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Introduction
Let K be a subset of a Banach space E.  A self-mapping T on K is 

said to be non- expansive if ||T (x) -T (y)|| ≤ ||x- y|| for all x, y ∈ K.  In 
[1] DeMarr proved the following theorem:

Theorem 1.1:  For any non-empty compact convex subset K 
of a Banach space E, each commuting family of non-expansive self-
mappings on K has a common fixed point in K.

DeMarr’s theorem can be further generalized for some semigroups 
of non-expansive self- maps on K by the following considerations. 

Let S be a semi-topological semigroup, i.e. S is a semigroup with a 
Hausdorff topology such that for each a ∈ S, the mappings s 1 sa  
and s as  from S into S are continuous. S is called left reversible if 
any two closed right ideals of S have non-void intersection. Let l∞(S) 
be the C*-algebra of all bounded complex-valued functions on S with 
supremum norm and point-wise multiplication. For each s ∈ S and 
f ∈ l∞(S), denote by ls(f) and rs(f) the left and right translates of f by 
s respectively, that is lsf(t)=f (st) and rsf (t)=f (ts) for all t ∈ S. Let X 
be a closed subspace of l∞(S) containing constants and be invariant 
under translations.  Then a linear functional m ∈ X ∗ is called a mean 
if ||m||=m(1)=1, and a left invariant mean (LIM)  if moreover 
m(ls(f))=m(f) for s ∈ S, f ∈ X. Let Cb(S) be the space of all bounded 
continuous complex-valued functions on S with supremum norm and 
LUC (S) be the space of left uniformly continuous functions on S, i.e., 
all functions f ∈ Cb(S)  for which the mapping s → lsf  : S → Cb(S)  is 
continuous when Cb(S)  has the sup-norm topology.  Then LUC(S) is 
a C ∗-subalgebra of Cb(S) invariant under translations and containing 
constant functions. S is called left amenable if LUC (S) has a LIM.  The 
space of all right uniformly continuous functions, RUC(S), and right 
amenability are defined similarly.  The semi-topological semigroup S 
is called amenable if it is both left and right amenable, in this situation 
there is a mean which is both left and right invariant. Left amenable 
semi-topological semigroups include commutative semigroups, as well 
as compact and solvable groups. The free (semi)group on two or more 
generators is not left amenable. When S is discrete, LUC(S)=l∞(S) and 
(left) amenability of S yields the (left) reversibility of S. For more details 
on amenability, examples and relations [2-5].	

An action of S on a topological space E is a mapping ( ) ( ),  s x s x
from S × E into E such that (st)(x)=s(t(x)) for s, t ∈ S, x ∈ E.  The action 
is separately continuous if it is continuous in each variable when the 
other is kept fixed.  Every action of S on E induces a representation 
of S as a semigroup of self-mappings on E denoted by S, and the 
two semigroups are usually identified. When the action is separately 
continuous, each member of S is a continuous mapping on E.  A subset 
K ⊆ E is called S-invariant if sK ⊆ K for each s ∈ S. We say that S has a 

common fixed point in E, if there exists a singleton S-invariant subset 
of E.  When E is a normed space the action of S on E is called non-
expansive if ||s(x) − s(y)|| ≤ ||x – y|| for all s ∈ S and x, y ∈ E.

Takahashi [6] proved a generalization of DeMarr’s fixed point 
theorem as follows:

Theorem 1.2: Let K be a non-empty compact convex subset of a 
Banach space E and S be an amenable discrete semigroup which acts 
on K separately continuous and non-expansive. Then S has a common 
fixed point in K. It is well-known that every left amenable discrete 
semigroup is left reversible [4], so Mitchell [7] proved the following 
theorem:

Theorem 1.3:  Let K be a non-empty compact convex subset of a 
Banach space E and S be a left reversible discrete semigroup which acts 
on K separately continuous and non- expansive. Then S has a common 
fixed point in K. But it is not the case that all left amenable semi-
topological semigroups are left reversible as the following example 
shows [4]:

Example 1.4: Let S be a topological space which is regular and 
Hausdorff. Then Cb(S) consists of constant functions only. Define on 
S the multiplication st=s for all s, t ∈ S. Let a ∈ S be fixed. Define µ(f)=f 
(a) for all a ∈ S. Then µ is a left invariant mean on C (S), but S is not 
reversible.

Now the question naturally arises as to whether this is true if one 
considers a left amenable semi-topological semigroup in Takahashi’s 
theorem.

In this paper, we show that the answer is affirmative.  Our theorem 
is new and is not a result of any previous work.

Main Theorem
The space of almost periodic functions is the space of all f ∈ C (S) 

such that {lsf: s ∈ S} is relatively compact in the sup-norm topology of 
C(S) and is denoted by AP(S). For any semi-topological semigroup S 
we have the following theorem [1].

Theorem 2.1: (a)f  ∈ AP(S) if and only if {rsf: s ∈ S} is relatively 
compact in the sup-norm topology of C (S).
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 (b) AP(S) ⊆ LUC (S) ∩ RUC (S).

The following lemma is important in proving our main theorem 
and lets one replace the discrete semigroup in Takahashi’s theorem by 
a general semi-topological semigroup.

Lemma 2.2: Let S be a semi-topological semigroup which acts 
separately continuous and non-expansive on a compact subset M of a 
Banach space E.  Then for each m ∈ M and each f ∈ C (M) we have fm ∈ 
LU C (S) where fm(s)=f (sm) (s ∈ S).

Proof:  For f ∈ C (M) define a new function A: M → C (S) by 
A(m)=fm so A(m)(s)=f (sm) for all s ∈ S. Put sup-norm topology on 
C(S). We show that A is continuous. Given m ∈ M, ε>0 we must find 
a suitable neighborhood for m such that for all 'm  in it the inequality 

( ) ( )'    ε− <A m A m  holds. By continuity of f and compactness of M 
the function f is uniformly continuous, so there is a positive number 

δ such that if u, v ∈ M and ||u − v || < δ, then ( ) ( )   
2
ε

− <f u f v . By 

Archimedean property of numbers, there is a natural number k for 

which 1 δ<
k

.  For each 'm  in the ball 1, 
 
 

B m
k

and each s ∈ S we have

1 || ' || || ' ||  δ− ≤ − < <sm sm m m
k

because the action is non-expansive. Now use uniform continuous 
property of f to get ( ) ( ) '     ε− <f sm f sm . Hence corresponds to ε>0 

we found the ball 1,   
 
 

B m
k so that if ( )' ,1 ∈m B m , then

( ) ( ) ( )( ) ( )( ) ' '
2
ε

− = − <f sm f sm A m s A m s

for all s ∈ S. Consequently

( ) ( ) ( )( ) ( )( ){ }'   ' :
2
ε

− = − ∈ <A m A m sup A m s A m s s S

which shows that A is continuous. On the other hand for each right 
translate of fm=A(m) we have

ra(fm)(s)=fm(sa)=f (sam)=fam(s)=A(am)(s);  s, a ∈ S

that is raA(m)=A(am) hence {rafm : a ∈ S}=A(Sm). The set Sm is 
relatively compact in M  and A is continuous, so A(Sm) is relatively 
compact in the sup-norm topology of C(S). Therefore by theorem 2.1 
part (a) we see that fm= A(m) ∈ AP(S) and from part (b) fm ∈ LU C(S).

Now we use the above lemma to modify Takahashi’s proof [7] for 
left amenable semi- topological semigroups which are not necessarily 
discrete.

Theorem 2.3: Let K be a non-empty compact convex subset of a 
Banach space E and S be a left amenable semi-topological semigroup 
which acts on K separately continuous and non-expansive.  Then S has 
a common fixed point in K.

Proof: An application of Zorn’s lemma shows that there exists a 
minimal non-empty compact convex and S-invariant subset X ⊆ K. 
If X is a singleton we are done, otherwise apply Zorn’s lemma for the 
second time to get a minimal non-empty compact and S- invariant 
subset M ⊆ X.

We claim that M is S-preserved, i.e. M=sM for all s ∈ S. Let ν 
be a left invariant mean on LUC (S) and define µ(f)=ν(fm), where fm 
is defined  as in lemma 2.2. Then by Riesz representation theorem, µ 
induces a regular probability measure on M (still denoted by µ) such 
that µ(sB)=µ(B) for all Borel sets B ⊆ M and s ∈ S. Let F be the support 

of µ. Each s ∈ S defines a measurable continuous function from M 
into M, so by basic properties of support F ⊆ sM, µ(sM)=µ(M)=1 [7]. 
Assume that χF is the characteristic function of F. For each s ∈ S,

( ) ( ) ( ) ( )11  χ χ −= = = =∫ ∫ F
M M

µ F F y dµ sy dµ µ s F

(s−1F means the pre-image of F under s) again by the definition and 
properties of support we see that F ⊆ s−1F , meaning that F is S-invariant.  
Hence F=M by the minimality of M. Consequently M=F ⊆ ⊆ sM for 
each s ∈ S. But M was already S-invariant, so sM=M for each s in S.

Now if M is singleton we are done, otherwise if δ(M)=diam(M)  
>0, we get a contradiction by DeMarr’s lemma [1] which implies that

( )∃ ∈u co M such that r0=sup{||m – u||: m ∈ M } < δ(M).

Define
00  ,  ,∈   =

 m MX B m r then X0 is a non-empty (indeed u ∈ 

X0) compact convex proper subset of X such that sX0 ⊆ X0 for each s in 
S (the inclusion follows from the fact that M is S-preserved). But this 
contradicts the minimality of X. Therefore M contains only one point 
which is a common fixed point for the action of S.

Obviously every amenable discrete semigroup is a left amenable 
semi-topological semi- group, so we can deduce Takahashi’s theorem 
from our theorem:

Corollary 2.4: Let K is a non-empty compact convex subset of a 
Banach space E and S is an amenable discrete semigroup which acts 
on K separately continuous and non-expansive.  Then S has a common 
fixed point in K [6].
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