
TOKYO J. MATH.
VOL. 39, NO. 1, 2016

Asymptotic Behavior of Solutions for Semilinear Volterra Diffusion
Equations with Spatial Inhomogeneity and Advection

Yusuke YOSHIDA and Yoshio YAMADA

Waseda University

(Communicated by T. Iguchi)

Abstract. This paper is concerned with semilinear Volterra diffusion equations with spatial inhomogeneity
and advection. We intend to study the effects of interaction among diffusion, advection and Volterra integral under
spatially inhomogeneous environments. Since the existence and uniqueness result of global-in-time solutions can
be proved in the standard manner, our main interest is to study their asymptotic behavior as t → ∞. For this
purpose, we study the related stationary problem by the monotone method and establish some sufficient conditions
on the existence of a unique positive solution. Its global attractivity is also studied with use of a suitable Lyapunov
functional.

1. Introduction

In the present paper we consider a spatially inhomogeneous logistic equation with diffu-
sion, advection and continuous delay represented in the form of a Volterra integral. Let Ω be

a bounded domain in RN with smooth boundary ∂Ω . Let u = u(x, t) for x ∈ Ω and t ≥ 0
satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = div{d(x)∇u− uΓ (x)} + u{a(x)− b(x)u− c(x)k ∗ u(t)}
in Ω × (0,∞) ,

Bu = 0 on ∂Ω × (0,∞) ,

u(·, 0) = u0 in Ω ,

(1.1)

where a, b and c are functions of class L∞(Ω) with b ≥ 0 and c ≥ 0 in Ω . A diffusion
coefficient d is a positive function of class C1+α(Ω) with α ∈ (0, 1) and Γ is a function of
the form

Γ (x) = d(x)∇γ (x) (1.2)
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with γ ∈ C2+α(Ω). Moreover, k ∗ u is defined by

k ∗ u(t) =
∫ t

0
k(t − s)u(s)ds ,

where k is a nonnegative function of class C1(0,∞) ∩ L1(0,∞) satisfying
∫ ∞

0
k(t)dt = 1 . (1.3)

Boundary operator B represents the following boundary condition

Bu = u or Bu = ∂u/∂n+ {β(x)− (∂γ /∂n)}u ,
where ∂/∂n denotes the outward normal derivative to ∂Ω and β is a nonnegative function of

class C1+α(∂Ω).
Our problem (1.1) appears in population biology and u denotes the population density of

a biological species. When Γ is given by (1.2), flux du∇γ describes the movement of each
individual species toward more favorable habitat where γ is large. Throughout this paper, we
always assume that

(A.1) u0 is a nonnegative (not identically zero) function of class L∞(Ω),
(A.2) infx∈Ω{b(x)+ c(x)} > 0.

If c ≡ 0 and γ is a constant function, then (1.1) is an initial boundary value problem for
a spatially inhomogeneous logistic diffusion equation and the dynamics of solutions of (1.1)
is well known (see the papers and the monograph of Cantrell-Cosner [8, 9, 10]). Furthermore,

for the case γ = εa with ε > 0 and a ∈ C2+α(Ω), see, e.g., [3, 5, 10, 11, 15, 16]. However,
it is more realistic to take account of effects of time delay in the study of population biology.
The term k ∗ u is introduced to describe effects from the past to the present. The following
two functions k are typical delay kernels in mathematical biology:

k(t) = (1/T )e−t/T , (K.1)

k(t) = (t/T 2)e−t/T . (K.2)

Here (K.1) and (K.2) are called a weak delay kernel and a strong delay kernel, respectively.
For instance, they appear in the bacteria model (for details, see Iida [14]).

Our purpose of the present paper is to study

(a) Existence and uniqueness of global solutions of (1.1),
(b) Asymptotic behavior of solutions as t → ∞,
(c) Existence, uniqueness and stability of positive stationary solutions.

When a, b, c, d and γ are constants, (a)–(c) have been studied by many authors and lots of
results have been obtained (see [14, 19, 23, 26, 27] with homogeneous Neumann boundary
condition and [24, 29] with homogeneous Dirichlet boundary condition). In addition, some
systems of Volterra diffusion equations have been also studied in [1, 28]. However, it seems
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that there are few works for Volterra diffusion equations under inhomogeneous environment.
So we intend to study Volterra diffusion equations with spatial inhomogeneity.

Before studying (1.1), we will use a change of variables v = e−γ (x)u, which allows to
rewrite (1.1) with (1.2) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt = div{d(x)∇v} + d(x)∇γ · ∇v + v
{
a(x)− b(x)eγ (x)v − c(x)eγ (x)k ∗ v(t)}

in Ω × (0,∞) ,

B ′v = 0 on ∂Ω × (0,∞) ,

v(·, 0) = v0 in Ω ,

(P)

where v0 = e−γ (x)u0 and

B ′v = v or B ′v = ∂v/∂n+ β(x)v .

Hereafter we will study (P) instead of (1.1). A stationary problem associated with (P) is given
by

{
div{d(x)∇ϕ} + d(x)∇γ · ∇ϕ + ϕ

[
a(x)− {b(x)+ c(x)}eγ (x)ϕ] = 0 in Ω ,

B ′ϕ = 0 on ∂Ω ,
(SP)

(note (1.3)).
Our first task is to show the existence and uniqueness of a global solution of (P). We

will discuss it in the framework of Lp(Ω) theory. The next step is to study the asymptotic
behavior of the solution as t → ∞. The asymptotic behavior is very closely related with the
stationary problem (SP). Since (SP) is a semilinear elliptic problem with logistic term, the
standard monotone method enables us to show the existence and uniqueness result of positive
solution ϕ. Here it should be noted that a is not necessarily a positive function. So we will
give sufficient conditions on a and d which assure the existence of a unique positive solution
ϕ.

Once the existence of a positive solution of (SP) is established, the subsequent problem
is to study its stability. If there is no delay term, then the analytic procedure to discuss the
stability of ϕ is well established. However, in case of the presence of the delay term, one
cannot apply such a method because the comparison principle does not hold for (P). So we
will introduce a suitable Lyapunov functional to study the global stability of ϕ (see (4.5)).
Then we will show some sufficient conditions for the global attractivity of ϕ with use of the
Laplace transform of k.

The plan of this paper is as follows. In Section 2 we will give the existence and unique-
ness of global solutions of (P). In Section 3 we will show the existence and uniqueness of a
positive solution of (SP) and some sufficient conditions for the existence. Our main results
are concerned with asymptotic behavior of solutions for (P) as t → ∞ and they are con-
tained in Sections 4 and 5. In these sections we will show some sufficient conditions for the
global attractivity of the positive stationary solution by separating arguments into two cases:
infx∈Ω b(x) > 0 and infx∈Ω b(x) = 0.
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Notation. For p ∈ [1,∞), Lp(Ω) denotes the usual Banach space with norm ‖ · ‖p,Ω
and L∞(Ω) denotes the space of essentially bounded and measurable functions with norm
‖ · ‖∞,Ω . If there is no confusion, we will omit the subscript Ω . For each p ∈ [1,∞)

and integer k ∈ [1,∞), Wk,p(Ω) denotes the usual Sobolev space of measurable functions
u : Ω → R such that u and its distributional derivatives up to order k belong to Lp(Ω). Its
norm is defined by

‖u‖k,p,Ω =
(

∑

|α|≤k
‖Dαu‖pp

)1/p

,

where α denotes a multi-index for derivatives. If there is no confusion, then we will also

omit the subscript Ω . We sometimes write Hk(Ω) instead of Wk,2(Ω). Moreover,Wk,p

0 (Ω)

denotes the closure of C∞
0 (Ω) with respect to Wk,p(Ω)-norm. In the same way as Hk(Ω)

we sometimes write Hk
0 (Ω) instead of Wk,2

0 (Ω).

2. Existence and uniqueness of global solutions

In this section we will study (P) in the framework of Lp(Ω)-space with p > 1. Define a
closed linear operator A with dense domainD(A) by

Av = −div{d(x)∇v} − d(x)∇γ · ∇v
and

D(A) =
{
W

1,p
0 (Ω) ∩W 2,p(Ω) if B ′v = v ,

{
v ∈ W 2,p(Ω)

∣
∣ B ′v = 0 on ∂Ω

}
if B ′v = ∂v/∂n+ β(x)v .

For each μ ∈ [0, 1], we introduce the fractional power space D(Aμ) equipped with the graph
norm of Aμ in the standard manner. If p > max{1, N/2}, then it is known that

D(Aμ) ⊂ Cν(Ω) with ν ∈ [0, 2μ− (N/p)) , (2.1)

(see [12] or [17]). It is also well known that −A generates an analytic semigroup {e−tA}t≥0

in Lp(Ω).
We will write (P) as

{
vt + Av = F(x, v, k ∗ v(t)) ,
v(0) = v0 ,

(2.2)

where

F(x, v,w) = v
{
a(x)− b(x)eγ (x)v − c(x)eγ (x)w

}
.

Let v be a local solution of (P) in Ω × [0, T0] with some T0 > 0. In order to extend such a
local solution of (P), we are led to consider the existence of solutions of the following initial
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value problem:
{
wt + Aw = w

{
ã(x, t)− b(x)eγ (x)w − c(x)eγ (x)k ∗ w(t)} ,

w(0) = v(T0)

with

ã(x, t) = a(x)− c(x)eγ (x)
∫ T0

0
k(t + T0 − s)v(s)ds .

Hence it will be better to study the local existence problem in the following more general form
in place of (2.2):

{
vt + Av = F ∗(x, t, v, k ∗ v(t)) ,
v(0) = v0 ,

(2.3)

where

F ∗(x, t, v,w) = v
{
ã(x, t)− b(x)eγ (x)v − c(x)eγ (x)w

}
.

We can prove the following local existence result:

PROPOSITION 2.1. Let p > max{1, N/2} and assume ã ∈ Cϑ([0, T ];L∞(Ω)) with
ϑ ∈ (0, 1) and v0 ∈ Lp(Ω). Then there exists a positive number T0 ≤ T such that (2.3) has
a unique solution v in the class

v ∈ C([0, T0];Lp(Ω)) ∩ C1((0, T0];Lp(Ω)) ∩ C((0, T0];D(A)) .
PROOF. By variation of constant formula, (2.3) can be rewritten in the form of an

integral equation

v(t) = e−tAv0 +
∫ t

0
e−(t−s)AF ∗(s, v(s), k ∗ v(s))ds . (2.4)

Applying Banach’s fixed point theorem to (2.4), we can prove the local existence of a solution
of (2.3). For details, see for instance [13]. �

We can also establish the global existence theorem.

THEOREM 2.1. Let p > max{1, N/2}. Then (P) has a unique solution v in the class

v ∈ C([0,∞);Lp(Ω)) ∩ C1((0,∞);Lp(Ω)) ∩ C((0,∞);D(A));
which satisfies

v > 0 in Ω × (0,∞) and ∂v/∂n < 0 on ∂Ω × (0,∞) (2.5)

if B ′v = v, and

v > 0 in Ω × (0,∞) (2.6)
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if B ′v = ∂v/∂n+ β(x)v. Moreover, if infx∈Ω b(x) > 0, then

v ≤ m in Ω × (0,∞) ,

where

m = max

{

‖v0‖∞, sup
x∈Ω

a(x)

b(x)eγ (x)

}

.

PROOF. Since v0 ≥ 0, it is easy to show by the maximum principle ([18]) that v(·, t) ≥
0. By virtue of the nonnegativity of k, v satisfies

vt ≤ div{d(x)∇v} + d(x)∇γ · ∇v + v
{
a(x)− b(x)eγ (x)v

}
.

If infx∈Ω b(x) > 0, then the comparison theorem (see, e.g., [25]) implies v ≤ m. Finally, the
strong maximum principle [18] shows (2.5) and (2.6). Hence in view of Proposition 2.1, we
can obtain the existence and uniqueness of a global solution of (P). �

3. Positive stationary solutions

In this section we will look for positive solutions of (SP). Consider the following eigen-
value problem:

{
−div{d(x)∇ψ} − d(x)∇γ · ∇ψ − a(x)ψ = λψ in Ω ,

B ′ψ = 0 on ∂Ω .
(EP)

Note that the first equation of (EP) can be rewritten by multiplying eγ (x) to both sides as

−div
{
d(x)eγ (x)∇ψ} − a(x)eγ (x)ψ = λeγ (x)ψ . (3.1)

Let λ1 ≡ λ1(a, d, γ ) denote the principal eigenvalue of (EP). Then it is given by the following
variational characterization:

λ1 = inf
ψ∈H 1(Ω)
ψ �=0

∫

Ω

d(x)eγ (x)|∇ψ|2dx +
∫

∂Ω

d(x)β(x)eγ (x)ψ2dσ −
∫

Ω

a(x)eγ (x)ψ2dx

∫

Ω

eγ (x)ψ2dx

if B ′ψ = ∂ψ/∂n+ β(x)ψ , while

λ1 = inf
ψ∈H 1

0 (Ω)

ψ �=0

∫

Ω

d(x)eγ (x)|∇ψ|2dx −
∫

Ω

a(x)eγ (x)ψ2dx

∫

Ω

eγ (x)ψ2dx

if B ′ψ = ψ . Then we are ready to give the existence, nonexistence and uniqueness results of
a positive solution of (SP).
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THEOREM 3.1. Problem (SP) has a positive solution ϕ if and only if λ1 < 0, where
λ1 is the principal eigenvalue of (EP). Moreover, when ϕ exists, it is uniquely determined and
it satisfies

0 < ϕ ≤ M in Ω (3.2)

and
{
∂ϕ/∂n < 0 on ∂Ω if B ′ϕ = ϕ ,

0 < ϕ ≤ M on ∂Ω if B ′ϕ = ∂ϕ/∂n+ β(x)ϕ ,
(3.3)

where

M = sup
x∈Ω

a(x)

{b(x)+ c(x)}eγ (x) .

REMARK 3.1. Since λ1 < 0 requires supx∈Ω a(x) > 0, M is a positive number.

PROOF. Recall (3.1). Then the first equation of (SP) can be rewritten as

div
{
d(x)eγ (x)∇ϕ} + eγ (x)ϕ

[
a(x)− {b(x)+ c(x)}eγ (x)ϕ] = 0 . (3.4)

Take ϕ = M with positive numberM ≥ M and ϕ = εψ1 with small positive number ε, where

ψ1 is an eigenfunction corresponding to λ1 such that supx∈Ω ψ1(x) = 1. It is easy to prove
that ϕ and ϕ become a pair of upper and lower solutions to (3.4). Therefore, the monotone

method (see Amann [2] or Sattinger [22]) assures the existence of a positive solution ϕ of
(SP) satisfying ϕ ≤ ϕ ≤ ϕ. For the uniqueness of ϕ, see for instance the paper of Berestycki

[4]. Finally, note that (3.3) comes from the strong maximum principle [18]. �

We can show the following result on the asymptotic behavior of solutions for (P) in case
λ1 ≥ 0, where (SP) has no positive solution:

THEOREM 3.2. Assume

inf
x∈Ω b(x) > 0 and λ1 ≥ 0 or inf

x∈Ω b(x) = 0 and λ1 > 0 . (3.5)

Then every solution v of (P) satisfies

lim
t→∞ v(t) = 0 uniformly in Ω .

PROOF. Since c and k are nonnegative, the positivity of v implies

vt ≤ div{d(x)∇v} + d(x)∇γ · ∇v + v
{
a(x)− b(x)eγ (x)v

}
.
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Consider the following problem:
⎧
⎪⎪⎨

⎪⎪⎩

wt = div{d(x)∇w} + d(x)∇γ · ∇w +w
{
a(x)− b(x)eγ (x)w

}
in Ω × (0,∞) ,

B ′w = 0 on ∂Ω × (0,∞) ,

w(·, 0) = ‖v0‖∞ in Ω .

Owing to (3.5), the theory of dynamical systems enables us to yield

lim
t→∞w(t) = 0 uniformly in Ω .

Since v ≤ w by the comparison theorem, the conclusion easily follows. �

By virtue of Theorem 3.1 we will search some sufficient conditions on a, d for λ1 < 0,
which assures the existence of a positive stationary solution of (SP). Set

Ω+ = {x ∈ Ω | a(x) > 0} , (3.6)

and assume Ω+ �= ∅ in this section. Consider the following eigenvalue problem:
{

−div{d(x)∇ρ} − d(x)∇γ · ∇ρ = μa(x)ρ in Ω ,

B ′ρ = 0 on ∂Ω .
(3.7)

Similarly as in (EP), the first equation of (3.7) can be rewritten as

−div
{
d(x)eγ (x)∇ρ

}
= μa(x)eγ (x)ρ .

Let μ+
1 ≡ μ+

1 (a, d, γ ) denote the positive principal eigenvalue of (3.7). It is given by the
following variational characterization (see the monograph of Cantrell-Cosner [10, Theorem
2.4]):

1

μ+
1

= sup
ρ∈H 1(Ω)
ρ �=0

∫

Ω

a(x)eγ (x)ρ2dx

∫

Ω

d(x)eγ (x)|∇ρ|2dx +
∫

∂Ω

d(x)β(x)eγ (x)ρ2dσ

(3.8)

if B ′ψ = ∂ψ/∂n+ β(x)ψ , while

1

μ+
1

= sup
ρ∈H 1

0 (Ω)

ρ �=0

∫

Ω

a(x)eγ (x)ρ2dx

∫

Ω

d(x)eγ (x)|∇ρ|2dx
(3.9)

if B ′ψ = ψ . In (3.8) and (3.9),
∫

Ω a(x)e
γ (x)ρ2dx > 0 for suitable ρ ∈ H 1(Ω) because Ω+

is non-empty. So μ+
1 > 0 can be defined in case B ′ψ = ψ or B ′ψ = ∂ψ/∂n + βψ with

β ≥ 0 (β �≡ 0). In case β ≡ 0 the denominator in the right-hand side of (3.8) vanishes if
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ρ is a constant function. Therefore, in case B ′ψ = ∂ψ/∂n, the existence of positive μ+
1 is a

delicate problem. Actually, we can show that μ+
1 exists if and only if

∫

Ω

a(x)eγ (x)dx < 0 , (3.10)

(see Proposition A in Appendix). The relation between λ1 and μ+
1 is given by the following

proposition (see [3, Proposition 2.2] or [10, Theorem 2.6]):

PROPOSITION 3.1. Let λ1 be the principal eigenvalue of (EP) and let μ+
1 be the posi-

tive principal eigenvalue of (3.7).

(i) Let B ′ψ = ψ or B ′ψ = ∂ψ/∂n+ β(x)ψ with β �≡ 0. Then λ1 is negative if and only
if μ+

1 < 1.

(ii) Let B ′ψ = ∂ψ/∂n. When (3.10) holds, λ1 is negative if and only if μ+
1 < 1; while λ1

is always negative when
∫

Ω

a(x)eγ (x)dx > 0 . (3.11)

Making use of Proposition 3.1 we will prove the following result:

PROPOSITION 3.2. Define Ω+ by (3.6). Let B ′ψ = ψ or B ′ψ = ∂ψ/∂n with (3.10)
or B ′ψ = ∂ψ/∂n + β(x)ψ with β �≡ 0. Then there exists a positive constant d∗ such that
λ1 < 0 for any d satisfying ‖d‖∞,Ω+ < d∗.

PROOF. We will only discuss the case B ′ψ = ψ . The other case can be handled

similarly. Take any connected set Ω∗ ⊂ Ω+. Take any function ρ ∈ H 1
0 (Ω

∗) and let
ρ̃ : Ω∗ → R be the natural extension of ρ. It follows from (3.9) that

1

μ+
1

≥ sup
ρ∈H 1

0 (Ω
∗)

ρ �=0

∫

Ω

a(x)eγ (x)ρ̃2dx

∫

Ω

d(x)eγ (x)|∇ρ̃|2dx

≥ ‖d‖−1
∞,Ω∗ sup

ρ∈H 1
0 (Ω

∗)
ρ �=0

∫

Ω∗
a(x)eγ (x)ρ2dx

∫

Ω∗
eγ (x)|∇ρ|2dx

.

Define d∗ by

d∗ = sup
ρ∈H 1

0 (Ω
∗)

ρ �=0

∫

Ω∗
a(x)eγ (x)ρ2dx

∫

Ω∗
eγ (x)|∇ρ|2dx

.
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Then μ+
1 < 1 for any d satisfying ‖d‖∞,Ω∗ < d∗. Therefore, Proposition 3.1 yields the

conclusion. �

Propositions 3.1 and 3.2 imply that a positive stationary solution exists if a diffusion
coefficient is sufficiently small in a favorable habitat Ω+ or (3.11) is achieved with homoge-
neous Neumann boundary condition. In ecology, this fact asserts that there is a chance for a
species to survive if the species stays in a favorable habitat Ω+.

REMARK 3.2. Assume a ∈ C2+α(Ω) and γ = Ca. Then we can easily obtain (3.11)
if C is sufficiently large. This implies that a sufficiently strong advection toward more favor-
able habitat gives a chance for the species to survive. For details, see Belgacem-Cosner [3,
Theorem 2.4].

4. Global attractivity of ϕ in case infx∈Ω b(x) > 0

In this section we consider the case infx∈Ω b(x) > 0 and λ1 < 0, which assures that

there exists a unique positive solution ϕ of (SP). Denote by k̂ the Laplace transform of k:

k̂(λ) =
∫ ∞

0
e−λtk(t)dt .

Then we can prove the global attractivity of ϕ in the following manner:

THEOREM 4.1. Assume infx∈Ω b(x) > 0, λ1 < 0 and tk ∈ L1(0,∞). Furthermore,
assume that there exists a positive constant k0 such that

b(x)+ Re k̂(iη)c(x) ≥ k0 for x ∈ Ω and η ∈ R . (4.1)

Then every solution v of (P) satisfies

lim
t→∞ v(t) = ϕ uniformly in Ω . (4.2)

REMARK 4.1. Both kernels (K.1) and (K.2) satisfy tk ∈ L1(0,∞). Moreover, for
(K.1),

inf
η∈R

Re k̂(iη) = inf
η∈R

Re

(
1

1 + iηT

)

= 0 , (4.3)

and for (K.2),

inf
η∈R

Re k̂(iη) = inf
η∈R

Re

(
1

1 + iηT

)2

= −1

8
. (4.4)

From (4.3) and (4.4), ϕ is always globally attractive for (K.1), while it is globally attractive
for (K.2) if

inf
x∈Ω

{

b(x)− c(x)

8

}

> 0 .
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When we consider (P) with spatially homogeneous coefficients, constant function γ and
homogeneous Neumann boundary condition, it follows from the result of Yamada [27] that,
if k is given by (K.2), then ϕ loses its stability and periodic solutions bifurcate from ϕ under
a suitable situation.

To prove Theorem 4.1, we will follow the arguments used in [29]. Let ϕ be a positive
solution of (SP). We introduce the following nonnegative functional:

E(v) =
∫

Ω

eγ (x)ϕ2(x)g(v(x)/ϕ(x))dx

=
∫

Ω

eγ (x)ϕ(x)

{

v(x)− ϕ(x)− ϕ(x) log
v(x)

ϕ(x)

}

dx ,

(4.5)

where

g(v) = v − 1 − log v . (4.6)

When γ is a constant, this functional has been used in [1] and [29].

REMARK 4.2. It should be noted that (4.5) is well defined on ∂Ω under homogeneous
Dirichlet boundary condition. Indeed, we see from (2.5) and (3.3)

lim
x→x0

v(x, t)

ϕ(x)
= ∂v(x0, t)

∂n

{
∂ϕ(x0)

∂n

}−1

> 0 for (x0, t) ∈ ∂Ω × (0,∞) .

Hence it is possible to define v/ϕ on ∂Ω in this sense.

We will prepare the following key lemma:

LEMMA 4.1 (cf. [29, Lemma 3.1]). Define E(v) by (4.5). Then any solution v of (P)
satisfies

d

dt
E(v(t)) = −

∫

Ω

d(x)eγ (x)ϕ2
∣
∣
∣
∣∇

{

log
v(t)

ϕ

}∣
∣
∣
∣

2

dx

−
∫

Ω

b(x)e2γ (x)ϕ{v(t) − ϕ}2dx

−
∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}k ∗ (v − ϕ)(t)dx

+
∫ ∞

t

k(s)ds

∫

Ω

c(x)e2γ (x)ϕ2{v(t)− ϕ}dx .

(4.7)

PROOF. We will only prove the case B ′v = v because the proof of the other case is
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essentially the same. Differentiation of (4.5) with respect to t yields

d

dt
E(v(t)) =

∫

Ω

eγ (x)
{

1 − ϕ

v(t)

}

vt (t)ϕdx

=
∫

Ω

eγ (x)ϕ

{

1 − ϕ

v(t)

}

[div{d(x)∇v(t)} + d(x)∇γ · ∇v]dx

+
∫

Ω

eγ (x)ϕ{v(t)− ϕ}{a(x)− b(x)eγ (x)v(t) − c(x)eγ (x)k ∗ v(t)}dx .

Similarly to (3.1), note

eγ (x)[div{d(x)∇v(t)} + d(x)∇γ · ∇v] = div
{
d(x)eγ (x)∇v(t)} .

In view of (1.3),

a(x)− b(x)eγ (x)v − c(x)eγ (x)k ∗ v(t)
=a(x)− {b(x)+ c(x)}eγ (x)ϕ − b(x)eγ (x)(v − ϕ)− c(x)eγ (x)k ∗ (v − ϕ)(t)

+ c(x)eγ (x)ϕ

∫ ∞

t

k(s)ds .

Since ϕ is a solution of (SP), it follows that

d

dt
E(v(t)) =

∫

Ω

ϕ

{

1 − ϕ

v(t)

}

div
{
d(x)eγ (x)∇v(t)

}
dx

−
∫

Ω

{v(t)− ϕ}div
{
d(x)eγ (x)∇ϕ

}
dx −

∫

Ω

b(x)e2γ (x)ϕ{v(t) − ϕ}2dx

−
∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}k ∗ (v − ϕ)(t)dx

+
∫ ∞

t

k(s)ds

∫

Ω

c(x)e2γ (x)ϕ2{v(t)− ϕ}dx .

Moreover, the integration by parts yields
∫

Ω

ϕ

{

1 − ϕ

v(t)

}

div
{
d(x)eγ (x)∇v(t)}dx −

∫

Ω

{v(t)− ϕ}div
{
d(x)eγ (x)∇ϕ}

dx

= −
∫

Ω

d(x)eγ (x)
{

|∇ϕ|2 − 2ϕ

v(t)
∇ϕ · ∇v(t) − ϕ2

v2(t)
|∇v(t)|2

}

dx

= −
∫

Ω

d(x)eγ (x)ϕ2
∣
∣
∣
∣∇

{

log
v(t)

ϕ

}∣
∣
∣
∣

2

dx .

Therefore, (4.7) follows. �

We will also prepare some regularity results.
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LEMMA 4.2. Let v be a bounded solution of (P) and let δ be any positive number.
Then there exist positive constantsK1, K2 andK3 such that for p > 1 and μ ∈ [0, 1),

sup
t≥δ

‖Aμv(t)‖p ≤ K1 , (4.8)

and for any h > 0,

sup
t≥δ

‖Aμ{v(t + h)− v(t)}‖p ≤ K2h
ϑ +K3h

1−μ (4.9)

with ϑ ∈ (0, 1 − μ).

For the proof of (4.8), see [27, Theorem 3.1], and for (4.9), see the monograph of Rothe
[21, Lemma 21].

PROOF OF THEOREM 4.1. We may assume v0 > 0 in Ω without loss of generality.
Indeed, we can retake v0 = v(T ) > 0 for T > 0 and prove this theorem with slight modifica-
tion. Integrating (4.7) over [0,T] for arbitrary number T > 0, we have

E(v(T ))+
∫ T

0

∫

Ω

d(x)eγ (x)ϕ2
∣
∣
∣
∣∇

{

log
v(t)

ϕ

}∣
∣
∣
∣

2

dxdt

+
∫ T

0

∫

Ω

b(x)e2γ (x)ϕ{v(t)− ϕ}2dxdt

+
∫ T

0

∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}k ∗ (v − ϕ)(t)dxdt

= E(v0)+
∫ T

0

∫ ∞

t

k(s)ds

∫

Ω

c(x)e2γ (x)ϕ2{v(t) − ϕ}dxdt .

(4.10)

By virtue of (2.6) and (3.2), the second term in the right hand side of (4.10) is estimated as
∫ T

0

∫ ∞

t

k(s)ds

∫

Ω

c(x)e2γ (x)ϕ2{v(t)− ϕ}dxdt

≤ ∥
∥ce2γ

∥
∥∞M

2(m+M)|Ω |
∫ ∞

0
sk(s)ds .

Since tk ∈ L1(0,∞), it follows from (4.10) and the above inequality that
∫ T

0

∫

Ω

b(x)e2γ (x)ϕ{v(t)− ϕ}2dxdt

+
∫ T

0

∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}k ∗ (v − ϕ)(t)dxdt ≤ K4 ,

(4.11)

where

K4 = E(v0)+
∥
∥ce2γ

∥
∥∞M

2(m+M)|Ω |
∫ ∞

0
tk(t)dt .
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For w : [0, T ] → R, define wT by

wT (t) =
{
w(t) if t ∈ [0, T ] ,
0 if t ∈ (−∞,∞)\[0, T ] ,

and for k : [0,∞) → R, define k̃ by

k̃(t) =
{
k(t) if t ∈ [0,∞) ,

0 if t ∈ (−∞, 0) .

Then we can derive the following relation (cf. [27, Lemma 2.2]):

F
(
k̃ ∗ wT

)
(η) = k̂(iη)FwT (η) , (4.12)

where Fw denotes the Fourier transform of w:

Fw(η) = (2π)−1/2
∫ ∞

−∞
e−iηtw(t)dt .

Then we obtain
∫ T

0

[
b(x){v(t)− ϕ}2 + c(x){v(t)− ϕ}k ∗ (v − ϕ)(t)

]
dt

=
∫ ∞

−∞
{
b(x)(v − ϕ)2T (t)+ c(x)(v − ϕ)T (t)k̃ ∗ (v − ϕ)T (t)

}
dt .

It follows from (4.12) and Parseval–Plancherel’s equality that
∫ ∞

−∞
{
b(x)(v − ϕ)2T (t)+ c(x)(v − ϕ)T (t)k̃ ∗ (v − ϕ)T (t)

}
dt

=
∫ ∞

−∞
{
b(x)|F(v − ϕ)T (η)|2 + c(x)F(v − ϕ)T (η)F

(
k̃ ∗ (v − ϕ)T

)
(η)

}
dη

=
∫ ∞

−∞
{
b(x)+ Re k̂(iη)c(x)

}|F(v − ϕ)T (η)|2dη .

Therefore, making use of (4.1), Fubini’s theorem and Parseval–Plancherel’s equality again,
we can obtain

∫ T

0

∫

Ω

b(x)e2γ (x)ϕ{v(t)− ϕ}2dxdt

+
∫ T

0

∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}k ∗ (v − ϕ)(t)dxdt

≥k0 inf
x∈Ω

{
e2γ (x)}

∫ T

0

∫

Ω

|v(t)− ϕ|2ϕdxdt .

(4.13)
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Since T is arbitrary andK4 is independent of T , (4.11) and (4.13) yield

ϕ1/2(v − ϕ) ∈ L1((0,∞);L2(Ω)) . (4.14)

On the other hand, (4.9) shows that t → ϕ1/2{v(t) − ϕ} is uniformly continuous in (0,∞)

with respect to L2(Ω). The fact, together with (4.14) implies

lim
t→∞

∫

Ω

|v(t)− ϕ|2ϕdx = 0 . (4.15)

Then we can prove (4.2) from (4.15). Its proof is exactly the same as in [29] with A replaced
by A+ 1; so we omit it. �

REMARK 4.3. Take p > N and μ ∈ ((p +N)/(2p), 1). Then (2.1) implies

lim
t→∞ v(t) = ϕ in C1(Ω) .

5. Global attractivity of ϕ in case infx∈Ω b(x) = 0

In this section we consider (P) in the case infx∈Ω b(x) = 0, where one of the difficulties
is to derive L∞(Ω) estimate of v.

THEOREM 5.1. Assume infx∈Ω b(x) = 0, λ1 < 0 and tk ∈ L1(0,∞). If Re k̂(iη) ≥ 0
for η ∈ R, then every solution v of (P) satisfies

sup
t≥0

‖v(t)‖∞ < ∞ .

PROOF. We will prove this theorem along the arguments used in [29, Proposition 3.3].
We can assume v0 > 0 in Ω . Since λ1 < 0, there exists a unique positive stationary solution
ϕ of (SP). Then integrating (4.7) over [0, T ] with any T > 0, we see

E(v(T )) ≤ E(v0)+
∥
∥ceγ

∥
∥∞M

∫ T

0

∫ ∞

t

k(s)ds

∫

Ω

eγ (x)ϕv(t)dxdt (5.1)

as in the proof of Theorem 4.1. Since g is a convex function (see (4.6)), it is possible to apply
Jensen’s inequality (see, e.g., [6]) to E(v(T )) to get

g

(
∥
∥eγ/2ϕ

∥
∥−2

2

∫

Ω

eγ (x)ϕv(T )dx

)

≤ ∥
∥eγ/2ϕ

∥
∥−2

2

∫

Ω

eγ (x)ϕ2g

(
v(T )

ϕ

)

dx

= ∥
∥eγ/2ϕ

∥
∥−2

2 E(v(T )) .

(5.2)

Put V (t) := ‖eγ/2ϕ‖−2
2

∫

Ω
eγ (x)ϕv(t)dx. Then from (5.1) and (5.2)

g(V (T )) ≤
∥
∥
∥e
γ/2ϕ

∥
∥
∥

−2

2
E(v0)+

∥
∥ceγ

∥
∥∞M

∫ T

0

∫ ∞

t

k(s)dsV (t)dt . (5.3)
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By using the idea in [29], it can be shown that for sufficiently large T0,

K6 := ∥
∥ceγ

∥
∥∞M

∫ ∞

T0

∫ ∞

t

k(s)dsdt < 1 .

Then (5.3) implies that for every T ≥ T0,

g(V (T )) ≤ ∥
∥eγ/2ϕ

∥
∥−2

2 E(v0)+
∥
∥ceγ

∥
∥∞M

∫ T0

0

∫ ∞

t

k(s)dsV (t)dt +K6 sup
t∈[T0,T ]

V (t) .

Recall that g is given by (4.6). Since K6 < 1, it follows from the above inequality that

sup
t∈[T0,T ]

V (t) ≤ K7 (5.4)

with some K7 independent of T . Hence it is easy to prove from (5.4) that

sup
t≥0

∫

Ω

ϕv(t)dx ≤ K8 (5.5)

with some K8.
Let r ∈ (0, 1/2). Then we can obtain from (5.5) that

sup
t≥0

∫

Ω

vr (t)dx ≤ K9 ,

whereK9 is a suitable positive constant independent of t (for details, see [29]). Therefore, the
result of Rothe [20, Proposition 2] allows us to derive the conclusion. �

Repeating the arguments in the proof of Theorem 4.1, we can also obtain the following
result:

THEOREM 5.2. In addition to the assumptions of Theorem 5.1, assume (4.1). Then
every solution v of (P) satisfies

lim
t→∞ v(t) = ϕ uniformly in Ω .

Recall that if k is defined by (K.1) (resp. (K.2)), it satisfies (4.3) (resp. (4.4)). Then
neither (K.1) nor (K.2) satisfies (4.1). This implies that Theorem 5.2 is inconvenient from the
viewpoint of applications. By putting additional assumptions, we can improve Theorem 5.2
as follows.

THEOREM 5.3. In addition to the assumptions of Theorem 5.1, assume k(0) �= 0 and

k′(= dk/dt) ∈ L1(0,∞). Furthermore, assume that there exist positive constants c0 and k1

such that c(x) ≥ c0 for x ∈ Ω and

Re
{
k̂(iη)

}−1 ≥ k1 for η ∈ R . (5.6)
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Then every solution v of (P) satisfies

lim
t→∞ v(t) = ϕ uniformly in Ω .

PROOF. We will prove this theorem by the same idea as in [29, Theorem 3.5]. We may
assume v0 > 0 in Ω . Let ϕ be a unique positive stationary solution of (SP) and define a new
function w as

w(x, t) = k ∗ (v − ϕ)(x, t) .

Similarly to the proof of Theorem 4.1, integrate (4.7) over [0, T ] with an arbitrary T > 0;
then there exists a positive constant K10, independent of T , such that

E(v(T ))+
∫ T

0

∫

Ω

d(x)eγ (x)ϕ2
∣
∣
∣
∣∇

{

log
v(t)

ϕ

}∣
∣
∣
∣

2

dxdt

+
∫ T

0

∫

Ω

b(x)e2γ (x)ϕ{v(t)− ϕ}2dxdt

+
∫ T

0

∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}w(t)dxdt ≤ K10 .

(5.7)

Since w satisfies

wt(t) = k(0){v(t)− ϕ} + k′ ∗ (v − ϕ)(t) , (5.8)

it follows that

1

2

d

dt

∫

Ω

c(x)e2γ (x)ϕw2(t)dx =
∫

Ω

c(x)e2γ (x)ϕw(t)wt (t)dx

=
∫

Ω

c(x)e2γ (x)ϕw(t)
[
k(0){v(t)− ϕ} + k′ ∗ (v − ϕ)(t)

]
dx .

Integrate this identity over [0, T ]:
1

2

∫ T

0

d

dt

∫

Ω

c(x)e2γ (x)ϕw2(t)dxdt

=
∫ T

0

∫

Ω

c(x)e2γ (x)ϕw(t)
[
k(0){v(t)− ϕ} + k′ ∗ (v − ϕ)(t)

]
dxdt .

(5.9)

In view of w(0) = 0,
∫ T

0

d

dt

∫

Ω

c(x)e2γ (x)ϕw2(t)dxdt =
∫

Ω

c(x)e2γ (x)ϕw2(T )dx ≥ 0 .
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Therefore, we can see from (5.9)

−
∫ T

0

∫

Ω

c(x)e2γ (x)ϕw(t)k′ ∗ (v − ϕ)(t)dxdt

≤k(0)
∫ T

0

∫

Ω

c(x)e2γ (x)ϕ{v(t)− ϕ}w(t)dxdt

≤k(0)K10 ,

(5.10)

where we have used (5.7).
Note

ˆ(k′)(iη) =
∫ ∞

0
e−iηt k′(t)dt

= −k(0)+ iηk̂(iη)

and F(wT )(η) = k̂(iη)F((v − ϕ)T )(η). Then

F
(
k̃′ ∗ (v − ϕ)T

)
(η) =

{
−k(0)+ iηk̂(iη)

}{
k̂(iη)

}−1F(wT )(η) . (5.11)

Similarly to the proof of Theorem 4.1, we can use (5.11) and Parseval–Plancherel’s equality
to show

−
∫ T

0

∫

Ω

c(x)e2γ (x)ϕw(t)k′ ∗ (v − ϕ)(t)dxdt

= −
∫

Ω

c(x)e2γ (x)ϕ

∫ ∞

−∞
wT (t)k̃

′ ∗ (v − ϕ)T (t)dtdx

= −
∫

Ω

c(x)e2γ (x)ϕ

∫ ∞

−∞
F(wT )(η)F

(
k̃′ ∗ (v − ϕ)T

)
(η)dηdx

= k(0)
∫

Ω

c(x)e2γ (x)ϕ

∫ ∞

−∞
Re

{
k̂(iη)

}−1|F(wT )(η)|2dηdx .

Therefore, (5.10) implies

c0k1 inf
x∈Ω

{
e2γ (x)}

∫ T

0

∫

Ω

ϕw2(t)dxdt ≤ K10 ,

where we have used (5.6). Since T is arbitrary and K10 is independent of T , this estimate
implies

ϕ1/2w ∈ L1((0,∞);L2(Ω)) . (5.12)

One can prove the uniformly continuity of w(t) with respect to t from (5.8) (see [29]). Hence
it follows from (5.12) that

lim
t→∞ϕ

1/2w(t) = 0 in L2(Ω) .
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In the same manner as [29] (replace A by A+ 1),

lim
t→∞w(t) = 0 uniformly in Ω .

The rest of the proof is essentially the same as [29]; so we omit it. �

Appendix

PROPOSITION A. Let μ+
1 denote the positive principal eigenvalue of (3.7) with

∂ρ/∂n = 0 on ∂Ω . Then μ+
1 exists if and only if (3.10) holds true.

PROOF. We will show this proposition by using the arguments developed in the paper
of Brown and Lin [7]. Note that, by virtue of (3.8), μ+

1 is given by

1

μ+
1

= sup
ρ∈H 1(Ω)
ρ �=0

∫

Ω

a(x)eγ (x)ρ2dx

∫

Ω

d(x)eγ (x)|∇ρ|2dx
(A.1)

in case β(x) ≡ 0.
1st step. We begin with the proof of the sufficiency of (3.10). If (3.10) is satisfied, then

there exists a positive constant ε0 such that
∫

Ω

d(x)eγ (x)|∇ρ|2dx ≥ ε0

∫

Ω

eγ (x)ρ2dx (A.2)

for all ρ ∈ H 1(Ω) satisfying
∫

Ω
a(x)eγ (x)ρ2dx > 0. We will prove this result by contradic-

tion. If the assertion is false, then there exists a sequence {ρn} ⊂ H 1(Ω) such that
∫

Ω

eγ (x)ρ2
ndx = 1,

∫

Ω

d(x)eγ (x)|∇ρn|2dx ≤ 1

n
and

∫

Ω

a(x)eγ (x)ρ2
ndx > 0

for all n ∈ N. Since d is positive in Ω , {ρn} is bounded in H 1(Ω). From Rellich’s theorem,
one can choose a subsequence {ρn′ } such that

lim
n′→∞

ρn′ = ρ∗ weakly in H 1(Ω) and strongly in L2(Ω)

with ρ∗ ∈ H 1(Ω). From
∫

Ω
d(x)eγ (x)|∇ρn|2dx ≤ 1/n, we see limn→∞ ∇ρn = 0 in L2(Ω).

Therefore, limn′→∞ ρn′ = ρ∗ in H 1(Ω) and ρ∗ satisfies
∫

Ω

eγ (x)(ρ∗)2dx = 1,
∫

Ω

|∇ρ∗|2dx = 0 and
∫

Ω

a(x)eγ (x)(ρ∗)2dx ≥ 0 .

Hence, ρ∗(x) ≡ ρ0 with ρ2
0 = 1/

∫

Ω
eγ (x)dx. This fact implies

∫

Ω

a(x)eγ (x)(ρ∗)2dx = ρ2
0

∫

Ω

a(x)eγ (x)dx ≥ 0 ,
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which is a contradiction to (3.10). Thus we have shown (A.2).
We next take any ρ ∈ H 1(Ω) satisfying

∫

Ω
a(x)eγ (x)ρ2dx > 0. Then it follows from

(A.2) that
∫

Ω

a(x)eγ (x)ρ2dx

∫

Ω

d(x)eγ (x)|∇ρ|2dx
≤

∫

Ω

a(x)eγ (x)ρ2dx

ε0

∫

Ω

eγ (x)ρ2dx

≤ supx∈Ω{a(x)}
ε0

. (A.3)

Recalling (A.1) we see from (A.3) that 1/μ+
1 ≤ supx∈Ω{a(x)}/ε0. Thus μ+

1 is a positive
principal eigenvalue.

2nd step. We will prove the necessity of (3.10). Let μ+
1 be defined by (A.1). Assuming

∫

Ω

a(x)eγ (x)dx ≥ 0 ,

we will derive a contradiction. If
∫

Ω a(x)e
γ (x)dx > 0, then taking ρ(x) ≡ 1 leads us to

conclude that the right-hand side of (A.1) is infinite. This fact implies the nonexistence of

μ+
1 , which is a contradiction.

In case
∫

Ω a(x)e
γ (x)dx = 0, consider the following functional

Qμ(ρ) =
∫

Ω

d(x)eγ (x)|∇ρ|2dx − μ

∫

Ω

a(x)eγ (x)ρ2dx (A.4)

for each μ > 0. We take ρ0 ∈ H 1(Ω) satisfying
∫

Ω
a(x)eγ (x)ρ0dx > 0 (note ρ0 �≡ constant).

Then, for any δ > 0,

Qμ(1 + δρ0) = δ2Qμ(ρ0)− 2δμ
∫

Ω

a(x)eγ (x)ρ0dx .

Therefore, if δ > 0 is sufficiently small, then ρ̄μ := 1 + δρ0 ∈ H 1(Ω) satisfies Qμ(ρ̄μ) < 0.

This fact implies that, for any μ > 0, there exists ρ̄μ ∈ H 1(Ω) such that

1

μ
<

∫

Ω

a(x)eγ (x)ρ̄2
μdx

∫

Ω

d(x)eγ (x)|∇ρ̄μ|2dx
.

So we see that the right-hand side of (A.1) is infinite, which is also a contradiction to the
existence of positive μ+

1 . Thus we have shown that (3.10) holds true. �
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