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Introduction
In the study of nonequilibrium systems different projection 

operators are introduced to present a macroscopic description of 
the system in order to simplify the problem [1-6]. In this approach 
the macroscopic state of the system is determined by expectation 
values of a set of basis macro variables, and equations of motions for 
these expectation values, the transport equations, are derived in the 
projection operator formalism. 

When studying a nonequilibrium open system, the influence of 
the environment upon the open system is one of the important topics 
in such studies. It has been shown [7] that the influence from the 
environment comes from two parts: one is the time-rate of the averaged 
macro variables resulting from the interaction Hamiltonian H SR and 
the other from an additional influence term, therefore, the influence of 
the environment can be completely separated from the corresponding 
closed system. 

When the relevant statistical operator of the system is of a 
generalized canonical statistical operator (GCSO) by which the entropy 
of the open system is defined, if the environment is a reservoir, then the 
memory and influence terms in the transport equation can be given 
in terms of correlation functions of fluctuations of random forces 
and interacting random forces, and they can be cast into the Volterra 
equation formalism. 

The purpose of the present paper is to generalize the results to the 
case that the environment is not a reservoir which may linearly deviate 
from its initial state under the reaction from the open system. We 
will show that the memory and influence terms can still be expressed 
in terms of correlation functions of fluctuations of random forces 
and interaction random forces, but no longer be able to cast into the 
Volterra equation formalism, so is the entropy production rate of the 
open system. 

The results obtained in this paper are compared with approaches 
in linear thermodynamics and statistical mechanics, focusing on the 
entropy production of a nonequilibrium open system, which is local 
in both space and time. In contract, the entropy generation [8] is also 
important in the study of nonequilibrium systems, which is global 
in space and time, being especially useful in cases involving effects 
of irreversibility. In addition, another important development in 
physics today is the so-called quantum thermodynamics [9-14] which 
has extended the thermodynamics study from the macroscopic scale 
to the nanometer scale, and even down to the single atom and single 

photon scale. In Section 2, transport equations of the system are briefly 
reviewed. In Section 3, a GCSO is introduced. The entropy production 
rate is derived in Section 4. The influence term and its contribution 
to the entropy production is studied in Section 5. Comparison of the 
results with well-known approaches is presented in Section 6 and 
conclusions are drawn in Section 7.

Transport equations 

Consider an open system S under the influence of its environment 
R. The total system S ⊕  R is characterized by Hamiltonian H=HS +HR 
+λHSR  and statistical operator (so) W(t) . The open system s is described 
by a reduced statistical operator ρ(t)=trRW(t) satisfying ∂ ρ(t)/∂ t=-iLS 
ρ(t)+ƞ(t) with

η(t)=-iλtrR [LSR W(t)]    				                  (2.1)

describing the influence of R upon S, where LSX= i [HS, X], h=1.

Suppose we are satisfied with the description of system S at 
the macroscopic level by expectation values (EVs) of a set of basis 
macrovariables { Aj, j=1,…,m} of S, such macroscopic description can 
be realized by a relevant so ρr(t) which is picked up by a time-dependent 
projection operator ρ(t) from ρ(t): ρr(t)= ρ(t) ρ(t). We may choose the 
following projection operator as ρ(t) [3]:

( ) ( ) ( )
( ) ( ) ( )

( ) ( )r r
r k s s k

k kk k

t t
p t X t A t tr X tr A X

A t A t
ρ ρ

ρ
 ∂ ∂

= − < > + ∂ < > ∂ < > 
∑ ∑  (2.2)

Introduce q(t) =1-p(t) , p(t)q(t) = 0 , we have [6]

ρ(t)= ρr(t)+g(t,0)q(0) ρ(0)-

( ) ( ) ( ) ( )
0 0

( , ) ( ) ,
t t

s rdug t u q u iL u dug t u q u uρ η+∫ ∫  	            (2.3)

with Ṗ(t) ρ(t)=0; g(t,u)=T+ exp{-i ( )1 1

t

Su
du q u L∫ } (t >u) is a time-ordered 

evolution operator satisfying

 ∂ g(t,u)/∂ u=ig(t, u) q(u)LS  and g(t, t)=1.
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The transport equation for EV < Aj(t)>=trS[ρ(t)Aj]=trs[ρ(t)Aj  takes 
the form [6]

( ) ( ) ( ) ( )0
j j jA t A t Y t

t t
∂ ∂
< >= < > +

∂ ∂
	    (j=1,2,…,m).

In Heisenberg picture,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

0
[ (t) ] 0 0 0, ,

t

j S r j S j S r S jA t tr A tr Q G t A dutr u iL Q u G u t A
t

ρ ρ ρ
• • •∂    < > = + +   ∂    ∫ , (2.5)

here the first term gives the organized motion, the second term the 
initial condition and the third term the disorganized motion or the 
memory term [4] and

( ) ( ) ( ) ( )
0

,
t

j S jY t dutr u Q u G u t Aη
• =   ∫   		               (2.6)

is an additional term describing the external influence from the 
environment upon the open system; ( ) ( )1 1, _ expG u t T i du L Q u 

  ∫  
(t>u) is an anti-time-ordered evolution operator defined by 

( ) ( ) ( ), / ,SG u t u iL Q u G u t∂ ∂ = − and G(t, t)=1; Q( t )=1- P( t ) , P( t ) is 
the transposed projection operator of P(t)  [4],

( ) ( ) ( ) ( )
( )

r
S r k k S

k k

t
P t X tr t X A A t tr X

A t
ρ

ρ
 ∂

= + − < >         ∂ < > 
∑ ;     (2.7)

Satisfying

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,S Str X t g t u q u Y u tr Y u Q u G u t X t=            (2.8)

Since ( )j S SR jA i L L Aλ
•

= +  , (2.4) may be written as  [7]

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0
0 0 0, ,

t

j S r S j S S j S r S S jA t tr t iL A tr Q G t iL A dutr u iL Q u G u t iL A
t

ρ ρ ρ∂      < > = + +     ∂ ∫
(j = 1,2,…m) ,          					               (2.9)

Where

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0
0 0 0, ,

t

j S r S j S S j S r S S jA t tr t iL A tr Q G t iL A dutr u iL Q u G u t iL A
t

ρ ρ ρ∂      < > = + +     ∂ ∫

(2.10a) is the transport equation of the corresponding closed system, 
i.e. the time rate of EV resulting from HS , the Hamiltonian of the 
system S itself; and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
0

0 0 0, ,
t

j S r SR j S SR j S r S SR jiA t tr t iL A tr Q G t iL A dutr u iL Q u G u t iL A
t

ρ ρ ρ∂      < > = + +     ∂ ∫ (2.10b)

is the time rate resulting from the interaction H SR . 

The meaning of (2.9) is clear and simple: The transport equation of 
an open system is the sum of transport equation of the corresponding 
closed system, the time-rate of the EV due to the interaction 
Hamiltonian H SR and the additional influence term Yj ( t ).

The influence term (2.6) can be written as (j=1,2…,m)  (j=1,2…,m) ,     (2.11)

Where ( ) ( ) ( ), ,j jf u t Q u G u t A
•

= denotes the random force, which 
may be split into two:

( ) ( ) ( ), , , ,s SR
j j jf u t f u t f u tλ= +   			            (2.12a)

( ) ( ) ( )( ), ,S
j S jf u t Q u G u t iL A= ,

( ) ( ) ( )( ), ,SR
j SR jf u t Q u G u t iL A=   		           (2.12b)

being respectively the random force and interaction random force 
associated with the time rate of the basis variable  Aj due to HS and 
H SR, respectively. Since the average of the random force over given 
ensembles vanishes, so ( ) ( ), ,j jf u t f u tδ=  In the rest of the paper we 
will no longer distinguish ( ),jf u t from its fluctuation ( ),jf u tδ .

Generalized canonical statistical operator In order to go 
steps further

let us assume ( )r tρ to be a GCSO:

( )
( )

( )
( )

/
l l l l

l l
t A t A

r r St e z t tr e
λ λ

ρ
− −∑ ∑ 

= =  
                               (3.1)

where λt  (t) (l=1,…,m) are conjugate parameters of the basis 
macrovariables {Al} 

Making use of the Kubo identity [ ] ( )1 1

0
, , _e YY YX e d e X Y ααα −

−
  =  ∫  

we have

( )
( )

( )
( )

( ) ( )
1

0

l l l l
l l

t A t A

S r S l r l
l

iL t d e iL A e t t
α λ α λ

ρ α ρ λ
− ∑ ∑

= −∑∫    (3.2a)

( )
( )

( )
( )

( ) ( )
1

0

l l l l
l l

t A t A

SR r SR l r l
l

iL t d e iL A e t t
α λ α λ

ρ α ρ λ
− ∑ ∑

= −∑∫   (3.2b)

Introducing the generalized quantum correlation function

( ) ( )( ) ( )
( )

( )
( )

( )
1

0
,

l l l l
l l

u A u A

S rr
X t Y u d tr X t e Y u e u

α λ α λ

α ρ
− ∑ ∑ 

=  
 

∫      (3.3)

and making use of (3.2), the integrand in (2.5) may be written as

( ) ( ) ( )( ) ( ), , ,S r S j j S l lr
l

tr u iL f u t f u t iL A uρ λ  =  ∑      (3.4)

Since f j ( u t) is in the irregular space because of Q(u) while is in the 
regular space, their correlation is zero, thus

( ) ( ) ( ) ( )( ) ( ), , , ,S
S r S j j l lr

l
tr u iL f u t f u t f u u uρ λ  =  ∑      (3.5)

Where ( ),S
lf u u is given by (2.12b). Same argument will apply to 

similar cases later.

Therefore Eq.(2.5) takes the form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0

0
0 0 0, , , ,

t S
j S r j S j j l lr

l
A t tr t A tr Q G t A du f u t f u u u

t
ρ ρ λ

• •∂    < > = + +   ∂    
∑∫      (3.6)

here the memory term is expressed in terms of quantum correlation 
function of fluctuations of random forces. The influence term Yj (t) will 
be further analysed in Section 5.

Entropy production rate 

Now define the entropy of the noequilibrium open system through 
its relevant statistical operator [1,15,16]

( ) ( ) ( )lnB S r rS t k tr t tρ ρ= −       			                 (4.1)

where kB is the Boltzmann constant. The entropy production rate reads 
[7]

( ) ( ) ( )B j

A tS t
k t

t t
∂ < >∂

∂ ∂∑    			               (4.2)

which is the sum of products of transport equations and the conjugate 
parameters. If assume that the initial state of the system is a GCSO:  ρ 
(0)=ρr (0)  then the initial term in (3.6) vanishes. Combining (4.2) with 
(2.4) given by (3.6) and (2.11), we obtain

( ) ( ) ( ) ( )1 1 2 3S t S t S t S t
t t t t

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ,   		               (4.3)

the first term resulting from the organized motion in (3.6) reads [7]
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( ) ( ) ( ) ( )1

1

m

B j S r S SR j
j

S t
k t tr t tr iL A

t
λ λ ρ

=

∂  =  ∂ ∑                    (4.4)

the second term resulting from the disorganized motion in (3.6) takes 
the form 

( ) ( ) ( )( ) ( ) ( )2

0
,1

, , ,
t S

B j l l jr
j

S t
k du f u t f u u u t

t
λ λ

∂
=

∂ ∑∫              (4.5)

because of (3.5); and the third term resulting from the influence term 
(2.11) is 

( ) ( ) ( ) ( )3

0
,

t

B S j j
j

S t
k dutr u f u t t

t
η λ

∂
 =  ∂ ∑∫   	               (4.6)

These expressions represent the contributions of each term in the 
transport equation to the entropy production, respectively. Besides, 
Eq.(4.4) does not involve iLS Aj, indicating that in the organized motion 
term  H S contributes nothing to the rate.

Non-reservoir environment

Now we further analyze the contribution of the influence term Yj(t). 
Suppose that the environment R is not a reservoir and may linearly 
deviate from its initial state under the reaction from S. For simplicity, 
we assume SR k k k

k
H A Bγ=∑ , kA and kB respectively pertain to S and R, 

and they are initially independent:

 ( ) ( ) ( )0 0 0W Rρ=  where ( ) ( )SR t tr W t= . 

By ( ) ( ) ( )0 0 0W Rρ= , we have ( ) ( ) ( )W u u R uρ= ,here 

( ) ( ) ( )0S SRi L L uu e λρ ρ− += and ( ) ( ) ( )0S SRi L L uR u e Rλ− += . By (2.1), ƞ(u) may 

be written as

 ( ) ( ) ( ) ( ) ( )0 0 , _SR R SR R ru i L u u i H u tη λ ρ λ ρ= − < > = − < >     (5.1)

( ) ( )0 0,SR R k k k R
k

H u A B uγ< > = < >∑

( ) ( ) ( )0 0k R R kB u tr B u R< > =       			              (5.2)

( ) 0k RB u< > determines the evolution of the EV of macrovariable 
kB .

Since ( ) ( ) ( )/k R k SR kB t t iL B t i L B tλ∂ ∂ = + thus ( ) ( ) ( ) ( ),

0
0 RR

t iL t uiL t
k k SR kB t e B i due L B uλ= + ∫

For weak interaction, keeping only the linear term in λ , we obtain

( ) ( ) ( ) ( )2

0
1 0R

tiL t
k SR kB t e i duL u B oλ λ = + +  ∫ , ( ) R RiL u iL u

SR SRL u e L e=

( ) ( ) ( ) ( ) ( )0 1
0 0 0k R k R k RB u B u B u< > =< > + >    		             (5.3a)

( ) ( ) ( ) ( )0 0iL u
k R R kB u tr R e B < > =   ,  		           (5.3b)

( ) ( ) ( ) ( ) ( )1
0 1 10

0 0R
uiL u

k R R SR kB u i tr R e du L u Bλ  < > =   ∫   (5.3c)

being the zeroth and first order terms of the EV of BK when R linearly 
deviates from its initial state under the weak reaction from S. By (5.1) 
and (5.2), the integrand in (2.11) takes the form

( ) ( ){ } ( ) ( ){ } ( ) 0, , , _S j k S j k k R
k

tr u f u t i tr f u t A u B uη λ γ ρ= − < >  ∑    (5.4a)

( ) ( ) ( ){ } ( ) 0, , 0 _k S j k k R
k

i tr F u t A u B uλ γ ρ= − < >  ∑    (5.4b)

in Schrodinger and Heisenberg pictures, respectively; where

( ) ( ) ( ) ( ) ( ), ,S SR S SRi L L u i L L u
j j k kF u t e f u t and A u e A+ += = . Hence 

we have the influence term

( ) ( ) ( ){ } ( ) 00
, , _

t

j k S j k k R
k

Y t i dutr f u t A u B uλ γ ρ= − < >  ∑ ∫    (5.5a)

( ) ( ) ( ){ } ( ) 00
, , 0 _

t

k S j k k R
k

i dutr F u t A u B uλ γ ρ= − < >  ∑ ∫     (5.5b)

and its contribution to the entropy production in Shrodinger and 
Heisenberg pictures:

( ) ( ) ( ){ } ( ) ( )3
00

,
, , _

t

B k S j k k R j
j k

S t
i k dutr f u t A u B u t

t
λ γ ρ λ

∂
= − < >  ∂ ∑ ∫    (5.6a)

( ) ( ) ( ){ } ( ) ( ), , 0 _B k S j k k R j
j k

i k dutr F u t A u B u tλ γ ρ λ− < >  ∑ ∫    (5.6b)

Now consider the case that the initial state of S is given by a GCSO:

( )
( ) ( )0 0

0 /
l l l l

l l
A A

r Se tr e
λ λ

ρ
− −∑ ∑

= .   			                (5.7)

By the Kubo identity and the initial condition ( ) ( )0 0rρ ρ=  we have

( ) ( ) ( )
( )

( )
01

0
, 0 _ 0 0

l l
l

A

k l r
l

A u d e
α λ

ρ λ α ρ
− ∑

= −   ∑ ∫ ,

Thus (5.4) may be written as

( ) ( ){ } ( ) ( )( ) ( ) ( ) ( ) ( )0 0
0

, , , 0 , , , 0
SR

S j j SR R l l j l lr
l l r

tr u f u t F u t i L u A F u t f u uη λ λ λ λ
− = < > =  

 
∑ ∑

here we have conducted argument similar to that leads (3.4) to (3.5), 
and

( ) ( ) ( ) ( ) 0, ,
SR

l SR R lf u u Q u G u u i L u A
−

= < >     	              (5.8)

is the averaged interaction random force. Thus we obtain

( ) ( ) ( ) ( )
0

0

, , , 0
SRt

j j l l
l r

Y t du F u t f u uλ λ
− =  

 
∑∫                       (5.9)

( ) ( ) ( ) ( ) ( )3

0
, 0

, , , 0
SRt

B j l l j
j l r

S t
k du F u t f u u t

t
λ λ λ

−∂  =  ∂  
∑∫    (5.10)

With ( ) ( )( ) ( )
( )

( )
01

0 0
, 0

l l
l

A

S rr
X t Y u d tr X t e

α λ

α ρ
− ∑ 

=  
 

∫
If the open system is initially in an equilibrium state

( ) ( ) ( )0 00 0 /S SH H
r eq Se tr eβ βρ ρ ρ − −= = = ,  	              (5.11)

0 01/ Bk Tβ = is the initial inverse temperature of the system, 
then eqρ is a special case of (5.7) in which 1 SA H= , ( )1 00λ β=  

and 1 0A = ( )2l ≥ . Since 1A  is the only basic variable, so

( ) ( ) ( )/S St H t H
r St e tr eβ βρ − − =    and ( ) ( )1/ Bt k T tβ =  is the inverse 

temperature of S. Because 0S SiL H = , thus S SR SH i L Hλ
•

=  and 

( )1 , 0Sf u t = , ( ) ( )1 1, ,SRf u t f u tλ= ;  			               (5.12)

the memory term in (3.6) becomes ( ) ( )( ) ( )1 10
, , ,

t SR S

r
du f u t f u u uλ β∫ and 

vanishes, so
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( ) ( )

( ) ( )
0

S
S r SR S

H t
tr t iL H

t
λ ρ

∂ < >
=   ∂

	                           (5.13)

Besides, as a special case of (5.9) and (5.10), we have

( ) ( ) ( )
_

2
1 0 1 10

, , ,
SRt SR

eq

Y t du F u t f u uλ β  =  
 ∫   		              (5.14)

( ) ( ) ( ) ( )
2 _SR

3
1 10

0

, , ,
t SR

eq

S t
du F u t f u u t

t T
λ β

∂  =  ∂  ∫    	            (5.15)

Here ( ) ( )( ) ( ) ( ){ }0 0
1

0
, S SH H

S eqeq
X t Y u d tr X t e Y u eαβ αβα ρ− −= ∫         (5.16)

Finally we obtain the transport equation for the only basis variable 
H S :

( )
( ) ( )( ) ( ) ( ) ( )

2 _

1 10
0

, , ,
SRt SR

S r SR S
eq

S t
tr t iL H du F u t f u u t

t T t T
λ λρ β

∂  
= +    ∂  ∫    (5.17)

Eqs.(5.9), (5.10) and (5.14), (5.15) involve the averaged interaction 
random force (5.8) which has incorporated the linear deviation of the 
environment from its initial state.

Now consider the case without a given initial condition. By (3.1) 
and the Kubo identity, we have

( ) ( ) ( )
( )

( )
( )

( )
1

0 00

l l
l l l

l

u Au A

SR R r l SR R l r
l

i L u u u d e i L u A e u
α λα λ

ρ λ α ρ
−− ∑∑

< > = − < >  ∑ ∫   (5.18)

With (5.1) and (2.3),

( ) ( ){ } ( ) ( ) ( )0 1 2 3, ,S j S j SR Rtr u f u t tr f u t i L u u J J Jη λ ρ = − < > = + +     (5.19)

Eq.(5.19) is similar to Eq.(22) in [17] where the environment is a 
reservoir and 0< >SR RL is time-independent. In the following, we will 
follow the argument in [17], however, take into consideration that 

( ) 0SR RL u< > is time-dependent. Making use of (5.18) and (3.3), leads to

( ) ( ) ( ){ } ( ) ( ) ( )( )1 0 0, , ,S j SR R r l j SR R l r
l

J tr f u t i L u u u f u t i L u Aλ ρ λ λ= − < > = < >∑   (5.20)

( ) ( ) ( ) ( ){ }2 1 0 1 1 10
, ,

u

S j SR R rJ du tr f u t i L u K u u uλ ρ= < >∫ 

( ) ( ) ( ) ( )( )1 1 1 1 1 00
, , ,

u

j SR R l r
l

du u K u u f u t i L u Aλ λ= < >∑∫    (5.21)

( ) ( ) ( )1 1 1 1, , SK u u g u u q u iL=

,

( ) ( ) ( )1 1 1 1, ,SK u u iL Q u G u u=   		             (5.22)

( ) ( ) ( ) ( ) ( )3 1 0 1 1 10
, ,

u

S j SR RJ du tr f u t i L u g u u q u uλ η = − < > ∫

( ) ( ) ( ){ }2
1 1 10

, ,
u

S jdu tr u K u u K u t Aλ ρ
•

= ∫    		             (5.23)

( ) ( ) ( ) ( )0, ,SR RK u t i L u Q u G u t= < > .   		             (5.24)

Substituting (2.3) into (5.23) and repeating the above arguments, 
we have

( ) ( ) ( ) ( ) ( )( )0, { , ,S j l j SR R l r
l

tr u f u t u f u t i L u Aη λ λ  = < > +  ∑
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λ λ
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+ < > +
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∫
( ) ( ) ( ) ( )1 1 1 0, , SR RK u u Q u G u u i L u= < > ,    		            (5.25)

which many be written as

( ) ( ) ( ) ( ) ( ) ( )
_

1 1 1, , , , ,
SR

S j j
l r

tr u f u t u f u t f u u M u tη λ λ
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∑    (5.26)

( ) ( ) ( ) ( ) ( ) ( )1
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1 1 1 1 1 2 1 1 1 10 0

1
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∞
−

− − − −
=

=∑ ∫ ∫

( ) ( ) ( ) ( ) ( )
_
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SR

n n n n j l n n r
K u u K u u K u u f u t f u uλ − − −+    (5.27)

here we have had argument similar to that leads (3.4) to (3.5). Thus 
we obtain the influence term and its contribution to the entropy 
production:

( ) ( ) ( ) ( ) ( )
_SR

1 10
, , , ,

t

j j l
l r

Y t du u f u t f u u M u tλ λ
  = +  
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∑∫    (5.28)
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If we are satisfied with keeping the linear term of λ in Ml (u,t) , then

( ) ( ) ( ) ( ) ( ) ( )
_

2
1 1 10

, , , , ,
SRu

l l l j l
r

M u t du u K u u f u t f u u oλ λ 
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( ) ( ) ( ) ( )1 1 1 1 10
,

u

l lu u du u K u uφ λ λ= + ∫   		             (5.32)  

Therefore we have the approximate expressions

( ) ( ) ( ) ( )
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, , ,

SRt
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they are up to 2λ by (2.12a). Comparing (5.34) with (4.5), we see clearly 
that ( )l uφ plays the role of ( )l uλ in the case of corresponding isolate 
system. 

Now we rewrite the results obtained above in the form of special 
dependent. For simplicity, we focus on the simpler expression (5.34). 
The entropy production of the open system reads

( ) ( ) ( ) ( )1 2 3, , , ,s x t s x t s x t s x t
t t t t

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
   	           (5.35)

Where

( ) ( ) ( )( )1

1

,
, ,

m

B j S r SR j
j

s x t
k x t tr x t iL A

t
λ λ ρ

=

∂  =  ∂ ∑                       (5.36a)

results from the organized motion in the transport equation due to 
HSR;
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t S
B j l l jrj l
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k du f u t f u u x u x t
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∂
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from the disorganized motion and

( ) ( ) ( )( ) ( ) ( )
_

3

0
,

,
, , , t , u, ,

SRt

B l j l jr
j l

s x t
k du x u f u f u x t
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∂
=

∂ ∑∫    (5.36c)

from the influence term, respectively.

Comparison 

In this section, we compare the results obtained in the proceeding 
sections with the well known approaches in the linear nonequilibrium 
thermodynamics and statistical mechanics. The time rate of the entropy 
density s(x, t) of a nonequilibrium system takes the form [8,18,19]:

( ) ( ) ( ),
, . ,s

s x t
x t j x t

t
σ

∂
= −∇

∂
   			              (6.1)

Where ( ) ( ) ( ), , ,i i
i

x t X x t J x tσ =∑    		             (6.2)

is the entropy production density occurring inside the system which is 
given in terms of the sum of products of thermodynamic fluxes ( ),iJ x t
and the conjugate thermodynamic forces ( ),iX x t ; and ( ),sj x t is the 
density of entropy flux through the border into the system. 

Onsager proposed a linear relationship between the fluxes and 
forces

( ) ( ), ,i ik k
k

J x t L X x t=∑     			                (6.3)

with reciprocity relations

ik kiL L=    					                   (6.4)

Thus we have

( ) ( ) ( ) ( )
,

,
, t , . j ,ik i k s

i k

s x t
L X x X x t x t

t
∂

= −∇
∂ ∑   	              (6.5)

For the special case considered in Sect.5, the interaction 
between open system S and its environment R takes the form

SR k k k
k

H A Bγ=∑ , for example, S and R are composed of different 

kinds of harmonic oscillator [7]. Such interaction implies no obvious 
border separating S and R, leading to absence of the divergence term 
on the right hand side of (6.5). Thus the variation of entropy density 
results from inner entropy production ( ),x tσ only:

( ) ( ) ( )
,

,
, ,ik ki

i k

s x t
L X x t X x t

t
∂

=
∂ ∑     		              (6.6)

Besides, in the Green-Kubo formalism, the transport coefficients 
ikL can be expressed in terms of time correlation functions of the time 

rate of corresponding variables [19,20].

( ) ( )
0

0ik i k eqL dt A t A
• •∞

< >∫   			                (6.7)

where the average is taken over an equilibrium ensemble and the 
Markovian effect is taken into account.

In this paper, we study a nonequilibrium open system whose 
transport equations (2.9)-(2.11) are nonlinear differential-integral 
ones. Now let us compare (5.36b) with (6.6). We notice that (5.36b) 
share the same structure as (6.6) because of the facts : (1) parameters 

( ){ },j x tλ ( j=1,…m) play the role Thermodynamic forces since they 
may involve spacial gradients of, e.g., temperature, velocity, chemical 
potential or electric, magnetic fields, etc,; (2) the random forces (2.12b) 
involve the time rates of variables because of using projection operator 
technique and (3) the average is taken over GCSO (3.1) instead of an 
equilibrium ensemble. As for (5.36c), the contribution of ( )jY t to the 
entropy production, in which the free term ( ),l x uφ in the Volterra 
equation is indeed a generalization of ( ),l x uλ in (5.26b), hence (5.36c) 
possesses the same structure as (6.6) also. Acoordingly, we see clearly 
that the entropy production rate (5.35) is a natural generalization of 
(6.6) where the non-linearity and the non-Markovian effect have been 
taken into consideration. In addition to the entropy production, the 
entropy generation is another useful tool in the study of nonequilibrium 
systems [8] and especially useful in the analysis of a process occurring 
in the system during a period of time τ . It is worth noticing the 
major differences between the two: the entropy production needs the 
hypothesis of local equilibrium but the entropy generation does not; 
the former does not consider the time but the latter introduces the 
lifetime τ  of the process [8]. The two different approaches are closely 
related and complementary one to another.

Conclusion
In the present paper we have studied a nonequilibrium open system 

in interaction with its environment which may linearly deviate from its 
initial state under the reaction of the open system. We have shown that 
if the relevant statistical operator of the system is of the form of GCSO, 
then the transport equation is given by (3.6) and (5.28) or (5.33). The 
memory term in (3.6) and the influence term (5.28) or (5.33) can be 
expressed in terms of quantum correlation functions of fluctuations 
of random forces and interaction random forces, giving the second 
kind of fluctuation-dissipation theorem for this nonequilibrium open 
system. We have also shown that the entropy production rate is given 
by the sum of products of transport equations and the corresponding 
parameters. In the organized motion term, SH contributes nothing to 
the rate, but SRH does; the contributions of the memory and influence 
terms are expressed in terms of quantum correlation functions of 
fluctuations of random forces and interaction random forces. The total 
entropy production rate is given by the sum of contributions resulting 
from each term in the transport equation, given respectively by (4.4), 
(4.5) and (5.29) or (5.34). They are natural generalizations of those for a 
linear nonequilibrium closed system to a nonlinear open system.
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