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Abstract
We described the structure of jordan δ-derivations and jordan δ-prederivations of unital associative algebras. We 

gave examples of nonzero jordan 1
2

-derivations, but not 1
2

-derivations.
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Introduction
Let Jordan δ-derivation be a generalization of the notion of jordan 

derivation [1,2] and δ-derivation [3-14]. Jordan δ-derivation is a linear 
mappings j, for a fixed element of δ from the main field, satisfies the 
following condition 

2( ) ( ( ) ( ))δ= +j x j x x xj x .                             (1)

Note that various generalizations of Jordan derivations have been 
widely studied [15-17]. If algebra A is a (anti) commutetive algebra, 
then jordan δ-derivation of A is a δ-derivation of A.

In this paper we consider jordan δ-derivations of associative unital 
algebras. Naturally, we are interested in the nonzero mappings with

0,1≠ , 1 and algebras over field with characteristic 2≠p . In the main 
body of work, we using the following standard notation

[ , ] ,= − ° = +a b ab ba a b ab ba .

Jordan δ-derivations of Associative Algebras
In this chapter, we consider jordan δ-derivations of associative 

unital algebras. And prove, that jordan δ-derivation of simple 
associative unital algebra is a δ- derivation. Also, we give the example 

of non-trivial jordan 
1
2 -derivations.

Lemma: Let A be an unital associative algebra and j be a jordan 

δ-derivation, then 1
2

δ = and 1( ) ( )
2

= +j x xa ax , where [x, [x, a]] = 0 for 
any x ∈ A.

Proof: Let x = 1 in condition (1), then j(1) = 0 or 1
2

δ = . If j(1) = 0, 
then for x = y + 1 in (1), we get

( 1 1 ) ( ( ) 1 1 ( ) (1) (1))δ⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ⋅j y y j y j y j y y j .

That is, if j(1) = 0, then j(y) = 0.

If 1
2

δ = and j(1) = a, then 1( ) ( )
2

= +j x xa ax . Using the identity (1), 
obtain

22 ( ) ( )° = ° + °x a x a x x x a
and

2 2 2+ =x a ax xax .

That is [x, [x, a]] = 0. Lemma is proved.

It is easy to see, that mapping 1( ) ( )
2

= +j x xa ax , where [x, [x, a]] = 0 

for any x ∈ A, is a jordan 1
2

-derivation. Using Kaygorodov et al. [6] 
1
2

-derivation of unital associative algebra A is a mapping Ra, where Ra - 

multiplication by the element in the center of the algebra A.

Below we give an example of an unital associative algebra with a 

Jordan 1
2

- derivation, different from 1
2

-derivation.

Example: Consider the algebra of upper triangular matrices of size 
3×3 with zero diagonal over a non-commutative algebra B. Let A# be 
an algebra with an adjoined identity for the algebra A.  Then, easy to 
see, that for any elements X, Y ∈ A#, right [X, Y ] = me13 for some m ∈ 
B. So, for a = t(e12 + e21) and t ∈ B, will be #[ , ] 0≠A a , but [X, [X, a]] 

= 0. So, using corollary from Lemma, mapping 
1( ) ( )
2

= +j x ax xa is a 

jordan 1
2

- derivation of algebra A#, but not 1
2

- derivation of algebra A# 

and #( )a Z A∉ .

Theorem 1:  Jordan δ-derivation of simple unital associative 
algebra A is a δ-derivation.

Proof: Note, that case of δ = 1 was study in Herstein et al. Cusack 

et al. [1,2]. It is clear, that the case 1
2

δ =  is more interesting. Using 

Herstein et al. [18], ( ) / ( )−=L A Z A is a simple Lie algebra. Clearly, 
that [[a, x], x] = 0 and [[x, a], a] = 0. Using roots system of simple Lie 
algebra [19], we can obtain, that a ∈ Z (A), so [A, a] = 0. Which implies 

that the mapping j is a 1
2

- derivation. Theorem is proved.

Jordan δ-pre-derivations of Associative Algebras
Linear mapping ζ be a prederivation of algebra A, if for any 

elements x, y, z ∈ A: 

     ζ(xyz) = (x)yz + xζ(y)z + xyζ(z).

Prederivations considered in Burde and Bajo et al. [20, 21]. Jordan 
δ-prederivation ς is a linear mapping, satisfies the following condition

3( ) ( ( ) ( ) ( ))ς δ ς ς ς= + +x x xx x x x xx x .                   (2) 

The main purpose of this section is showing that Jordan 
δ-prederivation of unital associative algebra is a jordan derivation or 
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jordan 
1
2

- derivation.

Theorem 2: Let ς be a jordan δ-prederivation of unital associative 
algebra A, then ς is a jordan 1

2
 - derivation or jordan derivation.

Proof: Note, that if ς is a jordan δ-prederivation, then (1) 3 (1)ς δς= . So, 

(1) 0ς = or 1
3

δ = . If
1
3

δ = , then

13 2 2 2( 3 3 1) ( 2 1) ( 1) ( 1) ( 1)( 1) ( 1)( 2 1))
3

ς ς ς ς+ + + = + + + + + + + + + + +x x x x x x x x x x x x .

That is, we have
2 29 ( ) 6 ( ) 3 ( ) 3 (1) ( ) ( )ς ς ς ς ς ς+ = ° + ° + ° +x x x x x x x x x x .

Replace x by x + 1, then obtain

2 ( ) (1)ς ς= ° = °x x x a .

So, using (2), we obtain
13 2 2( ( ) ( ) ( ) )
3

° = ° + ° + °x a x x a x x a x x a x .

That is

3 3 2 2+ = +x a ax x ax xax .

We easily obtain
2[ ,[ , ]] 0=x x a .

Replace x by x + 1, then obtain [x, [x, a]] = 0. Using Lemma, we 

obtain that ς is a jordan 1
2

-derivation. The case ς (1) = 0 is treated 

similarly, and the basic calculations are omitted. In this case, we obtain 
that ς is a jordan derivation (for δ = 1) or zero mapping. Theorem is 
proved.

Jordan δ-derivations of Triangular Algebras
Let A and B be unital associative algebras over a field R and M be an 

unital (A, B)-bimodule, which is a left A-module and right B-module. 
The R-algebra

( , , ) : , ,
0

   = = ∈ ∈ ∈  
   

a m
T Tri A B M a A b B m M

b
under the usual matrix operations will be called a triangular algebra. 
This kind of algebras was first introduced by Chase [22]. Actively 
studied the derivations and their generalization to triangular algebras 
[15- 17, 23].

Triangular algebra is an unital associative algebra and triangular 
algebras satisfy the conditions of Lemma. So, if j is a jordan δ-derivation 

of algebra T, then 1
2

δ = and there is C, which 1( ) ( )
2

= +j X CX XC , where 
*

0
 

= 
 

a m
C

b for any X ∈ T.

Also,

* , , 0
0 00

           =            

a m x m x m
y yb

for any , ,∈ ∈ ∈x A y B m M . Easy to see, mapping : →j A AA , satisfing 

condition 1( ) ( )
2

= +j x ax xaA and : →j B BB , satisfing condition 
1( ) ( )
2

= +j x bx xbB , are jordan 
1
2

 -derivations, respectively, of algebras 

A and B. Also, for m = 0, y = 0 and x = 1A we can get

m∗ = 0.                         (3)

On the other hand, for x = 0 and y = 1B, we can get

mb = am.                      (4)

Theorem 3: Let A and B be a central simple algebras, then jordan 
δ-derivation of triangular algebra T is a δ-derivation.

Proof: T is an unital algebra and we can consider case of 1
2

δ = . Algebras 

A and B are central simple algebras, then 1α= ⋅a A and 1β= ⋅b B . 

Using (4), we obtain 1 , 1α α= ⋅ = ⋅a bA B . So, jordan 1
2

- derivation of 

T is a 1
2

- derivation.

Theorem is proved.

Theorem 4: Let A be a central simple algebra and M be a faithful 
module right B-module, then jordan δ-derivation of triangular T is a 
δ-derivation.

Proof: T is an unital algebra and we can consider case of 1
2

δ = . 

Algebra A is a central simple algebra, then 1a Aα= ⋅ . Using (4), we 

obtain αm = mb. The module M is a faithful module, we have 1α= ⋅b B . So, 

jordan 1
2

- derivation is a 1
2

-derivation. Theorem is proved.

Comment: Noted, using the example if non-trivial jordan 1
2

-derivation, but not 1
2

-derivation, of unital associative algebra, we 

can construct new example of non-trivial jordan 1
2

-derivation of 

triangular algebra. For example, we can consider triangular algebra
# # #( , , )Tri A A A , where A# is a bimodule ovar A#. In conclusion, the 

author expresses his gratitude to Prof. Pavel Kolesnikov for interest 
and constructive comments.
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