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Introduction
Investigations in the so-called fractional calculus, that is, the theory 

of integration and differentiation of arbitrary order, have increased 
considerably in the last fifty years [1-7]. Nowadays, the topic is broadly 
dispersed in several distinct applications in science such as fractional 
viscoelasticity [8,9], fractional harmonic oscillators [9,10], fractional 
frictional forces [10], fractional fluid dynamics [11] and fractional signal 
processing [12,13], just to mention a few examples.  Such investigations 
indicates  that  the descriptions  of previously  established  theories  by 
means  of ordinary calculus  (of integer order) are now being reviewed 
by means of fractional calculus with  promising results such as the 
increase in accuracy between theoretical and experimental data.

Following this trend of approaching "old problems" by means of 
"new tools", recently we have approached Bessel's differential equation 
of order p [14] by a methodology of the fractional calculus as proposed 
by the authors [15]. Although we were successful in obtaining Bessel's 
solutions of the first kind, the methodology itself was not rigorously 
accurate (from a mathematical point of view) to justify the second 
linear independent solution, specifically Jp for 0 < p ≠ -1, -2,...inspiring 
us to continue with other investigations about the methodology by 
applying it to a more general setting, the confluent hypergeometric 
equation.  Also, as conjectured in the final considerations [14], we have 
pointed out that  there might be some "minor patches" needed to be 
done to the definitions of the fractionalized versions of the integral 
and differential operators we have used in that paper (which was the 
Riemann- Liouville  formulation  and that  we  will  present  it in  the  
next section  of this  paper).   Nevertheless, the fractional methodology 
is still very promising and therefore we continue its investigations 
and, as mentioned above, we now apply it to obtain solutions of the 
confluent hypergeometric equation.

The paper is organized as follows: In section 2 we review the 
Riemann-Liouville integrodifferential operator particularly presenting 
an alternative definition by means of the Hadamard's finite part 
integral.  In section 3 we discuss the confluent hypergeometric equation 
be means of the fractional methodology. In section 4 we present our 
conclusions and some remarks.

Riemann-Liouville Integrodifferential Operator
In this section we describe the Riemann-Liouville formulations; 

hence we will present two main definitions of the fractional integral 
operator and fractional differential operator [16-20]. Some properties 
of those operators are also discussed.

Definition 1:  Let Ω = [a, b] ⊂  be a finite real interval.  Suppose f ∈ 

L1 [a, b] is a Lebesgue integrable function in [a, b]. Then the expressions

a fν
+  and b fν

− established by the equalities below 

( )( ) ( ) ( ) ( )11 ,νν
ν

−
+ ≡ −

Γ ∫
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with x > a, Re(v) > 0 and

( )( ) ( ) ( ) ( )11 ,νν
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−
− ≡ −
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with x < b, Re(v) > 0 and where r(v) is the gamma function, defines the 
Riemann-Liouville fractional integral operator  (RLFI)  of order v∈.  
The integrals in Equation (1) and Equation (2) are usually called the left 
and right versions, respectively.

Definition 2:  Let Ω = [a, b] ⊂  be   a finite real interval. Suppose f 
∈ ACn [a, b] is an absolute continuous function until order n - 1.  Then 
the eepressions a fν
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with x < b and [Re(v)] being the integer part function of Re(v) and 
n = [Re(v)] + 1, defines the Riemann-Liouville fractional differential 
operators (RLFD) of order v∈ (Re(v) ≥ 0).  The derivatives in 
Equation (1) and Equation (2) are usually called the left and right 
versions, respectively.
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Before continuing with the presentation of new definitions and 
results, we inform the reader that in this work we will restrict ourselves 
to the left versions (Equation (1) and Equation (3)) only, and consider 
the order v of the operators to be a real number.

Mind that the two definitions are reduced to the classical integer 
cases whenever we choose v = n ∈ . In particular, it can be shown 
[16,20] that if v = n = 0, then we have the identity operator I:

0 0
0

: lim .ν
ν

+ + +
→

= = =  a a aI

We also point out that if f(x) is of the form (x - a)β – 1 for β > 0, then 
[17]

( )( )( ) ( )
( ) ( )1 1 ,β β νν β
β ν

− + −
+

Γ
− = −

Γ +
a t a x x a                              (5a)

( )( )( ) ( )
( ) ( )1 1.β β νν β
β ν

− − −
+

Γ
− = −

Γ −
a t a x x a                                   (5b)

As a consequence of these rules and the properties of ν
+a and 

ν
+a are continuous operators relative to the index v [16], then if f(x) 

∈ C∞ [a, ϵ] is analytic in the interval [a, ϵ] for some ϵ > a, then f is 
representable as a power series

( )
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( ) ,
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=
= −∑ k

k
k

f x c x a                     (6)

where ck are constants and, in this case, applying the rules as in Equation 
(5a) and Equation (5b) we may integro differentiate functions as per 
Equation (6) according to the formulas [15,16,20]:
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We now present a "unified" version of the RLFI and RLFD under 
a single operator symbol ν

+Da . We shall call it the Riemann-Liouville 
fractional integro differential operator or simply integro differential 
operator. That is, for v∈ and assuming that f is such that ν

+a f and 
ν
+a f  are well defined, then
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, 0,
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so that we have the following situation for v > 0

( )( ) ( )( ),ν ν−
+ += a af x f x                    (10)

and

( )( ) ( )( ).ν ν−
+ += a af x f x                   (11)

This suggests that the RLFD can be interpreted as an analytical 
extension of the operator RLFI. However we must take some caution 
here. As we have pointed out [14], the integral

( )( ) ( ) ( ) ( )11 ,νν
ν

− −−
+ = −

Γ − ∫
x

a af x x t f t td

usually diverges  even  if  f(x)∈ L1 [a, b].   To avoid this "pitfall" we 
need to consider the so-called Hadamard’s finite part integral  [16,21]:
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where n = [β] + 1, β ∉  and

( ) ( ) ( ) ( )11,
!

+= −∫
x
aR x a x t f t tn n

n d
n

is the remainder of the nth degree Taylor polynomial of f expanded at 
x = a.

An alternative definition for the Hadamard's finite part integral can 
be stated in terms of the following theorem [16].

Theorem 3:  Let 1 < β ∉  and m = [β] + 1. For f ∈ Cm [a, b] is m 
times continuously differentiable, then
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In view of this result, we can interpret the RLFD as an integral as 
stated in the next theorem [16].

Theorem 4: Let 0 < v ∉  and n = [v] + 1. If f ∈ Cn [a, b] and x∈ 
[a, b], then

( )( ) ( ) ( ) ( )− −= −
Γ − ∫ f x x t f t t

So in fact, the formal interpretation of Equation (10) and Equation 
(11) must be

( )( ) ( )( ),ν ν−
+ +=  a af x f x                 (13)

( )( ) ( )( ),ν ν−
+ +=  a af x f x                      (14)

for v ≠ 1, 2, . . ..  Nevertheless, for simplicity in notation, we shall use 
the ones established in Equation (10) and Equation (11), but having the 
interpretations as in Equation (13) and Equation (14).

We now summarize, without presenting the proofs1, some 
composition laws for the ν

+Da operator that will be needed for the next 
section.

The first of them is the following:
11

1

0

( )( )( ) ( ) ( ) ,
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− −−
− − − −+
+ + +
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k
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n
  (15)

where p, q ∈+ and n = [q] + 1. 

Then for v > 0 and m ∈ , we have

( )( ) ( )( ),ν ν+
+ + +=D D Dm m

a a af x f x                       (16)
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Also, assuming that the derivatives exists, we have the equalities

( )
11

1

0

( )( )( ) ( ) ,
( )

− −−
+ − − −+

+ + +
=

  = − −   Γ − −∑ D
D D D

q k
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k

f af x f x x a
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m
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1The proofs can be found in several distinct sources. We mention the main literature 
where these results can be found, [16,17,19,20].
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( )
11

1

0
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( )
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+ − − −+
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=
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D D D

p k
q p p q q ka
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k

f af x f x x a
q k

n
     (19)

where p, q > 0, n = [p] + 1 and m = [q] + 1.

Note that the equalities in Equation (18) and Equation (19) occurs 
if, and only if, the summands are nulls and this is guaranteed if

( )1( )( ) 0, 0,1, , 1 ,β − −
+ = = … −D k

a f a k n                      (20)

( )1( )( ) 0, 0,1, , 1 .α− −
+ = = … −D k

a f a k m                     (21)

The author [19] shows in section 2.3.7 of his book that if f(x) have 
enough continuous derivatives, then the conditions in Equation (20) 
and Equation (21) are equivalent, respectively, to

( )( ) ( ) 0, 0,1, , 1 ,= = … −kf a k n                           (22)

( )( ) ( ) 0, 0,1, , 1 .= = … −kf a k m                           (23)

Hence, if f(k)(a) = 0, (k = 0, 1, . . . , r - 1), where r = max{m, n}, then

( ) ( )( ) .α β α β β α+
+ + + + +   = =   D D D D Da a a a af x f x f x

Finally, we also mention the following result

( ) ( ),  ,− − +
+ + +  = ∈  D D Dp q p q

a a af x f x p q                  (24)

valid whenever f(x)  is at least continuous and when p ≥ q ≥ 0 that 
the derivative ( )−

+ p q
a f x exists. Finalizing this section, we present a 

generalization of the Leibniz rule for integrodifferentiating the product 
of functions [14,16].

Theorem 5 (Fractional Leibniz Rule): Let f and g be analytical in 
[a, b], then

[ ] ( ) ( )
0

,  ν νν
ν

∞
−

+ +
=

 
= ∈ 

 
∑ D D

k k
a a

k
fg f g

k                (25)

where 
ν 
 
 k  are the generaliied binomial coeJlcients written in terms of 

the gamma function.

Confluent Hypergeometric Equation 
Inspired by a similar technique was developed [14] where we 

investigated how to obtain a solution of the Bessel's equation, in this 
section we verify the possibility of obtaining solutions of the confluent 
hypergeometric equation by means of fractional calculus methodology.

We start by considering the standard form of the confluent 
hypergeometric equation

( )
2

2 0,+ − − =
u ux c x au

xx
d d

dd
                 (26)

defined for x > 0 with a, c ∈. We now assume that for each u = 
u(x) satisfying Equation (26), there exists an f = f(x) differ integrable 
such that

1
0 ,α− −
+=Du f                  (27)

where α is an unknown parameter yet to be determined. 

So rewriting Equation (26), it follows that 

( )
2

1 1 1
0 0 02 0α α α− − − − − −
+ + ++ − − =D D Dx f c x f a f

xx
d d

dd
            (28) 

which by means of Eq.(24), assume the form

( )1 1
0 0 0 0,α α α− − − −
+ + ++ − − =D D Dx f c x f a f                 (29)

and yet, by the action of 0
α
+D applied to the left of each term in Eq.(29) 

can be rewritten as 

( )1 1
0 0 0 0 0 0% % 0.α α α α α α− − − −
+ + + + + +     + − − =          

D D D D D Dx f c x f a f   (30)

Now, if we make use of the fractionalized version of the Leibniz rule 
as established by Theorem 5, it can be verified the following equalities

1
0 0 ,α α α−
+ +  = + D D

fx f x f
x

d
d

                  (31)

( ) ( ) 1
0 0 0 ,α α α− −
+ + + − = − − D D Dc x f c x f f                 (32)

whenever f satisfies the following conditions

( )( ) [ ]0 0 0,k=0,1, , 1- .α α− −
+ = …D k f

Hence, when Equation (31) and Equation (32) are substituted back 
in Equation (30) it returns

( ) ( ) 1
0 0.α α −
++ + − + − − =D

fx c x f a f
x

d
d

                (33)

Imposing that α = - a, the last term of Eq.(33) vanishes and the 
equation reduces to the following equivalences

( ) ( )a-c1 f0 =1+
f x x

α+ + − = ⇔
fx c x f
x

d d
d d

                          (34)

which is a separable differential equation whose solution is given by

( ) ,−= x a cf x Ke x                     (35)

with K∈. an arbitrary constant.

Finally, remembering the results of Equation (27) and again 
applying the fractional Leibniz rule we have that

1
0( ) − + −
+  =  D a x a cu x Ke x

1
0

0

1∞
− + − −

+
=

− +   =     
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n x
a n a c

n
n

a eK x
n x

d
d

( )
( )

1

0

1 1
2

∞
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=

− + Γ − + 
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∑x n c

n

a a c
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n n c

( )
( )

1

0

1 1
.

2

∞
−

=

− + Γ − + 
=   Γ + − 

∑c x n

n

a a c
Kx e x

n n c
                                           (36)

The  solution u(x)  just  obtained does  not  resembles,  at  least a 
priori,  to  the  canonical form ( )1 1 ; ;F a c x that we commonly encounter 
when solving the confluent hypergeometric equation by means of the 
Frobenius method, for example.  However, it can be promptly modified 
by means of a sequence of algebraic manipulations as it follows. We 
begin by rewriting the binomial coefficients in term of the gamma 
function

( )
( )

1
.

!
− + Γ 

=  Γ − 

a a
n a n n

                  (37)

Also, by the famous reflection formula

( ) (1 ) ,
sin
π
π

Γ Γ − =z z
z

                              (38)

we have the identities
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( ) ( ) ( ) ( ) ( )1 sin 1 sin .π π π πΓ − Γ − + = − = −  
na n a n a n a                (39)

Then, substituting Equation (37) and Equation (39) into the 
expression of Equation (36), we obtain

( ) ( )
( )

( )
( ) ( )

1

0

1 1
( ) .

sin !1 2π π

∞
−

=

Γ Γ − + Γ − +
=
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∑

n
c x

n
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a a c a n xu x K x e
a nn c

                 (40)

Now if we make use of the Pochhammer symbols ( ) ( )
( )

Γ +
=

Γn
z nz

z  
to write down

( ) ( )
( )

1
1

1
Γ − +

− =
Γ −n

a n
a

a  and ( ) ( )
( )n
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Γ
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nd yet, noticing that if n = 0 in Equation (39), then
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and it follows that
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With  a trivial proper choice of the constant K we may have the 
equality

( )
( )

1
1

2
Γ − +

=
Γ −
a c

K
c

 

such that our solution for the equation Equation (26) obtained by 
means of fractional calculus reduces to

( )
( )
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1 %
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1 ;2 ; .

∞
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=

−
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=

−
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∑
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c x n
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c x
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                             (43) 

Finally, using the following identity

( ) ( )1 1 1 1; ; ; ; ,= − −xF a c x e F c a c x                  (44)

it is possible to recognize that

( ) ( )1 1 1 11;2 ; 1 ;2 ;− + − = − − −xF a c c x e F a c x

so that solution u(x)  is of the form

( )1
1 1( ) 1;2 ; ,−= − + −cu x x F a c c x                  (45)

which we know to be a linear independent solution with ( )1 1 ; ;F a c x  
as long as c ∉ 

Although this methodology does not explicit a second linear 
independent solution, once we have one of them the other can be found 
using, for example, the reduction of order method.

Concluding Remarks
This paper discussed the solution of the confluent hypergeometric 

equation by means of a methodology associated with fractional 
calculus. Using the Riemann-Liouville formulation we have obtained 
one such solution in a very simple way. Comparing this proposed 
fractional methodology with the standard Frobenius one, we can argue 

in favor of the former by saying that although the classical Frobenius 
approach seems to be a more "natural approach", the computational 
effort of the fractional method seems to be much simpler. Also, the 
fractional method expose the possibility of highlighting (possibly new) 
non-trivial relations between the special functions of the mathematical 
physics, suggesting a fertile ground of study and research in this area.  As 
previously mentioned in the end of the last section, for the second linearly 
independent solution one can, for example, use the reduction of order 
method. Although, at this moment, we do not envision a clear approach to 
get a second linearly independent solution using such fractional method, 
it is passive of further  investigations. Nevertheless, the most important 
conclusion is that fractional calculus can be used to discuss an ordinary 
differential equation as an interesting alternative to obtain solutions and 
such mathematical tool should be encouraged to be investigated and used 
more frequently in theoretical and applied problems.
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