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Historic Behaviour for Random Expanding Maps on the Circle
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Abstract. F. Takens constructed a residual subset of the state space consisting of initial points with historic
behaviour for expanding maps on the circle. We prove that this statistical property of expanding maps on the circle
is preserved under small random perturbations. The proof is given by establishing a random Markov partition, which
follows from a random version of Shub’s Theorem on topological conjugacy with the folding maps.

1. Introduction

Let M be a compact smooth Riemannian manifold. For a dynamical system f : M →
M , the orbit issued from an initial point x in M is said to have historic behaviour when there
exists a continuous function ϕ : M → R such that the time average

lim
n→∞

1

n

n−1∑
j=0

ϕ
(
f j (x)

)

does not exist. Several statistical quantities are given as the time average of some observable
ϕ, and thus it is a natural question in smooth dynamical systems theory whether the set of
points with historic behaviour is not negligible in some sense; it is typically formulated as a
positive measure set with respect to the normalised Lebesgue measure. Takens asked in [12]
whether there are persistent classes of smooth dynamical systems such that the set of initial
points with historic behaviour is of positive Lebesgue measure (Takens’ Last Problem). Very
recently, it was affirmatively answered by Kiriki and Soma [9] with diffeomorphisms having
homoclinic tangencies. The reader is asked to see [11], [12] and [4] for the background of
historic behaviour in this measure-theoretical sense; see also [6] and [10] for the (recent)
contribution to Takens’ Last Problem for one-dimensional mappings and flows.

As another measurement to investigate historic behaviour, Takens [12] considered
whether the set of points with historic behaviour is a residual subset of the state space (i.e., the
set of points with historic behaviour is not negligible in a topological sense). For the doubling
map on the circle, he constructed a residual subset consisting of initial points with historic
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behaviour by using symbolic dynamics. Since the method of symbolic dynamics is applica-
ble to any expanding maps on the circle, the proof can be literally translated to expanding
maps on the circle (see also [3] for another investigation of historic behaviour for expanding
maps, and [8] for historic behaviour of geometric Lorenz flows in topological sense). Our
goal in this paper is to extend his result for historic behaviour (and its generalisation to ex-
panding maps on the circle) to a random setting. For a random version of Takens’ problem
in measure-theoretical sense, we refer to the result by Araújo [1]; in contrast to our result
in topological setting, he gave a negative answer to a random version of Takens’ problem in
measure-theoretical sense for general diffeomorphisms under some conditions on noise.

As in the unperturbed case, the key step in the proof is establishing a (random) Markov
partition. This is given through proving a random version of Shub’s Theorem on topological
conjugacy of expanding maps with the folding maps.

1.1. Definitions and results. Let S1 be a circle given by S1 = R/Z. We endow

S1 with a metric dS1(·, ·), where dS1(x, y) is the infimum of |x̃ − ỹ| over all representatives

x̃, ỹ of x, y ∈ S1, respectively. Let C r (S1,S1) and Homeo(S1,S1) be the spaces of all

endomorphisms of class C r and homeomorphisms on the circle S1, endowed with the usual

C r and C 0 metrics dC r (·, ·) and dC 0(·, ·), respectively, with r > 1. (Given that r = k + γ

for some k ∈ N, k ≥ 1 and 0 ≤ γ ≤ 1, f ∈ C r (S1,S1) denotes the k-th derivative of
f is γ -Hölder.) Let πS1 : R → S1 be the canonical projection on S1, i.e., πS1(x̃) is the

equivalent class of x̃ ∈ R. We call A(� S1) a closed interval of S1 if A = πS1(Ã) for some

closed interval Ã of R. Open intervals or left-closed and right-open intervals of S1 are defined

in a similar manner. We let F(S1) denote the space consisting of all nonempty left-closed

and right-open intervals of S1, all point sets of S1 and the state space S1, endowed with the
Hausdorff metric dH(·, ·). We endow C r (S1,S1), Homeo(S1,S1) and F(S1) with the Borel
σ -field.

Let Ω be a separable complete metric space endowed with the Borel σ -field B(Ω) with

a probability measure P. Given a smooth map f0 : S1 → S1 of class C r , let {fε}ε>0 be a

family of continuous mappings defined on Ω with values in C r (S1,S1) such that

sup
ω∈Ω

dC r

(
fε(ω), f0

) → 0 as ε → 0 . (1)

For each ε > 0, adopting the notation fε(ω, ·) = fε(ω), the distance between fε(ω, x) and

fε(ω
′, x) is bounded by dC r (fε(ω), fε(ω

′)) for each x ∈ S1 and each ω,ω′ ∈ Ω . Thus, it is

straightforward to realise that fε : Ω × S1 → S1 is a continuous (in particular, measurable)
mapping. When convenient, we will identify f0 : S1 → S1 with the constant map Ω � ω 	→
f0.

Let f0 be an orientation-preserving expanding map on the circle, i.e., there exists a con-

stant λ0 > 1 such that infx d
dx
f0(x) ≥ λ0. For the properties of expanding maps, the reader is

referred to [7]. Let k ≥ 2 be the degree of the covering map f0. In view of (1) it then follows
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that fε(ω) is an orientation-preserving expanding map for each ω ∈ Ω if ε is sufficiently

small. In fact, if λ0 = infx d
dx
f0(x) and we set λ = (λ0 + 1)/2, then λ > 1 and we can find

an ε0 > 0 such that

inf
ω

inf
x

∂

∂x
fε(ω, x) ≥ λ, 0 ≤ ε < ε0 . (2)

Let δ0 <
1
2 (1 − 1

k
) be a positive number and η a positive number such that

η < min

{
1

2
, (λ− 1)δ0

}
. (3)

We also assume ε0 to be sufficiently small such that

sup
ω∈Ω

dC 0

(
fε(ω), f0

)
< η, 0 ≤ ε < ε0 . (4)

In particular, fε(ω) is a covering map of S1 with degree k for each ω ∈ Ω .
Since f0 is a covering of S1 of degree k ≥ 2, there exists a fixed point p0 ∈ S1 for f0. In

view of (1) and (2) together with that f0 is locally a diffeomorphism of the circle, we can find
a closed interval B = Bε including p0 such that if 0 ≤ ε < ε0, then fε(ω) : B → fε(ω)(B)

is a diffeomorphism such that B ⊂ fε(ω)(B) for each ω ∈ Ω (by taking ε0 sufficiently small
if necessary). We assume that ε0 is sufficiently small such that

|B| ≤ δ0 (5)

for all 0 ≤ ε < ε0, where |B| is the length of B with respect to dS1(·, ·).
REMARK 1. When there is no ambiguity, the noise level ε will sometimes be omitted

from the notation, in particular when the dependence on the noise parameterω ∈ Ω is already
displayed. Throughout the rest of the paper we will also permit us to use ε0 as a way to denote
the upper bound of a range 0 ≤ ε < ε0 for which (2), (4) and (5) hold, even if ε0 may change
between occurrences.

Let f : Ω → C r (S1,S1) be a continuous mapping, and θ : Ω → Ω a measure-
preserving homeomorphism on (Ω,P) (see Remark 3 for this condition). For simplicity, we

also assume θ to be ergodic. For each n ≥ 1, let f (n)(ω, x) be the fibre component in the n-th
iteration of the skew product mapping

Θ(ω, x) = (
θω, f (ω, x)

)
, (ω, x) ∈ Ω × S1 ,

where we simply write θω for θ(ω). Setting the notation fω = f (ω, ·) and f (n)ω = f (n)(ω, ·),
the explicit form of f (n)ω is

f (n)ω = fθn−1ω ◦ fθn−2ω ◦ · · · ◦ fω .
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For convenience, we set f (0)ω = idS1 for each ω ∈ Ω . We call {f (n)ω (x)}n≥0 =
{x, fω(x), f (2)ω (x), . . .} the random orbit of f issued from (ω, x) ∈ Ω × S1. As in the treat-
ment of the unperturbed case undertaken by Takens [12], we now define historic behaviour
for random orbits.

DEFINITION 1. We say that a random orbit issued from (ω, x) has historic behaviour
if the empirical measure

1

n

n−1∑
j=0

δ
f
(j)
ω (x)

does not converge to any probability measure on the circle in weak∗ sense, where δx is the
Dirac measure at x.

Our goal is to prove the following theorem.

THEOREM 1. Let 0 ≤ ε < ε0. For P-almost every ω ∈ Ω , we can find a residual

subset Rω of S1 such that for any x ∈ Rω the random orbit of fε issued from (ω, x) has
historic behaviour.

REMARK 2. It is natural to ask if it might be possible to replace “P-almost every” with
“every” in Theorem 1 since the assumption on our perturbations is given for every ω ∈ Ω as
in (1). However, this strengthening of the conclusion in Theorem 1 seems to be impossible
if the proof utilises the ergodicity of (θ,P) as in this paper, because the ergodicity of (θ,P)
(together with Birkhoff’s ergodic theorem) only ensures that time averages coincide with
their corresponding space averages for P-almost every ω ∈ Ω . See Remark 3 for the detail.
Another direction to improve Theorem 1 is to weaken the assumption on our perturbations,
see Remark 4 for the detailed discussion about the direction.

2. The proof

We start the proof by considering a random version of Dowker’s Theorem. This theorem
asserts that if we find a dense orbit with historic behaviour (of the unperturbed dynamics),
then there exists a residual subset of the phase space such that the orbit of each point in the set
has historic behaviour. For this purpose, we need to give stronger forms of the definitions of
denseness and historic behaviour for random orbits. When there is no confusion, we employ

the notation f (n)ω = f (n)(ω, ·) for f = fε once 0 ≤ ε < ε0 is given. For a continuous

function ϕ : S1 → R, ω ∈ Ω , x ∈ S1 and n ≥ 1, we define the truncated time average
Bn(ϕ;ω, x) of the observable ϕ by

Bn(ϕ;ω, x) = 1

n

n−1∑
j=0

ϕ ◦ f (j)ω (x) .
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Note that the orbit issued from (ω, x) has historic behaviour if Bn(ϕ;ω, x) does not converge

for some continuous function ϕ : S1 → R.

DEFINITION 2. Let f : Ω → C r (S1,S1) be a measurable mapping. Let X be a
random variable on Ω with values in S1. We call{

X(ω), fω(X(ω)), f
(2)
ω (X(ω)), . . .

}
the future random orbit of X at ω, and{

X(ω), fθ−1ω

(
X(θ−1ω)

)
, f

(2)
θ−2ω

(
X(θ−2ω)

)
, . . .

}
the past random orbit of X at ω (see [2] for this notation).

We say that X has historic behaviour at ω if there exist real numbers α, β and a contin-

uous function ϕ : S1 → R such that

lim inf
n→∞ Bn

(
ϕ; θ−�ω,X

(
θ−�ω

))
< α < β < lim sup

n→∞
Bn

(
ϕ; θ−�ω,X

(
θ−�ω

))
(6)

for each � ≥ 0 (that is, the time average of ϕ along the future random orbit ofX does not exist
at each θ−�ω).

PROPOSITION 1. Let f : Ω → C r (S1,S1) be a measurable mapping and ω ∈ Ω .

Assume that there exists a measurable mappingX : Ω → S1 such that the past random orbit

of X at ω is dense in S1 and X has historic behaviour at ω. Then, we can find a residual

subset Rω of S1 such that for any x ∈ Rω, the random orbit issued from (ω, x) has historic
behaviour.

PROOF. Let α, β and ϕ be constants and a continuous function given in (6) for a mea-
surable mappingX : Ω → S1 and ω ∈ Ω , whereX has historic behaviour at ω by hypothesis.
We let Rω = sω1 ∩ sω2 , where

sω1 =
⋂
N≥1

⋃
n≥N

{
x ∈ S1 : Bn(ϕ;ω, x) < α

}
,

sω2 =
⋂
N≥1

⋃
n≥N

{
x ∈ S1 : Bn(ϕ;ω, x) > β

}
.

Then it is straightforward to see that for any x ∈ Rω, we have

lim inf
n→∞ Bn(ϕ;ω, x) ≤ α < β ≤ lim sup

n→∞
Bn(ϕ;ω, x) .

In particular, the random orbit issued from (ω, x) has historic behaviour. Note also that Rω is
a countable intersection of open sets.

The rest of the proof is devoted to showing that the past random orbit of X at ω is
included in Rω . Since the past random orbit of X at ω is dense in S1 by hypothesis, it leads
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to that Rω is dense in S1, and we complete the proof. Let � ≥ 1. Due to the observation

f
(i)
ω ◦ f (�)

θ−�ω = f
(i+�)
θ−�ω for any i ≥ 0, we have

Bn

(
ϕ;ω, f (�)

θ−�ω
(
X

(
θ−�ω

))) = 1

n

n+�−1∑
j=�

ϕ ◦ f (j)
θ−�ω

(
X

(
θ−�ω

))
.

Therefore, for each n ≥ �

Bn

(
ϕ;ω, f (�)

θ−�ω
(
X

(
θ−�ω

))) − Bn
(
ϕ; θ−�ω,X

(
θ−�ω

))

= 1

n

⎛
⎝n+�−1∑

j=n
ϕ ◦ f (j)

θ−�ω
(
X

(
θ−�ω

)) −
�−1∑
j=0

ϕ ◦ f (j)
θ−�ω

(
X

(
θ−�ω

))⎞⎠ .

Hence we have∣∣∣Bn (
ϕ;ω, f (�)

θ−�ω
(
X

(
θ−�ω

))) − Bn
(
ϕ; θ−�ω,X

(
θ−�ω

))∣∣∣ ≤ 2�‖ϕ‖C 0

n
, (7)

which goes to zero as n goes to infinity for any fixed � ≥ 1.
Let {nk}k≥1 be a sequence such that Bnk (ϕ; θ−�ω,X(θ−�ω)) converges to the infimum

limit in (6) as k goes to infinity. Then, in view of (7) we have

Bnk

(
ϕ;ω, f (�)

θ−�ω
(
X

(
θ−�ω

)))
< α if k is sufficiently large.

This implies that f (�)
θ−�ω(X(θ

−�ω)) is in sω1 . In a similar manner, we can show that

f
(�)

θ−�ω(X(θ
−�ω)) is in sω2 . Therefore, f (�)

θ−�ω(X(θ
−�ω)) is in Rω, and the past random orbit of

X at ω is included in Rω. �

Due to Proposition 1, Theorem 1 is reduced to constructing one measurable mapping X

such that for P-almost every ω ∈ Ω , the past random orbit of X at ω is dense in S1 and X has
historic behaviour at ω.

2.1. Shub’s Theorem and Markov partition. In the next subsection, we establish
the coding of graphs associated with a random Markov partition of fε , which is a key ingre-
dient in our proof. For that purpose, we will need the following extension of Shub’s Theorem
on topological conjugacy between expanding mappings and the folding mapping with the
same degree to our random setting.

Set A = {0, 1, . . . , k− 1}. For s = (s0, s1, . . . , sm, sm+1, . . . , sn, . . . , sN−1) ∈ AN with
integers 0 ≤ m ≤ n ≤ N − 1, we denote (sm, sm+1, . . . , sn) by [s]nm. Recall that in view

of (4), the degree of fε(ω, ·) : S1 → S1 is k if 0 ≤ ε < ε0 and ω ∈ Ω .

THEOREM 2. Suppose that 0 ≤ ε < ε0. Then we can find a continuous mapping

h : Ω → Homeo(S1,S1) (in particular, measurable mapping) which satisfies that

h(θω) ◦ Ek = fε(ω) ◦ h(ω) (8)
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for any ω ∈ Ω , where Ek : S1 → S1 is the k-folding mapping defined by Ek(x) = πS1(kx̃)

for each x ∈ S1 with a representative x̃ of x.
Furthermore, for every ω,ω′ ∈ Ω we have

dC 0

(
h(ω), h(ω′)

) ≤ δ0 , (9)

where δ0 is given in (3).

PROOF. Throughout the proof, we fix 0 ≤ ε < ε0 and omit it in notions if there is no

confusion. Recall that B is a closed interval of S1 (given above (5)) such that B ⊂ fε(ω)(B)

for each ω ∈ Ω . Then, one can find a lift f̃ε(ω) : R → R of the k-covering fε(ω) : S1 → S1

with ω ∈ Ω and a closed interval B̃ ⊂ R such that πS1(B̃) = B and B̃ ⊂ f̃ε(ω)(B̃) for each
ω ∈ Ω .

We shall first find a continuous mapping p : Ω → B̃, which is invariant under f̃ε , i.e.,

f̃ε(ω, p(ω)) = p(θω) for every ω ∈ Ω . We denote for each ω ∈ Ω the inverse mapping of

the diffeomorphism f̃ε(ω) on R by F(ω). Then, due to (2), we have

sup
ω

sup
x

∣∣∣∣ ddx [F(ω)] (x)

∣∣∣∣ ≤ λ−1 . (10)

Let C 0(Ω, B̃) be the space of all continuous mappings fromΩ to the closed interval B̃ ⊂ R,
endowed with the usual C 0 metric dC 0(·, ·) defined by dC 0(φ1, φ2) = supω |φ1(ω)− φ2(ω)|
for φ1, φ2 ∈ C 0(Ω, B̃). For each ϕ ∈ C 0(Ω, B̃), we define a mapping G(ϕ) : Ω → B̃ by

G(ϕ)(ω) = F(ω)(ϕ(θω)), ω ∈ Ω .

(Note that G(ϕ)(ω) is indeed in B̃ since B̃ ⊂ f̃ε(ω)(B̃) for each ω ∈ Ω .) It is straightforward

to see that (ω, x) 	→ F(ω)(x) is a continuous mapping from Ω × B̃ to B̃ (see the argument

below (1)). Thus, it follows from the continuity of θ and ϕ that G(ϕ) : Ω → B̃ is also a

continuous mapping. (The transformation G : C 0(Ω, B̃) → C 0(Ω, B̃) is called the graph
transformation induced by F .) Furthermore, by virtue of (10) together with the mean value
theorem, we have

dC 0

(G(φ1),G(φ2)
) ≤ sup

ω∈Ω
∣∣F(ω)(φ1(θω)

) − F(ω)
(
φ2(θω)

)∣∣
≤ λ−1 sup

ω∈Ω
|φ1(θω)− φ2(θω)| = λ−1dC 0(φ1, φ2) ,

for all φ1, φ2 ∈ C 0(Ω, B̃), i.e., G is a contraction mapping on the complete metric space

C 0(Ω, B̃). Therefore, there exists a unique fixed point p of G. By construction, p : Ω →
B̃ ⊂ R is an f̃ε-invariant continuous mapping.

We next construct a sequence {hn}n≥0 of continuous mappings hn : Ω →
Homeo(S1,S1), which shall uniformly converge to the desired mapping h as n goes to in-

finity. Since f̃ε(ω) : R → R for ω ∈ Ω is a lift of the orientation-preserving k-covering
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fε(ω) of S1 and f̃ε(ω)(p(ω)) = p(θω), we have f̃ε(ω)(p(ω) + 1) = p(θω) + k and

f̃ε(ω) : [p(ω), p(ω) + 1] → [p(θω), p(θω) + k] is a monotonically increasing homeomor-
phism for all ω. Now we define points anj (ω) in [p(ω), p(ω)+ 1) for n ≥ 0, 0 ≤ j ≤ kn − 1

and ω ∈ Ω , inductively with respect to n. In the case n = 0, let a0
0(ω) = p(ω) for each

ω ∈ Ω . For given integer n ≥ 0, we assume that anj (ω)’s are well defined for each ω ∈ Ω and

0 ≤ j ≤ kn − 1. Then we define an+1
j (ω) for 0 ≤ j ≤ kn+1 − 1 of the form j = � · kn + j1

with integers 0 ≤ � ≤ k − 1 and 0 ≤ j1 ≤ kn − 1 by

an+1
j (ω) = F(ω)

(
anj1
(θω)+ �

)
, ω ∈ Ω . (11)

Setting the notation F�(ω) = F(ω)(· + �) and s̄ = ∑n−1
i=0 si · ki for s = (s0, s1, . . . , sn−1) in

An, the explicit form of ans̄ (ω) with s ∈ An and ω ∈ Ω is

ans̄ (ω) = Fsn−1(ω) ◦ Fsn−2(θω) ◦ · · · ◦ Fs0
(
θn−1ω

)(
p(θnω)

)
. (12)

We denote the composition of mappings in the right-hand side of (12) by F (n)s (ω), i.e.,

ans̄ (ω) = F
(n)
s (ω)(p(θnω)). Then it is straightforward to see that F (n+m)s (ω) = F

(n)

[s]n+m−1
m

(ω)◦
F
(m)

[s]m−1
0
(θnω) for each integer m ≥ 0, s ∈ An+m and ω ∈ Ω . Therefore, for any s ∈ An,

integerm ≥ 0 and ω ∈ Ω ,

an+mkm·s̄ (ω) = F (n)s (ω) ◦ F (m)(00...0)(θ
nω)

(
p(θn+mω)

)
(13)

= F (n)s (ω)
(
p(θnω)

) = ans̄ (ω) .

(Note that km · s̄ = t̄ with the concatenation t of two words (00 . . .0) ∈ Am and s, and that
F0(ω)(p(θω)) = p(ω) for any ω ∈ Ω .) For convenience, we set ankn(ω) = p(ω)+ 1 for each
ω ∈ Ω .

For the time being, we fix n ≥ 0 and ω ∈ Ω . Then it follows from the monotonicity

of f̃ε(ω) in (11) that an0 (ω) < an1 (ω) < · · · < ankn(ω). Thus we can define a continuous,

monotonically increasing, piecewise linear mapping h̃n(ω) : [0, 1] → [p(ω), p(ω)+ 1] such
that

h̃n(ω)

(
j

kn

)
= anj (ω), 0 ≤ j ≤ kn , (14)

and that h̃n(ω) : [j/kn, (j + 1)/kn] → [anj (ω), anj+1(ω)] is an affine mapping of slope

kn · (anj+1(ω)− anj (ω)). We finally define hn(ω) : S1 → S1 by

hn(ω)(x) = πS1 ◦ h̃n(ω)(x̃), x ∈ S1 , (15)

where x̃ is a representative of x in [0, 1]. (This is well-defined since h̃n(ω)(1) = h̃n(ω)(0)+
1.)
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Now we change n ≥ 0 while ω is still fixed. For any nonnegative integers n, m and
s ∈ An, it follows from (13) and (14) that

h̃n+m(ω)
(
s̄

kn

)
= h̃n+m(ω)

(
km · s̄
kn+m

)
= an+mkm·s̄ (ω) = ans̄ (ω) = h̃n(ω)

(
s̄

kn

)
.

Hence, by the monotonicity of h̃n(ω) and h̃n+m(ω), the supremum norm of hn(ω)(x) −
hn+m(ω)(x) (over x ∈ S1) is bounded by

max
0≤j≤kn−1

∣∣∣anj+1(ω)− anj (ω)

∣∣∣ . (16)

On the other hand, since [anj (ω), anj+1(ω)] is diffeomorphically mapped onto [p(θnω) +
j, p(θnω)+ j + 1] by f̃ (n)ω , the length of each [anj (ω), anj+1(ω)] does not exceed λ−n (inde-

pendently of ω) by virtue of (2), so that {πS1(anj (ω)) | n ≥ 0, 0 ≤ j ≤ kn} is dense in S1 and

(16) uniformly converges to zero as n goes to infinity with respect to ω. Therefore, {hn}n≥0

is a Cauchy sequence of continuous mappings fromΩ to Homeo(S1,S1) and there exists the
limit mapping h = limn→∞ hn, which is also by construction a continuous mapping from Ω

to Homeo(S1,S1).
We see the conjugacy (8) between fε and Ek . Let ω ∈ Ω , n ≥ 0 and 0 ≤ j ≤ kn+1 − 1

of the form j = � · kn + j1 with some integers 0 ≤ � ≤ k − 1 and 0 ≤ j1 ≤ kn − 1. Then on
the one hand, in view of (11), (14) and (15), we have

fε(ω) ◦ h(ω) ◦ πS1

(
j

kn+1

)
= πS1 ◦ f̃ε(ω)

(
an+1
j (ω)

) = πS1

(
anj1
(θω)

)
.

On the other hand,

h(θω) ◦ Ek ◦ πS1

(
j

kn+1

)
= h(θω) ◦ πS1

(
j1

kn

)
= πS1

(
anj1
(θω)

)
.

Since {πS1(j/kn) | n ≥ 0, 0 ≤ j ≤ kn − 1} is dense in S1, we get (8).
In the end, we prove the estimate (9) of h by showing

|anj (ω)− anj (ω
′)| ≤ δ0 (17)

for all n ≥ 0, 0 ≤ j ≤ kn − 1 and ω,ω′ ∈ Ω . We show (17) by induction with respect
to n ≥ 0. Due to (5), this inequality holds for n = 0. Suppose that (17) is true for given

n ≥ 0. Let ω,ω′ ∈ Ω and 0 ≤ j ≤ kn+1 − 1 of the form j = � · kn + j1 with some integers
0 ≤ � ≤ k − 1 and 0 ≤ j1 ≤ kn − 1. Then, it follows from (11) together with the triangle

inequality that |an+1
j (ω)− an+1

j (ω′)| is bounded by S1 + S2, where

S1 =
∣∣∣F�(ω)(anj1

(θω)
) − F�(ω

′)
(
anj1
(θω)

)∣∣∣ ,
S2 =

∣∣∣F�(ω′)
(
anj1
(θω)

) − F�(ω
′)
(
anj1
(θω′)

)∣∣∣ .
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To estimate S1, we let x = F�(ω)(a
n
j1
(θω)) and x ′ = F�(ω

′)(anj1
(θω)). Then, f̃ε(ω′)(x ′) =

f̃ε(ω)(x), and in view of (4) we have∣∣∣f̃ε(ω′)(x)− f̃ε(ω
′)(x ′)

∣∣∣ =
∣∣∣f̃ε(ω′)(x)− f̃ε(ω)(x)

∣∣∣ ≤ η .

Hence, it follows from (2) and the mean value theorem that

S1 = |x − x ′| ≤ λ−1
∣∣∣f̃ε(ω′)(x)− f̃ε(ω

′)(x ′)
∣∣∣ ≤ λ−1η .

On the other hand, by virtue of (10) and the mean value theorem together with the hypothesis
of induction, we get

S2 ≤ λ−1
∣∣∣(anj1

(θω)+ �
) − (

anj1
(θω′)+ �

)∣∣∣ ≤ λ−1δ0 .

These estimates together with the condition (3) on η and δ0 implies that |an+1
j (ω) −

an+1
j (ω′)| ≤ δ0, which completes the proof of the claim (17). �

REMARK 3. It is desirable to see if any topological condition on perturbations (in our
case, e.g., the continuity of θ ) is removable. This boils down to whether the random conjugacy

h : Ω → Homeo(S1,S1) is measurable without the topological condition. However it is
unclear to us whether requiring our topological setup is due to a substantial obstacle or is an
artifact of our construction.

We need the following proposition for a random Markov partition.

DEFINITION 3. Let f : Ω → C r (S1,S1) be a continuous mapping and denote f (ω)

by fω. We say that a finite collection {I(·)j }j∈A of continuous mappings defined on Ω with

values in F(S1) is a Markov partition of f if it satisfies the following conditions:

• Iωj is a nonempty left-closed and right-open interval for each j ∈ A and ω ∈ Ω ,

• ⊔
j∈A Iωj = S1 for every ω ∈ Ω ,

• fω(Iωj ) = S1 and fω : Iωj → S1 is a C r diffeomorphism for each j ∈ A and ω ∈ Ω ,

• (fω)
−1(Iθωi ) ∩ Iωj is a nonempty left-closed and right-open interval for each i, j ∈ A

and ω ∈ Ω .

PROPOSITION 2. Suppose that 0 ≤ ε < ε0. Then there is a Markov partition {I(·)j }k−1
j=0

of fε such that for each 0 ≤ j ≤ k− 1, we can find a nonempty open interval J ′ such that Iωj
does not intersect J ′ for every ω ∈ Ω .

PROOF. Let Ij = πS1([j/k, (j + 1)/k)) for 0 ≤ j ≤ k− 1. Then {Ij }k−1
j=0 is a Markov

partition of the k-folding map Ek . I.e.,

• Ij is a left-closed and right-open interval for each j ∈ A,
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• ⊔
j∈A Ij = S1,

• Ek(Ij ) = S1 and Ek : Ij → S1 is a C r diffeomorphism,

• (Ek)
−1(Ii) ∩ Ij is a left-closed and right-open interval for each i, j ∈ A.

We fix 0 ≤ ε < ε0, and let h : Ω → Homeo(S1,S1) be the continuous mapping satisfying
(8) in Theorem 2. Set Iωj = h(ω)(Ij ) for each ω ∈ Ω and 0 ≤ j ≤ k − 1. Then due to

Theorem 2, it is straightforward to see that {I(·)j }k−1
j=0 is a Markov partition of fε such that

sup
(ω,ω′)∈Ω2

dH
(Iωj ,Iω′

j

) ≤ 1

k
+ 2δ0 < 1

for each 0 ≤ j ≤ k−1, where the last inequality follows from the condition of δ0 given above
(3). This immediately implies the conclusion. �

2.2. Coding of graphs. Throughout this subsection, we fix 0 ≤ ε < ε0, and let

{I(·)j }k−1
j=0 be the Markov partition of fε constructed in the proof of Proposition 2. For a word

s = (s0, s1, s2, . . . sn−1) ∈ An and ω ∈ Ω , let Iωs be a subset of S1 defined by

Iωs =
n−1⋂
j=0

(
f (j)ω

)−1 (
Iθj ωsj

)
. (18)

LEMMA 1. For each n ≥ 1 and s ∈ An, Iωs is a nonempty left-closed and right-

open interval of S1 for every ω ∈ Ω . Moreover, the mapping ω 	→ Iωs from Ω to F(S1) is
continuous (in particular, measurable).

PROOF. Let n ≥ 1, s ∈ An and ω ∈ Ω be given. Recall that Iθjωsj
= h(θjω)(Isj ) for

each 0 ≤ j ≤ n− 1 by construction. Then, it follows from Theorem 2 that(
f (j)ω

)−1 (
Iθj ωsj

)
= h(ω) ◦

(
E
j
k

)−1 (
Isj

)
.

Therefore, due to that h(ω) is a homeomorphism on S1, we have

Iωs = h(ω) (Is) , where Is =
n−1⋂
j=0

(
E
j

k

)−1 (
Isj

)
. (19)

We next prove that Is is a nonempty left-closed and right-open interval (and so is Iωs for
each ω ∈ Ω , due to (19)) by induction. It is obviously true for n = 1. Assume that the claim
is true for a positive integer n, i.e., the set Is is a nonempty left-closed and right-open interval

for every s ∈ An. Then, for every s = (s0, s1, . . . , sn) ∈ An+1, we have

Is = Is0 ∩
⎛
⎝(Ek)−1

⎛
⎝ n⋂
j=1

(
E
j−1
k

)−1 (
Isj

)⎞⎠
⎞
⎠ (20)
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= Is0 ∩
(
(Ek)

−1 (
Iσ(s)

))
,

where σ : An+1 → An is the one-sided shift defined by σ(s) = (s1, s2, . . . , sn) for

s = (s0, s1, . . . , sn) ∈ An+1. Note that Ek : Is0 → S1 is a diffeomorphism, and Iσ(s) is
a nonempty left-closed and right-open interval by the hypothesis of induction. Hence, Is is
also a nonempty left-closed and right-open interval, and we complete the proof of the claim.

We fix n ≥ 1 and s ∈ An. We finally prove the continuity of the mapping ω 	→ h(ω)(Is)

from Ω to F(S1), which implies the continuity of ω 	→ Iωs by (19). Fix ω ∈ Ω , and
let κ = κ(ω) > 0 be a real number such that κ < 1 − |h(ω)(Is)|. By the continuity of
h : Ω → Homeo(S1,S1) at ω, if ω′ is sufficiently close to ω, then

dC 0

(
h(ω), h(ω′)

)
< min

{
κ

2
,

1 − κ − |h(ω)(Is)|
2

}
. (21)

For each ω′ satisfying (21), it is easy to see that |h(ω′)(Is)| < |h(ω)(Is)| + κ and

dC 0

(
h(ω), h(ω′)

)
< min

{
1 − |h(ω)(Is)|

2
,

1 − |h(ω′)(Is)|
2

}
. (22)

Let Ĩs be an interval of R such that πS1(Ĩs ) = Is . Let h̃(ω) and h̃(ω′) be the lifts on R of

homeomorphisms h(ω) and h(ω′) on S1, respectively, such that dC 0(h̃(ω), h̃(ω′)) < 1. Note
that h(ω) and h(ω′) are orientation-preserving by construction in the proof of Theorem 2,

and thus h̃(ω) and h̃(ω′) are monotonically increasing. We let ζ and ζ ′ denote the midpoints

of h̃(ω)(Ĩs ) and h̃(ω′)(Ĩs ), respectively. Then, it is straightforward to see that (22) implies

h̃(ω′)(Ĩs ) ⊂ [ζ − 1/2, ζ + 1/2) and h̃(ω)(Ĩs ) ⊂ [ζ ′ − 1/2, ζ ′ + 1/2). Therefore, we have

dH
(
h(ω)(Is), h(ω

′)(Is)
) = max

x∈∂Is
dS1

(
h(ω)(x), h(ω′)(x)

)
,

which is bounded by dC 0(h(ω), h(ω′)), where ∂Is is the boundary of Is . By using the con-

tinuity of h : Ω → Homeo(S1,S1) at ω again, we obtain the continuity of h(·)(Is) at ω.
Since the choice of ω ∈ Ω is arbitrary, ω 	→ h(ω)(Is) is a continuous mapping from Ω to
F(S1). �

Let N0 be the set of all nonnegative integers {0, 1, . . .}. For a sequence s =
(s0, s1, . . . , sm, sm+1, . . . , sn, . . .) ∈ AN0 with integers n ≥ m ≥ 0, we denote

(sm, sm+1, . . . , sn) by [s]nm. We define Iωs ∈ F(S1) by Iωs = ⋂
n≥0 Iω[s]n0 . Then, since the

inverse branches of fω are contractions due to (2), it follows from Lemma 1 that Iωs is a
point set. We denote the point by Xs(ω). Then, by the continuity in Lemma 1, the mapping

ω 	→ {Xs(ω)} fromΩ to F(S1) is continuous, so is the mappingXs : Ω → S1.
The following lemmas on the graphs of Xs ’s are simple but substantial in the proof of

Theorem 1. Let σ : AN0 → AN0 be the one-sided shift given by σ(s) = (s1, s2, . . .) for

s = (s0, s1, . . .) ∈ AN0 .
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LEMMA 2. For any s ∈ AN0 , we have

fω
(
Xs(ω)

) = Xσ(s)(θω), ω ∈ Ω ,

and we can find a nonempty open interval J ′ such that Xs(ω) does not intersect J ′ for every
ω ∈ Ω .

PROOF. From (20), it follows that

fω

(
Iω[s]n0

)
= fω

(Iωs0) ∩ Iθωσ([s]n0)
= S1 ∩ Iθωσ([s]n0) = Iθωσ([s]n0) .

Thus, by the virtue of the continuity of fω : F(S1) → F(S1), we get fω(Iωs ) = Iθωσ(s)
for every ω ∈ Ω . Together with the construction of Xs and Proposition 2, this implies the
conclusion. �

LEMMA 3. Let x be a point in S1 and s = s(x) = (s0, s1, . . .) ∈ AN0 the coding of

x by Ek, i.e., Ejk (x) ∈ Isj for each j ≥ 0. Then, h(ω)(x) = Xs(ω) for every ω ∈ Ω and

x ∈ S1, where h is given in Theorem 2.

PROOF. It follows from (8) and (18) that for each n ≥ 1, we have

Iω[s]n0 =
n−1⋂
j=0

(
f (j)ω

)−1 ◦ h(θjω) (Isj )

=
n−1⋂
j=0

(
h(ω) ◦ E−j

k (Isj )
)
.

Since h(ω) : S1 → S1 is a homeomorphism, this implies

Iωs = h(ω)

⎛
⎝ ∞⋂
j=0

E
−j
k (Isj )

⎞
⎠ .

Recalling Iωs = {Xs(ω)}, we immediately get the conclusion. �

2.3. Ergodicity and SRB property. As a final preparation before turning to the proof
of Theorem 1, we may need to find a sequence s′′ such that time averages along the future
random orbit of Xs ′′ P-almost surely coincide with their corresponding integrals with respect
to a probability measure that is equivalent to the normalised Lebesgue measure, and that the
past random orbit of Xs ′′ is P-almost surely dense. We prepare language for this purpose.

Fix 0 ≤ ε < ε0 and let h = hε be the mapping given in Theorem 2. Then,

(ω, x) 	→ h(ω)(x) is a continuous mapping from Ω × S1 to S1 due to the continuity of

h : Ω → Homeo(S1,S1). Therefore for each continuous function ϕ : S1 → R, the function
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Φh : Ω×S1 	→ R given byΦh(ω, x) = ϕ(h(ω)(x)) for (ω, x) ∈ Ω×S1 is continuous, in par-
ticular measurable. Moreover, it is straightforward to see that ‖Φh‖L1

m×P
≤ ‖ϕ‖C 0 , i.e., Φh is

an integrable function with respect to the product measure m× P, where m is the normalised
Lebesgue measure on S1. Thus it follows from Fubini’s theorem that ω 	→ ∫

Φh(ω, ·)dm
is measurable. Furthermore, since ϕ is an arbitrary continuous function, it follows from

Riesz representation theorem that we can find a probability measure (h(ω))∗m on S1 such
that

∫
Φh(ω, ·)dm = ∫

ϕd[(h(ω))∗m] for each ω ∈ Ω . (This probability measure is called
the pushforward of m by h(ω).)

THEOREM 3. For any continuous function ϕ : S1 → R, there exist a full measure set
A = A(ϕ) of (S1,m) and a family of full measure sets {Γx}x∈A = {Γx(ϕ)}x∈A of (Ω,P) such

that for each x ∈ A and ω ∈ Γx , if we set s′′ = s′′(x) ∈ AN0 as the coding of x by Ek given
in Lemma 3, then we have

lim
n→∞

1

n

n−1∑
j=0

ϕ ◦ f (j)ω

(
Xs ′′(ω)

) =
∫ (∫

ϕd
[
(h(·))∗m

])
dP .

PROOF. For given x ∈ S1, let s′′ ∈ AN0 be the coding of x by Ek . By Theorem 2 and
Lemma 3, we have

ϕ ◦ f (j)ω

(
Xs ′′(ω)

) = ϕ
(
f (j)ω ◦ h(ω)(x)) = ϕ

(
h(θjω) ◦ Ejk (x)

)
for all j ≥ 0 and ω ∈ Ω . Thus, if we define a measurable mappingΘEk : Ω × S1 → Ω × S1

of the direct-product form

ΘEk (ω, x) = (
θω,Ek(x)

)
, (ω, x) ∈ Ω × S1 ,

then

lim
n→∞

1

n

n−1∑
j=0

ϕ ◦ f (j)ω

(
Xs ′′(ω)

) = lim
n→∞

1

n

n−1∑
j=0

Φh ◦Θj
Ek
(ω, x) , (23)

where Φh : Ω × S1 → R is the integral function given above Theorem 3. Recall that (θ,P)
is assumed to be ergodic, and that (Ek,m) is known to be weak mixing (see, e.g., Proposition
4.2.11 in [7] together with Remark (1) below Definition 1.5 in [14]). Then, it follows from
Corollary 1 in §1, Chapter 10 of [5] that the direct product (ΘEk ,P×m) of (θ,P) and (Ek,m)
is an ergodic transformation. Therefore, applying Birkhoff’s ergodic theorem to (ΘEk ,P×m)
with the integral function Φh, we can find a (P × m)-full measure set G such that the time
average in (23) coincides with

∫
ΦhdmdP for all (ω, x) ∈ G.

Let 1G : Ω × S1 → R be the indicator function of G. Then, it follows from Fubini’s
theorem that there is a full measure setA1 of (S1,m) such that 1G(x, ·) : Ω → R is integrable
for every x ∈ A1. Let Γx = supp(1G(x, ·)) and A = {x ∈ A1 | P(Γx) = ∫

1G(x, ·)dP =
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1}. Then m(A) = 1 (otherwise, it contracts to that P × m(G) = 1), and the conclusion
immediately follows from (23) and the observation above Theorem 3. �

REMARK 4. Theorem 3 is exactly the reason why Theorem 1 is only stated for P-
almost every ω ∈ Ω (not for all ω ∈ Ω). See that the statements of Proposition 1, Proposition
2, Lemma 2 and Theorem 4 are given for all ω ∈ Ω , while Theorem 3 is only stated for
P-almost every ω. This restriction in Theorem 3 comes from that the convergence of time
averages along the future random orbit of Xs ′′ is ensured by the ergodicity of (ΘEk ,P × m),
ultimately, by the ergodicity of (θ,P).

Theorem 3 tells that time averages along the future random orbit of Xs ′′ (with some s′′ ∈
AN0 ) P-almost surely coincide with their corresponding integrals with respect to a probability
measure that is equivalent to P × m. However, this may not imply in general that the past

random orbit of Xs ′′ is P-almost surely dense in S1, and we need the following theorem to
apply Proposition 1.

THEOREM 4. There exists a full measure set A of (S1,m) such that for each x ∈ A, if

we set s′′ = s′′(x) ∈ AN0 as the coding of x by Ek given in Lemma 3, then we have

lim
n→∞

1

n

n−1∑
j=0

ϕ ◦ f (j)
θ−j ω

(
Xs ′′(θ

−jω)
) =

∫
ϕd

[
(h(ω))∗m

]
, (24)

for any continuous function ϕ : S1 → R and ω ∈ Ω .
Furthermore, for any s′′ = s′′(x) with x ∈ A, the past random orbit of Xs ′′ is dense at

every ω ∈ Ω .

PROOF. We first recall that the normalised Lebesgue measure m is the unique SRB

probability measure of Ek . I.e., there exists a full measure set A ⊂ S1 such that for every
x ∈ A and continuous function ψ : S1 → R, we have

lim
n→∞

1

n

n−1∑
j=0

ψ
(
E
j
k (x)

) =
∫
ψdm . (25)

A standard reference for this property is [13].

Let ϕ : S1 → R be a continuous function and ω ∈ Ω . In a similar manner to the proof
of Theorem 3, we have

ϕ ◦ f (j)
θ−j ω

(
Xs ′′(θ

−jω)
) = ϕ

(
h(ω) ◦ Ejk (x)

)
for all j ≥ 0. Thus,

lim
n→∞

1

n

n−1∑
j=0

ϕ ◦ f (j)
θ−j ω

(
Xs ′′(θ

−jω)
) = lim

n→∞
1

n

n−1∑
j=0

ϕ ◦ h(ω)(Ejk (x)) .
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Therefore, applying (25) with ψ = ϕ ◦ h(ω), we have

lim
n→∞

1

n

n−1∑
j=0

ϕ ◦ f (j)
θ−j ω

(
Xs ′′(θ

−jω)
) =

∫
ϕ ◦ h(ω)dm =

∫
ϕd

[
(h(ω))∗m

]
.

The later assertion is shown by contradiction. Fix s′′ = s′′(x) with some x ∈ A and
assume that the past random orbit of Xs ′′ is not dense at some ω ∈ Ω . Then, there is a

nonempty open interval J ⊂ S1 with which {f (j)
θ−j ω(Xs ′′(θ

−jω))}j≥0 does not intersect. Thus

if we let ϕ be a continuous nonnegative function whose support is a nonempty set included in
J , then the left-hand side of (24) is equal to zero, while the right-hand side is nonzero since

h(ω) : S1 → S1 is a homeomorphism so that the support of (h(ω))∗m coincides with S1. This
is a contradiction, and we complete the proof. �

Since the intersection of two full measure sets is also a full measure set, we immediately
get the following theorem by Theorems 3 and 4.

THEOREM 5. For any continuous function ϕ : S1 → R, there exist a full measure set

A = A(ϕ) of (S1,m) and a family of full measure sets {Γx}x∈A = {Γx(ϕ)}x∈A of (Ω,P) such

that for each x ∈ A and ω ∈ Γx , if we set s′′ = s′′(x) ∈ AN0 as the coding of x by Ek given
in Lemma 3, then we have that

(1) lim
n→∞Bn(ϕ;ω,Xs ′′(ω)) =

∫ (∫
ϕd

[
(h(·))∗m

])
dP;

(2) the past random orbit of Xs ′′ at ω is dense in S1.

2.4. The end of the proof. We will construct a sequence s̄ ∈ AN0 such that Xs̄ P-
almost surely satisfies the hypotheses in Proposition 1. As in the treatment undertaken by
Takens [12], this sequence will be an appropriate combination of a periodic sequence s′ and
a sequence s′′ generating a probability measure that is equivalent to the normalised Lebesgue
measure.

Fix 0 ≤ ε < ε0 and let h = hε be the mapping given in Theorem 2. Let s′ ∈ AN0

be a periodic sequence. For simplicity, we set s′ = (00 . . .). By virtue of Proposition 2 and

Lemma 2, there exist nonempty open intervals J ⊂ J ′ ⊂ S1 both of which do not intersect
Iω0 (in particular, Xs ′(ω) = X(00...)(ω)) for every ω, where the inclusion J ⊂ J ′ is strict. Let

ϕ0 : S1 → R be a C 1 function such that

• the support of ϕ0 is included in J ′,
• ϕ0(x) = 1 for all x ∈ J ,
• 0 ≤ ϕ0(x) ≤ 1 for all x ∈ S1.

Then, for all n ≥ 1 and ω ∈ Ω , we have

Bn
(
ϕ0;ω,Xs ′(ω)

) = 0 . (26)
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Moreover, it follows from Theorem 5 that we can find a sequence s′′ ∈ AN0 and a full measure

set Γ̃ = Γ̃s ′′(ϕ0) of (Ω,P) such that Bn(ϕ0;ω,Xs ′′(ω)) converges to
∫
(
∫
ϕ0d[(h(·))∗m])dP

as n goes to infinity for every ω ∈ Γ̃ . Let Γ = ∩n≥0θ
−n(Γ̃ ), then it is straightforward to

see that θ(Γ ) ⊂ Γ ⊂ Γ̃ and P(Γ ) = 1.1 For convenience, we define a nonnegative number
ρn(ω) with n ≥ 1 and ω ∈ Ω by

ρn(ω) =
∣∣∣∣Bn(ϕ0;ω,Xs ′′ (ω)

) −
∫ (∫

ϕ0d[(h(·))∗m]
)
dP

∣∣∣∣ . (27)

Then ρn(θNω) converges to zero as n goes to infinity for every ω ∈ Γ and N ≥ 0.

Recall that for a sequence s = (s0, s1, . . . , sm, sm+1, . . . , sn, . . .) ∈ AN0 with some
integers n ≥ m ≥ 0, (sm, sm+1, . . . , sn) is denoted by [s]nm. For a positive number a, we write
[a] for the integer part of a.

LEMMA 4. For any integer m ≥ 0 and real number ρ > 0, we can find an integer

n ≥ 2m+ 2 such that, for all ω ∈ Ω and s, t ∈ AN0 satisfying that [s]n−1
m = [t]n−1

m , we have∣∣∣B[
n
2

](ϕ0;ω,Xs(ω)
) − B[

n
2

](ϕ0;ω,Xt (ω)
)∣∣∣ ≤ ρ .

PROOF. We fix m ≥ 0 and ρ > 0. Note that for any n′ ≥ m+ 1, ω ∈ Ω and x ∈ S1,
we have

Bn′ (ϕ0;ω, x) = m

n′Bm(ϕ0;ω, x)+ n′ −m

n′ Bn′−m
(
ϕ0; θmω, f (m)ω (x)

)
(28)

and ∣∣∣m
n′Bm(ϕ0;ω, x)

∣∣∣ ≤ m

n′ ‖ϕ0‖C 0 ≤ m

n′ . (29)

Hence, if we take n ≥ 2m+ 2 sufficiently large, then
[
n
2

] ≥ m+ 1 and we get

∣∣∣B[
n
2

](ϕ0;ω,Xs(ω)
) − B[

n
2

](ϕ0;ω,Xt (ω)
)∣∣∣

≤ ρ

2
+

∣∣∣B[
n
2

]−m
(
ϕ0; θmω, f (m)ω

(
Xs(ω)

)) − B[
n
2

]−m
(
ϕ0; θmω, f (m)ω

(
Xt(ω)

))∣∣∣ . (30)

Let s, t ∈ AN0 satisfying that [s]n−1
m = [t]n−1

m with some n ≥ 2m+ 2. Then by the argu-

ment in the proof of Lemma 2, f (m+�)
ω (Xs(ω)) = f

(�)
θmω(Xσms(θ

mω)) and f (m+�)
ω (Xt(ω)) =

f
(�)
θmω(Xσmt (θ

mω)), and both points are in the interval f (�)θmω

(
Iθmω[s]n−1

m

)
= Iθm+�ω

σ�[s]n−1
m

for each

0 ≤ � ≤ [
n
2

] − m − 1. Moreover, when 0 ≤ � ≤ [
n
2

] − m − 1, due to (2) and

1Assume that P(θ−1(Γ̃ )∩ Γ̃ ) < 1. Then P(θ−1Γ̃ ∪ Γ̃ ) = P(θ−1(Γ̃ ))+ P(Γ̃ )− P(θ−1(Γ̃ )∩ Γ̃ ) > 1 since θ is
measure-preserving and P(Γ̃ ) = 1. This contradicts to that P is a probability measure, so that P(θ−1(Γ̃ ) ∩ Γ̃ ) = 1.
Reiterating the argument, we get that ∩0≤n≤Nθ−n(Γ̃ ) is a full measure set for each N ≥ 0, which immediately
implies P(Γ ) = 1.
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(18), the length of the interval Iθm+�ω
σ�[s]n−1

m

is less than λ−(n−m−�) ≤ λ− n
2 . (Notice that the

length of the word σ�[s]n−1
m is n − m − �.) Thus, it follows from the mean value theo-

rem that
∣∣∣ϕ0

(
f
(m+�)
ω (Xs(ω))

)
− ϕ0

(
f
(m+�)
ω (Xt(ω))

)∣∣∣ is bounded by λ− n
2 ‖ϕ0‖C 1 for every

0 ≤ � ≤ [
n
2

] −m− 1, and we have

∣∣∣B[
n
2

]−m
(
ϕ0; θmω, f (m)ω

(
Xs(ω)

)) − B[
n
2

]−m
(
ϕ0; θmω, f (m)ω

(
Xt(ω)

))∣∣∣
≤

([n
2

]
−m

)
λ− n

2 ‖ϕ0‖C 1 .

This should be less than ρ
2 by taking n sufficiently large, and the conclusion immediately

follows from (30). �

Now we inductively set an increasing sequence {Nj }j≥0 of nonnegative integers. Let
{ρ̃j }j≥1 be a sequence of real numbers in (0, 1] such that ρ̃j converges to zero as j goes to
infinity. Let N0 = 0. For a given integer Nj−1 with odd integer j ≥ 1, we take an integer

Nj ≥ 6Nj−1/ρ̃j + 2 such that if s ∈ AN0 satisfies that [s]Nj−1
Nj−1

= [s′]Nj−Nj−1−1
0 , then

∣∣∣B[Nj/2]
(
ϕ0;ω,Xs(ω)

) − B[Nj /2]−Nj−1

(
ϕ0; θNj−1ω,Xs ′ (θ

Nj−1ω)
)∣∣∣ ≤ ρ̃j , (31)

for all ω ∈ Ω . (We can indeed find such Nj : For each ω ∈ Ω , s̃ ∈ ANj−1 and s ∈ AN0

satisfying that [s]Nj−1
Nj−1

= [s̃s′]Nj−1
Nj−1

(= [s′]Nj−Nj−1−1
0 ), where s̃s′ = (s̃0s̃1 . . . s̃Nj−1−1s

′
0s

′
1 . . .)

is the concatenation of s̃ = (s̃0s̃1 . . . s̃Nj−1−1) and s′, we have∣∣∣B[Nj/2]
(
ϕ0;ω,Xs(ω)

) − B[Nj/2]
(
ϕ0;ω,Xs̃s ′(ω)

)∣∣∣ ≤ ρ̃j /3 ,

by applying Lemma 4 with ρ = ρ̃j /3, m = Nj−1, n = Nj and t = s̃s′, and with the notation
ξj = 1 −Nj−1/[Nj/2], we also have∣∣∣B[Nj /2]

(
ϕ0;ω,Xs̃s ′(ω)

) − ξj · B[Nj /2]−Nj−1

(
ϕ0; θNj−1ω,Xs ′(θ

Nj−1ω)
)∣∣∣ ≤ ρ̃j /3

with |1 − ξj | ≤ ρ̃j /3, by applying (28) and (29) with n′ = [Nj/2], m = Nj−1 and x =
Xs̃s ′(ω), together with Lemma 2 and the fact that Nj−1/[Nj/2] ≤ ρ̃j /3.) On the other hand,
for a given integer Nj−1 with even integer j ≥ 1, we take an integer Nj ≥ 6Nj−1/ρ̃j + 2

such that if s ∈ AN0 satisfies that [s]Nj−1
Nj−1

= [s′′]Nj−Nj−1−1
0 , then

∣∣∣B[Nj/2]
(
ϕ0;ω,Xs(ω)

) − B[Nj /2]−Nj−1

(
ϕ0; θNj−1ω,Xs ′′(θ

Nj−1ω)
)∣∣∣ ≤ ρ̃j , (32)
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for all ω ∈ Ω . Finally, we set a sequence s̄ ∈ AN0 by

[s̄]Nj−1
Nj−1

=
{

[s′]Nj−Nj−1−1
0 (j : odd) ,

[s′′]Nj−Nj−1−1
0 (j : even) .

It follows from (26) and (31) that for any ω ∈ Ω and odd integer j ≥ 1, we have∣∣∣B[Nj /2](ϕ0;ω,Xs̄(ω))− 0
∣∣∣ ≤ ρ̃j .

Hence for any ω ∈ Ω ,

lim
�→∞B[N2�+1/2]

(
ϕ0;ω,Xs̄(ω)

) = 0 .

Furthermore, it follows from (27) and (32) that, for any ω ∈ Ω and even integer j ≥ 1,∣∣∣∣B[Nj/2]
(
ϕ0;ω,Xs̄(ω)

) −
∫ (∫

ϕ0d[(h(·))∗m]
)
dP

∣∣∣∣ ≤ ρ̃j + ρ[Nj/2]−Nj−1

(
θNj−1ω

)
.

Hence, due to that [Nj/2] −Nj−1 ≥ Nj−1 and θ(Γ ) ⊂ Γ , for any ω ∈ Γ we have

lim
�→∞B[N2�/2]

(
ϕ0;ω,Xs̄(ω)

) =
∫ (∫

ϕ0d[(h(·))∗m]
)
dP > 0 .

The last inequality holds because the support of h(ω)∗m coincides with S1 for each ω. Con-
sequently, Xs̄ has historic behaviour for P-almost every ω ∈ Ω .

At the end, we show that the past random orbit of Xs̄ is P-almost surely dense. Let j be
an even integer and fix ω ∈ Γ . We denote σNj−1 s̄ by s̄j . Then, for each 0 ≤ � ≤ Nj−1,

f
(Nj−1+�)
θ

−(Nj−1+�)
ω

(
Xs̄

(
θ−(Nj−1+�)ω

)) = f
(�)

θ−�ω

(
Xs̄j

(
θ−�ω

))

by Lemma 2, and
[
s̄j

]Nj−Nj−1−1
�

= [
s′′

]Nj−Nj−1−1
�

. Thus, by using Lemma 2 again,

one can see that both f (�)
θ−�ω(Xs̄j (θ

−�ω)) and f
(�)

θ−�ω(Xs ′′(θ
−�ω)) are in Iωt with a word

t = [
s′′

]Nj−Nj−1−1
�

of length Nj − Nj−1 − �. Therefore, noting that Nj − Nj−1 − � ≥ Nj

for each 0 ≤ � ≤ Nj−1, together with (2) and (18), we get∣∣∣f (�)
θ−�ω

(
Xs̄j (θ

−�ω)
) − f

(�)

θ−�ω
(
Xs ′′(θ

−�ω)
)∣∣∣ ≤ Cωλ

−(Nj−Nj−1−�) ≤ Cωλ
−Nj−1 ,

where Cω > 0 is the maximum of |Iωj | over 0 ≤ j ≤ k − 1. Since the past random orbit

of Xs ′′ is P-almost surely dense on S1 by Theorem 5, we immediately conclude that the past
random orbit of Xs̄ is P-almost surely dense on S1. This completes the proof of Theorem 1
by Proposition 1.
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