Jordan δ-Derivations of Associative Algebras

Ivan Kaygorodov*
Institute of Mathematics, Novosibirsk, Russia

Abstract

We described the structure of jordan δ-derivations and jordan δ-prederivations of unital associative algebras. We gave examples of nonzero jordan $\frac{1}{2}$-derivations, but not $\frac{1}{2}$-derivations.

Keywords: δ-derivation; Jordan δ-derivation; Associative algebra; Triangular algebras

Introduction

Let Jordan δ-derivation be a generalization of the notion of jordan derivation $[1,2]$ and δ-derivation [3-14]. Jordan δ-derivation is a linear mappings \mathfrak{j}, for a fixed element of δ from the main field, satisfies the following condition

$$
\begin{equation*}
j\left(x^{2}\right)=\delta(j(x) x+x j(x)) . \tag{1}
\end{equation*}
$$

Note that various generalizations of Jordan derivations have been widely studied [15-17]. If algebra A is a (anti) commutetive algebra, then jordan δ-derivation of A is a δ-derivation of A.

In this paper we consider jordan δ-derivations of associative unital algebras. Naturally, we are interested in the nonzero mappings with $\neq 0,1,1$ and algebras over field with characteristic $p \neq 2$. In the main body of work, we using the following standard notation

$$
[a, b]=a b-b a, a^{\circ} b=a b+b a .
$$

Jordan $\boldsymbol{\delta}$-derivations of Associative Algebras

In this chapter, we consider jordan δ-derivations of associative unital algebras. And prove, that jordan δ-derivation of simple associative unital algebra is a δ - derivation. Also, we give the example of non-trivial jordan $\frac{1}{2}$-derivations.

Lemma: Let A be an unital associative algebra and j be a jordan δ-derivation, then $\delta=\frac{1}{2}$ and $j(x)=\frac{1}{2}(x a+a x)$, where $[x,[x, a]]=0$ for any $x \in A$.

Proof: Let $x=1$ in condition (1), then $j(1)=0$ or $\delta=\frac{1}{2}$. If $j(1)=0$, then for $x=y+1$ in (1), we get

$$
j(y \cdot 1+1 \cdot y)=\delta(j(y) \cdot 1+1 \cdot j(y)+j(1) \cdot y+y \cdot j(1)) .
$$

That is, if $j(1)=0$, then $j(y)=0$.
If $\delta=\frac{1}{2}$ and $\mathrm{j}(1)=\mathrm{a}$, then $j(x)=\frac{1}{2}(x a+a x)$. Using the identity (1),

$$
2 x^{2 \circ} a=\left(x^{\circ} a\right) x+x\left(x^{\circ} a\right)
$$

and
$x^{2} a+a x^{2}=2 x a x$.
That is $[x,[x, a]]=0$. Lemma is proved.
It is easy to see, that mapping $j(x)=\frac{1}{2}(x a+a x)$, where $[x,[x, a]]=0$ for any $x \in A$, is a jordan $\frac{1}{2}$-derivation. Using Kaygorodov et al. [6] $\frac{1}{2}$ -derivation of unital associative algebra A is a mapping R_{a}, where R_{a} -
multiplication by the element in the center of the algebra A.
Below we give an example of an unital associative algebra with a Jordan $\frac{1}{2}$ - derivation, different from $\frac{1}{2}$-derivation.

Example: Consider the algebra of upper triangular matrices of size 3×3 with zero diagonal over a non-commutative algebra B. Let A^{*} be an algebra with an adjoined identity for the algebra A . Then, easy to see, that for any elements $X, Y \in A^{*}$, right $[X, Y]=m e_{13}$ for some $m \in$ B. So, for $a=t\left(e_{12}+e_{21}\right)$ and $t \in B$, will be $\left[A^{\#}, a\right] \neq 0$, but $[X,[X, a]]$ $=0$. So, using corollary from Lemma, mapping $j(x)=\frac{1}{2}(a x+x a)$ is a jordan $\frac{1}{2}$ - derivation of algebra A^{*}, but not $\frac{1}{2}$ - derivation of algebra A^{*} and $a \notin Z\left(A^{\#}\right)$.

Theorem 1: Jordan δ-derivation of simple unital associative algebra A is a δ-derivation.

Proof: Note, that case of $\delta=1$ was study in Herstein et al. Cusack et al. [1,2]. It is clear, that the case $\delta=\frac{1}{2}$ is more interesting. Using Herstein et al. [18], $L=A^{(-)} / Z(A)$ is a simple Lie algebra. Clearly, that $[[a, x], x]=0$ and $[[x, a], a]=0$. Using roots system of simple Lie algebra [19], we can obtain, that $a \in Z(A)$, so $[A, a]=0$. Which implies that the mapping j is $\frac{1}{2}$ - derivation. Theorem is proved.

Jordan $\boldsymbol{\delta}$-pre-derivations of Associative Algebras

Linear mapping ζ be a prederivation of algebra A, if for any elements $x, y, z \in A$:

$$
\zeta(x y z)=(x) y z+x \zeta(y) z+x y \zeta(z) .
$$

Prederivations considered in Burde and Bajo et al. [20, 21]. Jordan δ-prederivation ς is a linear mapping, satisfies the following condition

$$
\begin{equation*}
\varsigma\left(x^{3}\right)=\delta(\varsigma(x) x x+x \varsigma(x) x+x x \varsigma(x)) \tag{2}
\end{equation*}
$$

The main purpose of this section is showing that Jordan δ-prederivation of unital associative algebra is a jordan derivation or

[^0]jordan $\frac{1}{2}$-derivation.
Theorem 2: Let ς be a jordan δ-prederivation of unital associative algebra A, then ς is a jordan $\frac{1}{2}$-derivation or jordan derivation.

Proof: Note, that if ς is a jordan δ-prederivation, then $\varsigma(1)=3 \delta \varsigma(1)$. So, $\varsigma(1)=0$ or $\delta=\frac{1}{3}$. If $\delta=\frac{1}{3}$, then
$\left.\varsigma\left(x^{3}+3 x^{2}+3 x+1\right)=\frac{1}{3}\left(x^{2}+2 x+1\right) \varsigma(x+1)+(x+1) \varsigma(x+1)(x+1)+\varsigma(x+1)\left(x^{2}+2 x+1\right)\right)$.
That is, we have

$$
9 \varsigma\left(x^{2}\right)+6 \varsigma(x)=3 x^{\circ} \varsigma(x)+3 \varsigma(1)^{\circ} x+x^{2 \circ} \varsigma(x)+x \varsigma(x) x .
$$

Replace x by $x+1$, then obtain

$$
2 \varsigma(x)=x^{\circ} \varsigma(1)=x^{\circ} a
$$

So, using (2), we obtain
$x^{3 \circ} a=\frac{1}{3}\left(x^{2}\left(x^{\circ} a\right)+x\left(x^{\circ} a\right) x+\left(x^{\circ} a\right) x^{2}\right)$.
That is

$$
x^{3} a+a x^{3}=x^{2} a x+x a x^{2}
$$

We easily obtain

$$
\left[x^{2},[x, a]\right]=0
$$

Replace x by $x+1$, then obtain $[x,[x, a]]=0$. Using Lemma, we obtain that ς is a jordan $\frac{1}{2}$-derivation. The case $\varsigma(1)=0$ is treated similarly, and the basic calculations are omitted. In this case, we obtain that ς is a jordan derivation (for $\delta=1$) or zero mapping. Theorem is proved.

Jordan $\boldsymbol{\delta}$-derivations of Triangular Algebras

Let A and B be unital associative algebras over a field R and M be an unital (A, B)-bimodule, which is a left A-module and right B-module. The R-algebra

$$
T=\operatorname{Tri}(A, B, M)=\left\{\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right): a \in A, b \in B, m \in M\right\}
$$

under the usual matrix operations will be called a triangular algebra. This kind of algebras was first introduced by Chase [22]. Actively studied the derivations and their generalization to triangular algebras [15-17, 23].

Triangular algebra is an unital associative algebra and triangular algebras satisfy the conditions of Lemma. So, if j is a jordan δ-derivation of algebra T, then $\delta=\frac{1}{2}$ and there is C, which $j(X)=\frac{1}{2}(C X+X C)$, where $C=\left(\begin{array}{cc}a & m * \\ 0 & b\end{array}\right)$ for any $X \in T$.

Also,

$$
\left[\left[\left(\begin{array}{cc}
a & m_{*} \\
0 & b
\end{array}\right),\left(\begin{array}{cc}
x & m \\
0 & y
\end{array}\right)\right],\left(\begin{array}{cc}
x & m \\
0 & y
\end{array}\right)\right]=0
$$

for any $x \in A, y \in B, m \in M$. Easy to see, mapping $j_{A}: A \rightarrow A$, satisfing condition $j_{A}(x)=\frac{1}{2}(a x+x a)$ and $j_{B}: B \rightarrow B$, satisfing condition $j_{B}(x)=\frac{1}{2}(b x+x b)$, are jordan $\frac{1}{2}$-derivations, respectively, of algebras
A and B. Also, for $m=0, y=0$ and $x=1_{A}$ we can get

$$
\begin{equation*}
\mathrm{m}_{*}=0 \tag{3}
\end{equation*}
$$

On the other hand, for $x=0$ and $y=1_{B}$, we can get

$$
\begin{equation*}
m b=a m \tag{4}
\end{equation*}
$$

Theorem 3: Let A and B be a central simple algebras, then jordan δ-derivation of triangular algebra T is a δ-derivation.

Proof: T is an unital algebra and we can consider case of $\delta=\frac{1}{2}$. Algebras A and B are central simple algebras, then $a=\alpha \cdot 1_{A}$ and $b=\beta \cdot 1_{B}$. Using (4), we obtain $a=\alpha \cdot 1_{A}, b=\alpha \cdot 1_{B}$. So, jordan $\frac{1}{2}$ - derivation of T is $\mathrm{a} \frac{1}{2}$ - derivation.

Theorem is proved.
Theorem 4: Let A be a central simple algebra and M be a faithful module right B-module, then jordan δ-derivation of triangular T is a δ-derivation.

Proof: T is an unital algebra and we can consider case of $\delta=\frac{1}{2}$. Algebra A is a central simple algebra, then $a=\alpha \cdot 1_{A}$. Using (4), we obtain $\alpha m=m b$. The module M is a faithful module, we have $b=\alpha \cdot 1_{B}$. So, jordan $\frac{1}{2}$-derivation is a $\frac{1}{2}$-derivation. Theorem is proved.

Comment: Noted, using the example if non-trivial jordan $\frac{1}{2}$ -derivation, but not $\frac{1}{2}$-derivation, of unital associative algebra, we can construct new example of non-trivial jordan $\frac{1}{2}$-derivation of triangular algebra. For example, we can consider triangular algebra $\operatorname{Tri}\left(A^{\#}, A^{\#}, A^{\#}\right)$, where $A^{\#}$ is a bimodule ovar $A^{\#}$. In conclusion, the author expresses his gratitude to Prof. Pavel Kolesnikov for interest and constructive comments.

References

1. Herstein IN (1957) Jordan derivations of prime rings. Proc Amer Math Soc 8: 1104-1110.
2. Cusack JM (1975) Jordan derivations on rings. Proc Amer Math Soc 53: 321324.
3. Filippov VT (1998) δ-Derivations of Lie algebras. Sib Math J 39: 1218-1230.
4. Filippov VT (1999) δ-Derivations of prime Lie algebras. Sib Math J 40: 174-184.
5. Filippov VT (2000) δ-Derivations of prime alternative and Maltsev algebras. Algebra Logika 39: 354-358.
6. Kaygorodov IB (2007) δ-Derivations of simple finite-dimensional Jordan super algebras. Algebra and Logic 46: 318-329.
7. Kaygorodov IB (2009) δ-Derivations of classical Lie super algebras. Sib Math J 50: 434-449.
8. Kaygorodov IB (2010) δ-Super derivations of simple finite-dimensional Jordan and Lie super algebra. Algebra and Logic 49: 130-144.
9. Kaygorodov IB Zhelyabin VN (2011) d-Super derivations of simple super algebras of Jordan brackets. Algebra i Analiz 23: 40-58.
10. Kaygorodov IB (2012) δ-Derivations of semi simple finite-dimensional Jordan super algebras. Mathematical Notes 91: 200-213.
11. Kaygorodov IB Generalized δ-derivations. Sib Math J.
12. Kaygorodov IB δ-Derivations of n-ary algebras. Izv RAS.
13. Kaygorodov IB (2011) $(n+1)$-Ary derivations of simple n-ary algebras. Algebra and Logic 50: 470-471.
14. Zusmanovich P (2010) On δ-derivations of Lie algebras and super algebras. J of Algebra 324: 3470-3486.
15. Benkovic D (2005) Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl 397: 235-244.
16. Majieed A, Zhou J (2010) Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras. Chechoslovak Math J 60: 211219.
17. Wei F, Xiao ZH (2010) Jordan higher derivations on triangular algebras. Linear Algebra Appl 432: 2615-2622.
18. Herstein IN (1961) Lie and Jordan structures in simple, associative rings. Bul Amer Math Soc 67: 517-531.
19. Kac V (1990) Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge.
20. Burde D (2002) Lie Algebra Pre derivations and strongly nilpotent Lie Algebras. Comm in Algebra 30: 3157-3175.
21. Bajo I (1997) Lie algebras admitting non-singular pre derivations. Indag Mathem 8: 433-437.
22. Chase SU (1961) A generalization of the ring of triangular matrices. Nagoya Math J 18: 13-25.
23. Wei F, Xiao Z (2011) Higher derivations of triangular algebras and its generalizations. Linear Algebra and its Applications 435: 1034-1054.

OMICS International: Publication Benefits \& Features

Unique features:

- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:

- 700 Open Access Journals
- 50,000 editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc.
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission

This article was originally published in a special issue, Algebra, Combinatorics and Dynamics handled by Editor. Dr. Natalia Iyudu, Researcher School of Mathematics, The University of Edinburgh, UK

Citation: Belolipetsky MV, Gunnells PE (2015) Kazhdan Lusztig Cells in Infinite Coxeter Groups. J Generalized Lie Theory Appl S1: 002. doi:10.4172/1736-4337.S1-002

[^0]: *Corresponding author: Ivan Kaygorodov, Institute of Mathematics, Novosibirsk, Russia, Tel: (383) 333-28-92; E-mail: kaygorodov.ivan@gmail.com

 Received July 21, 2015; Accepted August 03, 2015; Published August 31, 2015
 Citation: Kaygorodov I (2015) Jordan δ-Derivations of Associative Algebras. J Generalized Lie Theory Appl S1: 003. doi:10.4172/1736-4337.S1-003

 Copyright: © 2015 Kaygorodov I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

