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Abstract Generalized polar decomposition method (or briefly GPD method) has been introduced by Munthe-Kaas
and Zanna [5] to approximate the matrix exponential. In this paper, we investigate the numerical stability of that
method with respect to roundoff propagation. The numerical GPD method includes two parts: splitting of a matrix
Z ∈ g, a Lie algebra of matrices and computing exp(Z)v for a vector v. We show that the former is stable provided
that ‖Z‖ is not so large, while the latter is not stable in general except with some restrictions on the entries of the
matrix Z and the vector v.
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1 Introduction

Since exponential matrix naturally appears in the analytical solutions of many differential equations, it is important
to present the numerical approximate methods for computing exponential matrices in applied problems. In many
cases that the different equations are modeled on a matrix Lie group, we need that the approximated matrix to
remain in the same Lie group. Most of the well-known standard methods [3] do not satisfy this condition except in
some special cases, like 3 × 3 antisymmetric matrices [2].

Recently, Munthe-Kaas and Zanna have introduced a geometric numerical method, called generalized polar
decomposition method, or briefly GPD method [5]. The main advantage of this method among others is that it
preserves the approximated object in the mentioned Lie group. In the GPD method, the Lie group G and its Lie
algebra g are splitted to simpler ones, such that the computation of expZ will be easier in those subgroups and
subalgebras. There are two numerical algorithms in GPD method. The first one (Algorithm 1) splits the matrix Z
and in the second one (Algorithm 2), exp(Z)v is computed, where v is an arbitrary vector.

As far as we know, no proof of the stability of the GPD method, with respect to propagation of roundoff error,
has appeared in the literature. In this paper, we study the stability of the method for the so-called polar-type splitting
order-two algorithm that has been introduced in [5]. We show that Algorithm 1 which is a simpler algorithm is
stable, provided the norm ‖Z‖ = maxi,j |Zi,j | of the matrix Z is not very large, but in the complicated one, that is,
Algorithm 2, the stability is controlled by entries of Z, exp ‖Z‖ and ‖v‖ = maxi |vi| as the norm of the vector v.

We introduce a sufficient condition for this aim. More precisely, given an n× n matrix Z, let

aj =
[
Zj+1,j , Zj+2,j , . . . , Zn,j

]
, bj =

[
Zj,j+1, Zj,j+2, . . . , Zj,n

]T
for j = 1, 2, . . . , n− 1 and let

k0 = min
{∣∣bT

j aj

∣∣; bT
j aj �= 0, 1 ≤ j ≤ n− 1

}
,

then Algorithm 2 is stable under the following conditions:

‖Z‖ and ‖v‖ are not very large, (1.1a)

‖Z‖
k0

<

(
1 − u

1 + u

)(
1 − nu

n2u

)
, (1.1b)

where u is the unit roundoff error.
The content of the paper is as follows. In Section 2, some preliminaries concerning the general concept of error

analysis and GPD method and also details of the above-mentioned algorithms are given. In Section 3, the error
analysis of the Algorithm 1 and in Section 4, the error analysis of Algorithm 2 are addressed. Section 5 is devoted
to sensibility analysis of Algorithm 2.
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2 Preliminaries

2.1 Error analysis

In this section, we recall some standard definitions and lemmas, which are applied in the other sections. Elementary
operators like +, ·, ×, and / as well as √ , sin, and cos admit the following floating point arithmetic:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where op is an elementary operation, and u is the unit roundoff error.

Lemma 1 (see [1]). If |δi| ≤ u and ρi = ±1 for 1 ≤ i ≤ n and nu < 1, then

n∏
i=1

(
1 + δi

)ρi = 1 + θn,

such that

|θn| ≤ nu

1 − nu
:= γn.

The following technical properties are satisfied by the sequence {γn}n:

γj + γk + γjγk ≤ γj+k, (j, k ≥ 1), (2.1)

cγn ≤ γcn, (c ≥ 1, n > 1). (2.2)

Denoting the calculated value of any variable x by x̂ and |A| = [|aij |] for any matrix A = [aij ], we have the
following lemma.

Lemma 2 (see [1,4]). If y = (c−∑k−1
i=1 aibi)/bk is evaluated in floating point arithmetic, then, no matter what is

the order of evaluation, there exist constants θ(i)k , i = 0, 1, . . . , k − 1, such that

bkŷ
(
1 + θ

(0)
k

)
= c−

k−1∑
i=1

aibi

(
1 + θ

(i)
k

)
, (2.3)

where |θ(i)k | ≤ γk for all i. If bk = 1, so that there is no division, then |θ(i)k | ≤ γk−1 for all i.

Also for matrix multiplication, we have

fl(AB) = AB +Δ, |Δ| ≤ γn|A||B|, A ∈ R
m×n, B ∈ R

n×p. (2.4)

For any matrix A = [aij ], let ‖A‖ = maxi,j |aij |. By this norm, we have

‖AB‖ ≤ n‖A‖‖B‖ (2.5)

for any A ∈ R
m×n and B ∈ R

n×p.
For any two vectors a,b ∈ R

n, let

a ∗ b =
(
a1b1, . . . , anbn

) ∈ R
n. (2.6)

So, using this notation, we can write

fl(λa) = λa ∗ (1 + u), |u| ≤ u1, 1 = (1, . . . , 1) ∈ R
n, λ ∈ R, (2.7)

Similar to Lemma 1, one can prove the following lemma.

Lemma 3. If |ui| ≤ u1, for 1 ≤ i ≤ n and nu < 1, then(
1 + u1

) ∗ · · · ∗ (1 + un
)

= 1 + hn, (2.8)

such that ∣∣hn
∣∣ ≤ γn1.
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2.2 GPD method

Suppose G is a finite dimensional Lie group and g is its Lie algebra and let σ : G → G, σ �= id be an involutive
automorphism, that is, one-to-one smooth map such that:

σ(x · y) = σ(x) · σ(y), ∀x, y ∈ G,

σ
(
σ(x)

)
= x, ∀x ∈ G.

It is well known that for sufficiently small t and for any z = exp(tZ) ∈ G, where Z ∈ g, we can write

z = xy, (2.9)

where σ(x) = x−1 and σ(y) = y. The decomposition (2.9) is called the Generalized Polar Decomposition (GPD)
of z. On the Lie algebra g, the involutive automorphism is induced by σ:

dσ(Z) =
d

dt

∣∣∣
t=0

σ(exp tZ),

hence dσ defines a splitting of g into the direct sum of two linear spaces:

g = p ⊕ k,

where k = {Z ∈ g : dσ(Z) = Z} and p = {Z ∈ g : dσ(Z) = −Z}. In fact, k is a Lie subalgebra of g, but p only
admits Lie triple system property:

A,B,C ∈ p =⇒ [
A, [B,C]

] ∈ p,

where [A,B] is the standard commutator on Lie algebra g. Now, let

P = Πp(Z), K = Πk(Z),

where the maps Πp : g → p and Πk : g → k are the canonical projection maps. It can be easily verified that every
Z ∈ g can be uniquely decomposed into Z = P +K, where

P = Πp(Z) =
1

2

(
Z − dσ(Z)

)
, K = Πk(Z) =

1

2

(
Z + dσ(Z)

)
,

(see [5]). Also, k and p satisfy

[k, k] ⊆ k, [k, p], [p, k] ⊆ p, [p, p] ⊆ k.

If, in the decomposition (2.9), we consider x = expX(t) and y = expY (t), where X(t) ∈ p and Y (t) ∈ k, for
sufficiently small t, then it can be written as follows:

X(t) =

∞∑
i=1

Xit
i, Y (t) =

∞∑
i=1

Yit
i,

where the coefficients Xi and Yi can be found in [5]. The first terms in the expansions of X(t) and Y (t) are

X = Pt− 1

2
[P,K]t2 − 1

6

[
K, [P,K]

]
t3 +

(
1

24

[
P,
[
P, [P,K]

]]− 1

24

[
K,
[
K, [P,K]

]])
t4

+

(
7

360

[
K,
[
P,
[
P, [P,K]

]]] − 1

120
[K, [K, [K, [P,K]

]]]− 1

180

[
[P,K],

[
P, [P,K]

]])
t5 +O

(
t6
)
,

(2.10)

Y = Kt− 1

12

[
P, [P,K]

]
t3

+

(
1

120

[
P,
[
P,
[
P, [P,K]

]]]
+

1

720

[
K,
[
K,
[
P, [P,K]

]]]− 1

240

[
[P,K],

[
K, [P,K]

]])
t5 +O

(
t7
)
.

(2.11)

Considering σ1, σ2, . . . , σm as elements of a sequence of involutive automorphisms on G, σ1 induces a decomposi-
tion g = p1 ⊕ k1 and approximation:

exp(tZ) ≈ exp
(
X [1](t)

)
exp

(
Y [1](t)

)
,
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where X [1] and Y [1] are suitable truncations of (2.10) and (2.11), respectively. Then k2 can be decomposed by σ2

and so we have k1 = p2 ⊕ k2 and

exp
(
Y [1](t)

) ≈ exp
(
X [2](t)

)
exp

(
Y [2](t)

)
.

Repeating this process m times, (m � 1) yields the following:

g = p1 ⊕ p2 ⊕ · · · ⊕ pm ⊕ km, exp(tZ) ≈ exp
(
X [1](t)

) · · · exp
(
X [m](t)

)
exp

(
Y [m](t)

)
. (2.12)

The number m is chosen appropriately such that the right-hand side terms can be easily computed. If the expan-
sions (2.10) are truncated at order two, then the two following algorithms based on the iterated generalized polar
decomposition (2.12) will be obtained. The first algorithm splits the matrix Z, while the second one approximates
exp(Z)v.

Algorithm 1 (Polar-type splitting, order two).
% Purpose: 2nd order approximation of the splitting (2.12)
% In: n× n matrix Z
% Out: Z overwritten with the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n)

% diag(Z) = diag(Y [m])

for j = 1 : n− 1

aj := Z(j + 1 : n, j)

bj := Z(j, j + 1 : n)T

Kj := Z(j + 1 : n, j + 1 : n)

cj := zj,jaj −Kjaj

dj := −zj,jbj +K
T
j bj

Z(j + 1 : n, j) := aj − 1
2cj

Z(j, j + 1 : n) := (bj − 1
2dj)

T

end

Algorithm 2 (Polar-type approximation).
% Purpose: Computing the approximant (2.12) applied to a vector v

% In: v : n-vector
% Z : n× n matrix containing the nonzero elements of X [i] and Y [m] as:
% Z(i+ 1 : n, i) = X [i](i+ 1 : n, i), Z(i, i+ 1 : n) = X [i](i, i+ 1 : n)

% diag(Z) = diag(Y [m])

% Out: v := exp(X [1]) · · · exp(X [m]) exp(Y [m])v

for k = 1 : n

vk := exp(zk,k)vk

end
for j = n− 1 : −1 : 1

aj := [0;Z(j + 1 : n, j)]

bj := [0;Z(j, j + 1 : n)T ]

vold := v(j : n)

αj :=
√

bT
j aj , βj =

sinh αj

αj
, λj = 2 sinh2(

αj

2 )

D :=
(

0 1

α2
j 0

)
ϕ(D) := λjD

−1 + βjI,

w := ϕ(D)
( vold,1

bT
j vold

)
vnew := [aj , e1]w = w1aj + w2e1

v(j : n) = vold + vnew

end
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3 Error analysis of Algorithm 1

In Algorithm 1, we denote byZ simultaneously the input data matrix and the splitted output matrix. In this algorithm,
the calculated value of cj (1 ≤ j ≤ n− 1) is

ĉj =
(
zj,j aj ∗ (1 + u1

j

) −Kjaj − u2
j

) ∗ (1 + u3
j

)
,

where |ui
j | ≤ u1 (i = 1, 3) and |u2

j | ≤ γn−j |Kj ||aj |. From (2.8), we have (1 + u1
j ) ∗ (1 + u3

j ) = 1 + h2, where
|h2| ≤ γ21.

Hence,

ĉj = cj + uj ,

where

uj = zj,jaj ∗ h2 −Kjaj ∗ u3
j − u2

j ∗ (1 + u3
j

)
, (3.1)∣∣uj

∣∣ ≤ γ2
∣∣zj,j ∣∣∣∣aj

∣∣+ u
∣∣Kj

∣∣∣∣aj

∣∣+ γn−j

∣∣Kj

∣∣∣∣aj

∣∣ ∗ (1 + u1
)
. (3.2)

By applying the norm of the matrix Z this reduces to∣∣uj

∣∣ ≤ ((γ2 + u+ γn−j(1 + u)
)‖Z‖2)1.

Now, similarly for computing dj , we have

d̂j = dj + u′
j ,

where ∣∣u′
j

∣∣ ≤ ((γ2 + u+ γn−j(1 + u)
)‖Z‖2)1.

Therefore, the entries of the matrix Z change as follows:

fl

(
aj − 1

2
cj

)
=

(
aj − 1

2

(
cj + uj

) ∗ (1 + u4
j

)) ∗ (1 + u5
j

)
=

(
aj − 1

2
cj

)
+ pj ,

where |ui
j | ≤ u1, (i = 4, 5) and

pj = aj ∗ u5
j − 1

2
cj ∗ h2 − 1

2
uj ∗ (1 + h2

)
.

So from (3.1), ∣∣pj

∣∣ ≤ u
∣∣aj

∣∣+ 1

2

∣∣cj

∣∣γ2 +
1

2

(
1 + γ2

)(
γ2
∣∣zj,j∣∣∣∣aj

∣∣+ (u+ γn−j(1 + u)
)∣∣Kj

∣∣∣∣aj

∣∣).
If we replace the value of cj from Algorithm 1 in the above relation, we will have

∣∣pj

∣∣ ≤ u
∣∣aj

∣∣+ (γ2 +
1

2
γ2
2

)∣∣zj,j ∣∣∣∣aj

∣∣+ (1

2
γ2 +

1

2

(
1 + γ2

)(
u+ γn−j(1 + u)

)) ∣∣Kj

∣∣∣∣aj

∣∣,
and finally

∣∣pj

∣∣ ≤ (u‖Z‖ +

(
γ2 +

1

2
γ2
2 +

1

2
γ2 +

1

2

(
1 + γ2

)(
u+ γn−j(1 + u)

))‖Z‖2
)
1.

Since

γn−j =
(n− j)u

1 − (n− j)u
<

(n− j)u

1 − nu
=
n− j

n
γn

for nu < 1 and from property (2.1), the upper bound of pj will be

∣∣pj

∣∣ ≤ (‖Z‖u+

(
2

1 − 2u
+
n− j + 2

2(1 − nu)
+

1

2

)
‖Z‖2u+O

(
u2))1.
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The greatest value of the right-hand side occurs at j = 1, hence for all j,∣∣pj

∣∣ ≤ (‖Z‖u+

(
2

1 − 2u
+

n+ 1

2(1 − nu)
+

1

2

)
‖Z‖2u+O

(
u2))1. (3.3)

Similarly, if

fl

(
bj − 1

2
dj

)
=

(
bj − 1

2
dj

)
+ qj ,

then ∣∣qj

∣∣ ≤ (‖Z‖u+

(
2

1 − 2u
+

n+ 1

2(1 − nu)
+

1

2

)
‖Z‖2u+O

(
u2))1. (3.4)

However, since the diagonal entries do not change during this algorithm, (3.3) and (3.4) show the stability of the
algorithm whenever ‖Z‖ is not so large.

4 Error analysis of Algorithm 2

In the GPD method, the matrix Z is splitted in Algorithm 1, and the exp(Z)v is calculated in Algorithm 2. We
denote the splitted matrix of Z with Z = (zi,j).

4.1 Error analysis of αj

Let kj = bT
j aj and αj =

√
kj , here we have assumed kj > 0. If kj is not a positive number, by considering

αj =
√|kj | when kj < 0 and by letting sinh αj

αj
= 1 when kj = 0, it is easily seen that of all the arguments and the

upper bounds presented in the paper remain valid.
From Lemma 2, we have

fl
(
kj

)
=

n∑
i=j+1

zj,izi,j

(
1 + θ

(i)
n−j

)
,

where |θ(i)n−j | ≤ γn−j , (1 ≤ i ≤ n). So we can write

fl
(
kj

)
= kj +

n∑
i=j+1

zj,izi,jθ
(i)
n−j = kj + t,

where

|t| ≤ (n− j)γn−j‖Z‖2. (4.1)

Then by assuming ‖Z‖ ≤ 1 and from condition (1.1), we have

|t| ≤ nγn ≤ 1 − u

1 + u
k0 ≤ k0,

where k0 = min{|bT
j aj |; bT

j aj �= 0, 1 ≤ j ≤ n− 1}. Hence kj + t is nonnegative and

fl
(
αj

)
=
√
kj + t(1 + δ),

where δ, with |δ| ≤ u, denotes the floating point arithmetic error. Therefore,

fl
(
αj

)
= αj + ξj , (4.2)

where

ξj = αjδ +

(
t√

kj + t+ αj

)
(1 + δ).

Since αj ≤ √
n− j‖Z‖, we have∣∣ξj ∣∣ ≤ αju+

( |t|
αj

)
(1 + u) ≤ αju+

(
(n− j)γn−j‖Z‖2

αj

)
(1 + u) ≤ ϕj‖Z‖, (4.3)

where

ϕj := u
√
n− j +

(n− j)γn−j√
k0

‖Z‖(1 + u). (4.4)
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4.2 Error analysis of βj

Let us consider

fl
(
βj

)
=

sinh
(
αj + ξj

)
αj + ξj

(1 + δ).

By using the identity sinhx− sinh y = 2 sinh x−y
2 cosh x+y

2 , we obtain

fl
(
βj

)
=

(
βj +

ξj
sinh ξj/2

ξj/2
cosh

(
αj + ξj/2

) − βjξj

αj + ξj

)
(1 + δ) = βj + ε1j ,

where the quantity ε1j is

ε1j = βjδ +

(
ξj

sinh ξj/2
ξj/2

cosh
(
αj + ξj/2

) − βjξj

αj + ξj

)
(1 + δ). (4.5)

From (4.1) and (4.3), we have ∣∣ξj/αj

∣∣ ≤ u+
(n− j)γn−j

k0
‖Z‖2(1 + u). (4.6)

We now consider the condition

ψj := u+
(n− j)γn−j

k0
‖Z‖2(1 + u) < 1 (4.7)

that is clearly a consequence of

‖Z‖2

k0
<

(
1 − u

1 + u

)(
1 − nu

n2u

)
for 1 ≤ j ≤ n− 1, which itself is obtained from condition (1.1b) for ‖Z‖ < 1. Hence from (4.7) and by increasing
monotonicity of the map x �→ x

1−x on the interval (0, 1), we can write∣∣∣∣ ξj
αj + ξj

∣∣∣∣ ≤
∣∣ξj/αj

∣∣
1 − ∣∣ξj/αj

∣∣ ≤ ψj

1 − ψj
.

The function

f(x) =

⎧⎨⎩
sinhx

x
, x �= 0,

1, x = 0

has the elementary property that 1 ≤ f(a) ≤ f(b) whenever |a| ≤ b, from which and (4.5) we deduce |ε1j | ≤ ηj ,
where

ηj :=
sinh

√
n− j‖Z‖√

n− j‖Z‖

(
u+

ψj

1 − ψj
(1 + u)

)

+
ψj

1 − ψj

sinhϕj‖Z‖/2
ϕj‖Z‖/2

cosh
(√

n− j‖Z‖ + ϕj‖Z‖/2
)
(1 + u).

(4.8)

Now by using (4.4) and (4.7) in (4.8), we get

∣∣ε1j ∣∣ ≤ sinh
(√
n− j‖Z‖)√

n− j‖Z‖

(
2u+ (n− j)γn−j

‖Z‖2

k0
(1 + u)

1 − u− (n− j)γn−j
‖Z‖2

k0
(1 + u)

)

+
sinh

(
u
√
n− j‖Z‖/2 + (n− j)γn−j

‖Z‖2

2
√

k0
(1 + u)

)
u
√
n− j‖Z‖/2 + (n− j)γn−j

‖Z‖2

2
√

k0
(1 + u)

× cosh

((
1 +

u

2

)√
n− j‖Z‖ + (n− j)γn−j

‖Z‖2

2
√
k0

(1 + u)

)

× u+ (n− j)γn−j
‖Z‖2

k0
(1 + 2u)

1 − u− (n− j)γn−j
‖Z‖2

k0
(1 + u)

+O
(
u2).
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This shows that ε1j → 0 as ‖Z‖ → 0, provided that ‖Z‖
k0

admits an upper bound as suggested by the condition (1.1).

4.3 Error analysis of λj

However, for computing λj , from (4.2) and definition of floating point arithmetic error δ we have

sinh

((
αj + ξj

2

)
(1 + δ)

)
= sinh

αj

2

(
cosh

αjδ+ξj(1+δ)

2
+coth

αj

2
sinh

αjδ+ξj(1+δ)

2

)
= sinh

αj

2

(
1 + ε2j

)
,

where

ε2j = 2 sinh2 αjδ + ξj(1 + δ)

4
+ coth

αj

2
sinh

αjδ + ξj(1 + δ)

2
.

Hence,

fl
(
λj

)
= 2 sinh2 αj

2

(
1 + ε2j

)2(
1 + θ3

)
.

So,

fl
(
λj

)
= λj

(
1 + ε3j

)
,

where

ε3j = ε2j
(
ε2j + 2

)(
1 + θ3

)
+ θ3. (4.9)

Also, |ε2j | ≤ ρj , where

ρj : = 2 sinh2

√
n− j‖Z‖u+ ϕj(1 + u)‖Z‖

4

+ coth

√
k0
2

sinh

√
n− j‖Z‖u+ ϕj(1 + u)‖Z‖

2
,

∣∣ρj

∣∣ ≤ 2 sinh2
(

1

2
u
√
n− j‖Z‖ +

(n− j)γn−j‖Z‖2

4
√
k0

(1 + 2u)

)

+ coth

(√
k0
2

)
sinh

(
u
√
n− j‖Z‖ +

(n− j)γn−j‖Z‖2

2
√
k0

(1 + 2u)

)
+O

(
u2).

However,

coth

√
k0
2

=
cosh

√
k0
2

sinh
√

k0
2

≤ cosh
√

k0
2√

k0
2

,

and therefore ∣∣ρj

∣∣ ≤ 2 sinh2
(

1

2
u
√
n− j‖Z‖ +

(n− j)γn−j‖Z‖2

4
√
k0

(1 + 2u)

)

+ cosh

(√
k0
2

)
×

sinh
(
u
√
n− j‖Z‖ +

(n−j)γn−j‖Z‖2

2
√

k0
(1 + 2u)

)
u
√
n− j‖Z‖ +

(n−j)γn−j‖Z‖2

2
√

k0
(1 + 2u)

×
(

2u
√
n− j

‖Z‖√
k0

+
(n− j)γn−j‖Z‖2

k0
(1 + 2u)

)
+O

(
u2).

Hence in this case ε2j → 0 as ‖Z‖ → 0, provided that ‖Z‖
k0

admits an upper bound like the one suggested by condition

(1.1) (note that ‖Z‖√
k0

=

√
‖Z‖
k0

·
√

‖Z‖). Moreover, by (4.9),∣∣ε3j ∣∣ ≤ oj , (4.10)

where

oj :=
(
ρ2j + 2ρj

)(
1 + γ3

)
+ γ3, (4.11)

which implies oj is of order O(u) under condition (1.1).



Journal of Generalized Lie Theory and Applications 9

4.4 Error analysis of ϕ(D)

Now, in calculating ϕ(D), we will have

fl
(
ϕ(D)

)
=

⎛⎜⎜⎝fl
(
βj

) fl
(
λj

)
fl
(
α2

j

) (1 + δ)

fl
(
λj

)
fl
(
βj

)
⎞⎟⎟⎠ =

⎛⎜⎜⎝βj

(
1 + ε1j

) λj

(
1 + ε3j

)(
αj + ξj

)2 (1 + δ)

λj

(
1 + εj3

)
βj

(
1 + ε1j

)
⎞⎟⎟⎠ = ϕ(D)+A,

where

A =

⎛⎜⎝βjε
1
j

λj

α2
j

σj

λjε
3
j βjε

1
j

⎞⎟⎠ , σj =

(
1 + ε3j

)
(1 + δ)(

1 + ξj/αj

)2 − 1.

From (4.6) and (4.10), we have

∣∣σj

∣∣ ≤ oj(1 + u) + u+ 2ψj + ψ2
j(

1 − ψj

)2 . (4.12)

Hence by (4.7) and (4.11), the right-hand side of (4.12) is of order O(u) and∣∣ϕ(D)
∣∣ ≤ B, (4.13)

where

B :=

⎛⎜⎜⎜⎜⎝
sinh

√
n− j‖Z‖√

n− j‖Z‖
2 sinh2 (√n− j‖Z‖/2)

(n− j)‖Z‖2

2 sinh2 (√n− j‖Z‖/2) sinh
√
n− j‖Z‖√

n− j‖Z‖

⎞⎟⎟⎟⎟⎠ , (4.14)

|A| ≤ C, (4.15)

C :=

⎛⎜⎜⎜⎜⎝
sinh

√
n− j‖Z‖√

n− j‖Z‖ ηj
2 sinh2 (√n− j‖Z‖/2)

(n− j)‖Z‖2
|σj |

2 sinh2 (√n− j‖Z‖/2)oj
sinh

√
n− j‖Z‖√

n− j‖Z‖ ηj

⎞⎟⎟⎟⎟⎠ . (4.16)

4.5 Error analysis of w

At first, since vk := exp(zk,k)vk in Algorithm 2, we have v̂old,i = vold,i(1 + θ
(i)
2 ), (1 ≤ i ≤ n). Now, for computing

w, let v′ = bT
j vold, hence,

fl(v′) =
n∑

i=j+1

zj,ivold,i

(
1 + θ

(i)
2

)(
1 + θ

(i)
n−j

)
= v′ + ε4j ,

where

ε4j :=

n∑
i=j+1

zj,ivold,i

(
θ
(i)
2 + θ

(i)
n−j + θ

(i)
2 θ

(i)
n−j

)
.

So from property (2.1), we have ∣∣ε4j ∣∣ ≤ (n− j)γn−j+2‖Z‖‖v‖e‖Z‖. (4.17)

Now from Algorithm 2 and (2.4),

fl(w) =
(
ϕ(D) +A

)(vold,1(1 + θ2)

v′ + ε4j

)
+ uj = w + qj ,
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where

qj := ϕ(D)

(
vold,1θ2

ε4j

)
+A

(
vold,1

(
1 + θ2

)
v′ + ε4j

)
+ uj , (4.18)

∣∣uj

∣∣ ≤ γ2
∣∣ϕ(D) +A

∣∣ (∣∣vold,1
∣∣(1 + θ2

)∣∣v′ + ε4j
∣∣

)
. (4.19)

Therefore, from (4.13), (4.15), (4.17), (4.18), and (4.19), we have |qj | ≤ rj , where

rj := ‖v‖e‖Z‖B

(
γ2

(n− j)γn−j+2‖Z‖

)
+ e‖Z‖‖v‖C

(
1 + γ2

‖Z‖ + (n− j)γn−j+2‖Z‖

)

+ γ2‖v‖e‖Z‖(B + C)

( (
1 + γ2

)
‖Z‖ + (n− j)γn−j+2‖Z‖

)
.

(4.20)

4.6 Error analysis of vnew

Let us consider

fl
(
vnew

)
=
((
w1+qj,1

)
aj ∗ (1+u1

)
+
(
w2 + qj,2

)
e1 ∗ (1+u2

)) ∗ (1+u3
)
=vnew+gj ,

where

gj := w1aj ∗ h2 + qj,1aj ∗ (1 + h2
)

+ w2e1 ∗ h2 + qj,2e1 ∗ (1 + h2
)
, (4.21)

and |ui| ≤ u1 (i = 1, 2, 3), (1 + ui) ∗ (1 + uj) = 1 + h2. But

w1 = βjvold,1 +
λj

α2
j

bT
j vold,

and hence |w1| ≤ l1, where

l1 := e‖Z‖‖v‖
(

sinh
(√
n− j‖Z‖)√

n− j‖Z‖ +
2 sinh2 (√n− j‖Z‖/2)

‖Z‖

)
. (4.22)

Also, w2 = λjvold,1 + βjb
T
j vold, such that |w2| ≤ l2, where

l2 := e‖Z‖‖v‖
(

sinh
(√
n− j‖Z‖)√
n− j

(n− j) + 2 sinh2 (‖Z‖/2)).
So from (4.20), (4.22), and (4.21), we have

∣∣gj

∣∣ ≤ (l1‖Z‖γ2 + rj,1‖Z‖
(
1 + γ2

)
+ l2γ2 + rj,2

(
1 + γ2

)) ∗ 1.

4.7 Error analysis of v

fl(v(j : n)) = (vold∗(1+h2)+vnew+gj

)∗(1+u4) := v(j : n)+fj , where fj := vold∗h3+vnew∗u4+gj ∗(1+u4),
and |u4| ≤ u1, |h3| ≤ γ31, and finally, |fj | ≤ errorj , where

∣∣errorj

∣∣ ≤ (‖v‖e‖Z‖γ3 +
3

2
γ2l1‖Z‖ +

3

2
γ2l2 + rj,1‖Z‖

(
1 + γ2

)
(1 + u) + rj,2

(
1 + γ2

)
(1 + u)

)
∗ 1. (4.23)
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5 Sensibility of Algorithm 2

As it was shown in last section and from (4.23), the computation error of exp(Z)v depends on ‖Z‖ which is
calculated by Algorithm 1. We therefore consider Z = Z + E in which the norm of E is obtained from (3.3) and
(3.4). Therefore, the relations (4.3) and (4.6) reduce to |ξj | ≤ ϕj and | ξj

αj
| ≤ ψj where

ϕj = u
√
n−j‖Z‖+

1√
k0

(
(n−j)γn−j

(‖Z‖+‖E‖)2+(n−j)(2‖E‖‖Z‖+‖E‖2))(1+u),

ψj = u+
1

k0

(
(n− j)γn−j

(‖Z‖ + ‖E‖)2 + (n− j)
(
2‖E‖‖Z‖ + ‖E‖2)(1 + u)

)
.

After substituting ϕj and ψj in the appropriate formulas given in the last section, the error upper bounds are
computed in terms of ‖E‖. Accordingly, the estimate (4.17) becomes∣∣ε4j ∣∣ ≤ (n− j)γn−j+2‖Z‖‖v‖e‖Z‖ + (n− j)

(
1 + γn−j+2

)‖E‖‖v‖e‖Z‖,

that in turn provides the error bound given by (4.20) as follows:

rj := B

(
γ2‖v‖

(n− j)γn−j+2‖Z‖‖v‖e‖Z‖ + (n− j)(1 + γn−j+2)‖E‖‖v‖e‖Z‖

)

+ C

⎛⎜⎜⎜⎝
(1 + γ2)‖v‖

(n− j)‖Z‖‖v‖e‖Z‖ + (n− j)γn−j+2‖Z‖‖v‖e‖Z‖

+(n− j)
(
1 + γn−j+2

)‖E‖‖v‖e‖Z‖

⎞⎟⎟⎟⎠

+ γ2(B + C)

⎛⎜⎜⎜⎝
(1 + γ2)‖v‖e‖Z‖

(n− j)‖Z‖‖v‖e‖Z‖ + (n− j)γn−j+2‖Z‖‖v‖e‖Z‖

+(n− j)(1 + γn−j+2)‖E‖‖v‖e‖Z‖

⎞⎟⎟⎟⎠ .

Now if we consider initial errors influencing the vectors v(j : n) = vold + vnew, for j ≥ 2, these vectors can be
represented by v̂(j : n) = v(j : n) + er(j), where er(1) = 0. Hence, the estimate (4.17) reduces to∣∣ε4j ∣∣ ≤ (n− j)γn−j+2‖Z‖‖v‖e‖Z‖ + (n− j)

(
1 + γn−j+2

)(‖Z‖‖er‖ + ‖E‖‖v‖e‖Z‖ + ‖E‖‖er‖), (5.1)

in which the quantities ‖E‖‖er‖, which are very small, can be neglected. Obviously, the upper bound given by (5.1)
affects the variations of rj and errorj . Let “error” be the final computing error committed by both Algorithms 1
and 2. In Figure 1, we compared the dependence of ‖E‖ and ‖error‖ using 10 × 10 random matrices hZ with Z
normalized, so that ‖Z‖ = 1, h = 1

22 ,
1
23 , . . . ,

1
211 and 10 × 1 random unit vector v. Figure 1 shows the stability of

algorithms with respect to round off errors. Moreover, the statistical correlation coefficient between backward and
forward errors is 0.9531.
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Figure 1: Backward and forward errors versus h for Algorithms 1 and 2.
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6 Conclusion

As we expected, the upper bound of |errorj | (4.23) strongly depends on the input data Z and v. More precisely, if
k0 � u, then this error bound can be controlled by max{ue‖Z‖, ‖v‖}. Finally, we have shown the stability of the
GPD method under condition (1.1).
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