

Open Access

Birch and Swinnerton-Dyer Conjecture Clay Institute Millenium Problem Solution

Cusack P*

Independent Researcher, Canada

Abstract

This paper presents the solution to the Birch Swimmerton problem. It entails the use of critical damping of a Mass-Spring-Dash Pod system which, when modelled mathematically, provide the equation that allows the solution of the zeta problem to be solved.

Keywords: Zeta functions; Dash pod systems; Mean functions

Introduction

But in special cases one can hope to say something. When the solutions are the points of an abelian variety, the Birch and Swinnerton-Dyer conjecture asserts that the size of the group of rational points is related to the behavior of an associated zeta function $\zeta(s)$ near the point s=1. In particular this amazing conjecture asserts that if $\zeta(1)$ is equal to 0, then there are an infinite number of rational points (solutions), and conversely, if $\zeta(1)$ is not equal to 0, then there is only a finite number of such points [1].

Explanation

Equation of motion

From Verruijt, we know the equation of motion for a mass –springdashpod system is:

m*d2u/dt2+c*du/dt+ku=0

So, taking the resonant frequency into account, the equation from Verruijt becomes:

d2u/dt2+2zw0*du/dt+w02u=0

Where w0=resonant frequency and z is a measure of the system damping [2].

At critical damping, the characteristic equation is the golden mean function:

x = 1/[x-1]

Or,

 $x_{2-x-1=0}$

The roots to this equation are, of course, -0.618 and 1.618.

Value for i-the imaginary number Now, before examining zeta z in equation form, we calculate a real value for the imaginary i= $\sqrt{(-1)}$

[1-i]=1/[(1-i)-1] 1-i=1/-i -i=1/[1-i] i=1/[i-1] x=1/[x-1] x=-0.618, 1.618

So, $\sqrt{(-1)} = -0.618$, 1.618

Damping ratio zeta z

Now, zeta=z=damping ratio=w/w0:

$$du0/dw = 0: w/w0 = \sqrt{[1-2z2]}$$

Algebraically:

du0/0=dw

$$w = w0 * \sqrt{[1 - 2z2]}$$

Taking the derivative:

du0/0=dw=w'=[w0*(1-2z2)1/2]'

w0/2*(1-2z2)1.5]/1.5

In the Birch conjecture, there are two possibilities to consider [3]. They are:

z(1)=0 and z(1)(not=)0

In the first case:

0=w0/3[(1-2(1)2]1.5

0 = w0/3(11.5)

W0=0

Z(1)=0,w0=0

Critical damping

In the second case, we have critical damping. z(1) (not=)m 0

Say z(1)=1

1=w0/3[(1-2(12)]1.5 w0=3

Or w0=C1 w0 is a real number. In case 1 again:

Z(1)=0,w0=0

*Corresponding author: Cusack P, Independent Researcher, Canada, Tel: (506) 214-3313; E-mail: St-Michael@Hotmail.Com

Received February 08, 2016; Accepted April 29, 2016; Published May 05, 2016

Citation: Cusack P (2016) Birch and Swinnerton-Dyer Conjecture Clay Institute Millenium Problem Solution. J Phys Math 7: 172. doi:10.4172/2090-0902.1000172

Copyright: © 2016 Cusack P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Cusack P (2016) Birch and Swinnerton-Dyer Conjecture Clay Institute Millenium Problem Solution. J Phys Math 7: 172. doi:10.4172/2090-0902.1000172

Page 2 of 2

 $du / dw = 0w / w0 = \sqrt{[(1 - 2z2)]}$

w/0 = [(1-2(z)2)] w=0

w/w0=0/0 Dividing by zero has infinite solution. Now, finally, in the critical damping case:

$$du / dw = 0 w / w0 = \sqrt{[(1 - 2(z_2))]} w / C1 = \sqrt{[(1 - 2(12))]}$$

 $w = \sqrt{(-1)}(c1)$

We know $\sqrt{(-1)} = -0.618$, 1.618. So, w=-0.618 or 1.618 w/w0=0.618 C1/C1=0.618. Therefore there is a real solution to z at critical damping [4,5].

Conclusion

Simple Mechanics combined with knowledge of the zeta function

and the value of the imaginary number provides the ingredients to solve the Birch and Swinnerton-Dyer Conjecture.

References

- Cusack P (2015) Astrotheology, The missing link, Cusack's model of the 1. Universe. Canada
- 2. Beer FP, Johnston ER, Dewolf J, Mazurek DF (2012) Nanoscale mechanical tailoring of interfaces using self-assembled monolayers. Mechanics of materials 98: 71-80.
- 3. Arnold V (2010) Introduction to Soil Dynamics. Springer.
- Jaffe A, Edward WN (2000) Witten Quantum Yang-Mills theory. Clay 4 Mathematics Institute
- 5. Byron FW, Fuller RW (1969)Mathematics of classical and quantum physics, Dover, Newyork.

OMICS International: Publication Benefits & Features

Unique features:

- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner Special issues on the current trends of scientific research

Special features:

- 700+ Open Access Journals
- 50.000+ editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at major indexing services Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits Better discount for your subsequent articles

Submit your manuscript at: http://omicsonline.com/open-access/physical-mathematics.php

Citation: Cusack P (2016) Birch and Swinnerton-Dyer Conjecture Clay Institute Millenium Problem Solution. J Phys Math 7: 172. doi:10.4172/2090-0902.1000172