)
k b k b b k b
por oh(z) ok =P oh(z) o (My) (x))up(x) + My (z)pl o h(x) pa (5.8)
Since, for any z € U NU’, we have
/ / 0]
P a) = Mg (0) (o ohe) 3 2 (M) + T8N ) ) M),
and
8 a’ a 8 a/ a lll 8 a
0= W(Ma (z) My (z)) = w(Ma (@) My (x) + Mg (x)w(Mb/ (2))
it results that
/ / 0
U () () = =l 0 () = (M () ) + MY ()T (@)1 (@) MG ). (5.9)
Summing the equalities (5.8) and (5.9), it results the conclusion of lemma. O
Theorem 46. If (E, 7, M) = (F,v,N), then, for any
b £ x
ups’ € N(E, 7, M),
we will use the notation
_ d
Up,Jalb = Ubyab — PLapUs,|d
and we verify the formulas of Ricci type
Uy afb — by bl + (9, ) Ty, ja = —ua(p, )R, 4y — g, gLy © b (5.10)
In the particular case of Lie algebroids, h = 1dyy, the relations (5.10) become:
— T4 = —ugpRY . —up g LY 5.10/
Upy |alb — Uby |bla T PLgpUb |d = —UdPRp, qp — Uby|dLap- (5.109
In the classical case, (p,h) = (Idrpr,1dpy), the relations (5.10") become:
h _ h
i il — g lgli + Tz p = unRj, 5. (5107
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Theorem 47. For any tensor field:
TZI,::gzpsal ® @ sq, R ®---®sba
we verify the equality:

ap...a aj...a aay...a ap_1a a b
Tbl...quaﬁ_Tbl...quﬁa Ty vy ' () h)Rahs+ +Tb by (PR)RG 5 — Tbb (7h)Rb1a[3_

(5.11)
aj...ap a Y
7Tb1...bq,]b(p’ )quaﬂfT bll)’yL(XﬂOh
In the particular case of Lie algebroids, h = 1dyy, the relations (5.11) become:
aj...a aj...a o aaj...a .a 1a
T, ...quaﬁ =T, bﬁﬂa T, ppRaaﬁ +- +Tb by pRaaﬁ bb2 prl af 5.11)
ag.. a ¥ :
o Tb bg— lprbq af ™ T bql‘o'YLaB
In the classical case, (p,h) = (Id7pr,1d s ), the relations (5.11') become:
i1 ...ip - i1 -. _ ptine. zp i zp 1 1, ~ip i L Q.. "
B = T = T R+ T R T RS == T D (51)
Theorem 48. If (E,7,M) = (F,v, N), then we obtain the following formulas of Ricci type:
aj...a aj...a a .a
Tbl...bq7b|c Ty Z\)c\b +(p,h )Tbc b Zfd
.a a
=Ty 25 (. W) R+ Tbl T, W) — Ty ()R o =+ (5.12)
a aj a
_Tblmbq‘ilb(p7 )qubc—T b"’dL oh.
In the particular case of Lie algebroids, h = 1dyy, the relations (5.12) become:
aj...a a. a .a
T, bﬁb\ -1, b \c\b +pT5. T, by 7d
.a a
=T, “" P - Ty PRabe = Toy bt PRE, e — (5.12)
7Tb1...bq,1prbqbc*T b \dLbc
In the classical case, (p,h) = (Idrpr,1dpy), the relations (5.12") become:
i1 0p - i1 0p m atleip
Tl Tj : \k\h+Thijl dglm (5.12)
’p i ’p limip  piledp moj L pleip J '
Ty R+ T e R = T35, % R T g Rig b

We observe that if the structure functions of generalized Lie algebroid:

((F»VvM)r [7 ]F,hv(pvldﬂ/f))?

the (p, h)-torsion associated to linear p-connection pI', and the (p, h)-curvature associated to linear p-connection pI’
are null, then we have the equality:

ag...ap _ ag...ap
Ty, vgltle = Toy..bg el

which generalizes the Schwartz equality.

Theorem 49. If (E,7,M) = (F,v,N), then the following relations hold good.:

> A D (o h)T)(U2Us) ~ (o, WR(ULUUs + () T((p, ) T(ULLU2). U3} =0, (B)
cyclic(Uy,Us,U3)

and

S {Du, (0 MR U2 U)U + (o, WR((p, Y T(U,U2), Us)U} = 0. (B2)
cyclic(Uy,U,,U3,U)

respectively. This identities will be called the first and the second identity of Bianchi type, respectively.
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In the particular case of Lie algebroids, h = 1dy, the identities (B1) and (By) become:

Z {(pDy, pT)(uz,u3) — pR(ur,uz)uz + pT(pT (w1, uz),u3) } =0,

cyclic(uy,uz,u3)

Z {(pDu, pR) (u2,uz)u+ pR(pT(u1, uz),uz)u} =0.

cyclic(uy,uy,usz,u)
In the classical case, (p,h) = (Idrar,1dar), the identities (By') and (By) become:

> {(Dx,T)(X2,X3) —R(X1, X2) X34+ T( T(X1,X2),X3)} =0,
cyclic(X,X2,X3)

> {(Dx,R)(X2,X3) X +R(T(X1,X2),X3)X } =0.
cyclic(X,X,,X3,X)

Proof. Using the equality:

(pDu, (p,h)T)(U2,Us) = pDu, ((p, h)T(U2,U3)) = (p, ) T(pDry, Uz, Us) = (p, B)T(Ua, pDyy, Us)

and the Jacobi identity, we obtain the first identity of Bianchi type.
Using the equality:

(pDUl (p’h)R)(UL U3)U = pDUl ((,0, h)R(UL U3)U) - (pvh)R(pDUl U27U3)U
— (p,h)R(Ua, pDy, U3)U — (p, h)R(Ua, Us) pDyy, U

and the Jacobi identity, we obtain the second identity of Bianchi type.

Remark 50. On components, the identities of Bianchi type become:

S DT+ G T 0T = > (bR,

cyclic(ay,az,a3) cyclic(ay,az,a3)

and

S MR a0 DR gy ()T, | =0,

cyclic(a,ay,as,a3)

If the (p, h) torsion is null, then the identities of Bianchi type become:

Z (p’ h)R23a|a2 :0

cyclic(ajan,az)

and

b _
Z (p7h’)Raa2a3|al _O

cyclic(a,ay,a2,a3)

6 (Pseudo)metrizable vector bundles. Formulas of Levi-Civita type

We will apply our theory for the diagram:

(F7 [7 ]F,hv(paldN))

E
Wi lu
M—" SN,

where (E,7,M) € |BY| and ((F,1,N),[, ] .5, (p,1dn)) € |GLA].

(B

(B

(B1")

(B2



Journal of Generalized Lie Theory and Applications 29

Definition 51. We will say that the vector bundle (E,m, M) is endowed with a pseudometrical structure if it exists
9= gups® ®s® € T(E,m, M) such that for each = € M, the matrix ||gas ()| is nondegenerate and symmetric.
Moreover, if for each = € M the matrix ||gqs ()| has constant signature, then we will say that the vector bundle
(B, 7, M) is endowed with a metrical structure.
If g = gaps® Qs € 7'20(E7 7, M) is a (pseudo)metrical structure, then, for any a,b € 1,7 and for any vector local
(m+7)-chart (U,sy) of (E,m, M), we consider the real functions

gba
U——R

such that [|3"*(z)|| = ||gas ()| ~", for any Vz € U.

Definition 52. We admit that (F,m, M) is a vector bundle endowed with a (pseudo)metrical structure g and with a
linear p-connection pI'.
We will say that the linear p-connection pI' is compatible with the (pseudo)metrical structure g if:

pD,g=0, VzeTl(F,vN).

Definition 53. We will say that the vector bundle (E, 7, M) is p-(pseudo)metrizable, if it exists a (pseudo)metrical
structure g € 7'20(E7 m, M) and a linear p-connection pI for (E,m, M) compatible with g. The Idp;-(pseudo)metriz-
able vector bundles will be called (pseudo)metrizable vector bundles.

In particular, if (T M, 5, M) is a (pseudo)metrizable vector bundle, then we will say that (T M, 7y, M) is a
(pseudo)Riemannian space, and the manifold M will be called (pseudo)Riemannian manifold.

The linear connection of a (pseudo)Riemannian space will be called (pseudo)Riemannian linear connection.

Theorem 54. If (E,7,M)= (F,v,N)and g € 7'20(h*E, W, M) is a (pseudo)metrical structure, then the local real
functions:
1

prgc = Egad(plcc oh

agbc
ozl

8gdc 1

99vd _oh
Ol Pd

oxk

+ pioh - (Lgcoh)ged_(Lgdoh)gec+(Lflcoh)geb) (6.1)
are the components of a linear p-connection pi for the vector bundle (h* E,h*m, M) such that (p,h)T = 0 and the
vector bundle (W*E,h*m, M) becomes p-(pseudo)metrizable. This linear p-connection pI' will be called the linear
p-connection of Levi-Civita type.

In the particular case of Lie algebroids, h =1d ), the relations (6.1) become:

prg, = 1~ad ( % 99bd 5 99de 1 Ogbe

S9N\ Pe gk TP

ok TP ogs ~Pa gl ~ Lbcded *LZ‘dgec+L§cgeb>- (6.1

In the classical case, (p,h) = (Idrpr,1dpy), the relations (6.1") become:

i Loin(99in  O9nk _ 99k
k=0 oxk oxJ ozl )°

6.17)
Proof. Since
(rDug)Vez=r("0"1au) (U)(9(V©2))~g((pDuV)@2) ~g(V&(pDu2)), YUV, ZET (W Eh*m, M).

it results that, for any U,V, Z € T'(h*E, h*m, M), we obtain the equalities:

("6 1da) (V) (9(V ® 2)) = g((pDuV) @ Z) + 9(V @ (pDus 2)), 6.2)
("% 1) (2)(g(U V) = g((pD2U) @ V) + (U @ (pD 7 V), 6.3)
(6" 1) (V)(9(Z 2 U)) = g((pDv 2) @ U) + 9(Z @ (pDy 1)), (6.4)

We observe that (6.2) 4 (6.4) — (6.3) is equivalent with the equality:
9((pDuV +pDvU)® Z) + g((pDv Z — pDzV) @ U) +g((pDu Z — pDzU) @ V)

=1 (" 10 ) ) (o(v @ 2)+1 (" 1dar ) V(a(z 2 0) 1 (" 1w ) (2)(e(U @ V).
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Using the condition (p, h)T = 0, which is equivalent with the equality:
pDyV = pDyU —[U,V]pg =0,
we obtain the equality:
29((pDuV) @ Z) + g([V,Uln e © Z) + g([V, Z)1 e @ U) + g([U, Z g @ V)
=1 (" 1dn ) @) eV @ 2)+ (" 1w ) (V922 V)
- r(hZE,IdM ) (Z)(g(U®V)), VU,V,Z €T(h*E,h*n, M).
This equality is equivalent with the following equality:
2((pDuV) @ 2) =T ("7 1 ) (U) - (9(V @ 2)) +T ("0 1dur ) (V) (9(Z 0 1)
~1 ("1 (29U V) +g([U VI ©2) = (V. Zlne £ @ U) + 912, Ul 2 V)

forany U,V,Z € T'(h*E,h*m, M).
ftU =5,V =S5pand Z = S, then we obtain the equality:

99(Sp ®Syq) i 09(Sq®Se) 9g9(Sp® S.)
a _k J _ 1
2g((pT.S0) @ Sq) = peoh Dk +ppoh D7 pagoh 2l

—9((Lgq0h)Se ® Se) + 9((Lge 0 h)Se @ Sp),

+9((Ley0h)Se ® Sa)

which is equivalent with:

agbc
ozl

Ogpad | j ,09a
k /
2gdaprgc =pcoh Ok +pi oh B;UJC —pgoh

- (Ll?c © h)ged - (Lleyd o h)gec + (LZC o h)g€b

Finally, we obtain:

Vwal & ,99d 5 _,09dc | , Ogp
Pl = Ega (pc Oh% + p{, oh (9:1:; —pach axlc —(Lpeoh)ged — (Lpgoh)gec + (Lgc0h)geb |,
where [|§%(2)|| = [|gga(x)| ", for any z € M. O

Theorem 55. If (E,m,M) = (F,u,N), g € TX(h*E,h*n,M) is a (pseudo)metrical structure and T €
7’2l (W*E,h*r, M) such that its components are skew symmetric in the lover indices, then the local real functions

0. = 0+ 55 (90T — 00 T 00 T) ©.5)
are the components of a linear p-connection compatible with the (pseudo)metrical structure g, where pl'jy . are the
components of linear p-connection of Levi-Civita type (6.1). Therefore, the vector bundle (h*E,h*m, M) becomes
p-(pseudo)metrizable and the tensor field T is the (p, h)-torsion tensor field.

In the particular case of Lie algebroids, h =1dys, g € 7'20(E,7r,M) is a (pseudo)metrical structure and T €
7’2l (E, 7, M) such that its components are skew symmetric in the lover indices, then the local real functions

5 1. )
ngc = pl—‘gc + Egad(gde’]rlc;c - gbe']rzc +gec’]rgd) (6.5)
are the components of a linear p-connection compatible with the (pseudo)metrical structure g, where pl'jy . are the
components of linear p-connection of Levi-Civita type (6.1").
In the classical case, (p,h) = (Idppar,Idas), g € 7‘20(TM, v, M) is a (pseudo)metrical structure and T €
7'2l (TM,7r, M) such that its components are skew symmetric in the lover indices, then the local real functions

L. . 1 .
ik =i+ 58" (9 Tk = 9 Thy, + 9erT5n) (6.5”)

are the components of a linear connection compatible with the (pseudo)metrical structure g, where F; i are the
components of linear connection of Levi-Civita type (6.1").
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Theorem 56. If (E, 7, M) = (F,u,M), g € T (h*E,h*x, M) is a (pseudo)metrical structure and pX" is the linear
p-connection (6.5) for the vector bundle (h* E,h*m, M), then the local real functions
- o 1
PLa = Plba +53% (6.6)
cb\
are the components of a linear p-connection such that the vector bundle (h*E,h*m, M) becomes p-(pseudo)metriz-
able.
In the particular case of Lie algebroids, h =1dys, g € 7'20(E,7T,M) is a (pseudo)metrical structure and pf‘ is
the linear p-connection (6.5°) for the vector bundle (E,n, M), then the local real functions:
- . 1. )
PLa = Plba+55% 6.6")
chla
are the components of a linear p-connection such that the vector bundle (E,m, M) becomes p-(pseudo )memzable
In the classical case, (p,h) = (Idpps,1dpys), g € TO(TM T, M) is a (pseudo)metrical structure and ol is the
linear p-connection (6.5”) for the vector bundle (T M, T, M), then the local real functions:

1
=T, 4 _gih 6.6”
Jk ik 2 29 gh] |k ( )

are the components of a linear connection such that the vector bundle (T M, 7y, M) becomes (pseudo)metrizable.

Theorem 57. If g € 7'0 (W E,h*m, M ) is a (pseudo)metrical structure, pL is the linear p-connection (6.6) for the
vector bundle (h* E, h*7r M), T Sd ®S ®@t%, and Oy = 5553 — gpag©® is the Obata operator, then the local
real functions

N ~ 1 .
prl?oz = prgoz + Eogchda 6.7
are the components of a linear p-connection such that the vector bundle (h*E,h*m, M) becomes p-(pseudo)metriz-
able.
In the particular case of Lie algebroids, h =1dyy, g € TO(E 7, M) is a (pseudo)metrical structure, pI' is the
linear p-connection (6.6’) for the vector bundle (E,m, M), T = Td oS5d @ s @t% and and OpG = 26b6d Jpa g is
the Obata operator, then the local real functions

N -~ 1
prgoz = prgoc + Eogchda (67,)

are the components of a linear p-connection such that the vector bundle (E,m, M) becomes p-(pseudo)metrizable.

In the classical case, (p,h) = (Idpas,1dpy), g € ’TO(TM TM7 M)isa (pseudo)metrical structure, T is the linear
connection (6.6”) for the vector bundle (T M, 7y, M), T = Thkal @ dz" @ da® and and O}” = é(ihél gjlghi is the
Obata operator, then the local real functions

Ny "y |
e =10+ EOﬁT}Lk (6.77)
are the components of a linear connection such that the vector bundle (T M, Ty, M) becomes (pseudo)metrizable.
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