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Isomorphism Classes of Modules
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Abstract. We classify the isomorphism classes of finitely generated torsion OE[[T ]]-modules which are free
over OE of rank 4, where OE is the ring of the integers of a local field E. We apply this classification to the Iwasawa
module associated to the cyclotomic Zp-extension of an imaginary quadratic field.

1. Introduction

Let p be a fixed prime number. Let E be a finite extension over the field Qp of p-adic
numbers and OE the ring of integers of E. Let π be a prime element of OE . We put ΛE =
OE[[T ]] the ring of power series in one variable over OE . For a distinguished polynomial
f (T ) ∈ OE[T ], we consider finitely generated torsion ΛE-modules whose characteristic
ideals are (f (T )), and define the set ME

f (T )
by

ME
f (T ) =

{
[M]

M is a finitely generated torsion ΛE-module,

char(M) = (f (T )) and M is free over OE

}
, (1)

where [M] denotes the isomorphism class of M as a ΛE-module. Sumida proved that ME
f (T )

is a finite set if and only if f (T ) is separable [12]. The case of deg(f (T ))≤ 3 was treated

in [2], [6], [7], [8], [12], and [13]. Sumida and Koike classified ME
f (T ) in the case of

deg(f (T ))≤ 2 ([6], Theorem 2.1 and [12], Proposition 10). Kurihara also classified ME
f (T )

in the case of deg(f (T ))= 2, using higher Fitting ideals ([7], Corollary 9.3).
In the previous paper [8], the author classified ΛE-modules in the case of λ = 3 and

μ = 0 (namely, ΛE-modules which are free overOE of rank 3) and gave numerical examples,
applying Theorem 3.5 in [8] to imaginary quadratic fields. In that case, the distinguished
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polynomial f (T ) is of the form

f (T ) = (T − α)(T − β)(T − γ ) ,

where α, β, γ are distinct elements of the maximal ideal of OE . Using a famous structure
theorem of ΛE-modules (cf. [14], Chapter 13), we regard such a ΛE-module N as a ΛE-
submodule of ΛE/(T − α) ⊕ ΛE/(T − β) ⊕ ΛE/(T − γ ). We note that ΛE/(T − α) ⊕
ΛE/(T − β)⊕ΛE/(T − γ ) is an integral closure of ΛE/(T − α)(T − β)(T − γ ). For each
isomorphism class C ∈ME

f (T )
, we can take a submodule

N(m, n, x) := 〈(1, 1, 1), (0, πm, x), (0, 0, πn)〉OE

of ΛE/(T − α) ⊕ ΛE/(T − β) ⊕ ΛE/(T − γ ) with [N(m, n, x)] = C. Here m and n

are non-negative integers and x is an element of OE and 〈∗〉OE
denotes the OE-submodule

generated by ∗. The non-negative integers m and n are determined only by [N(m, n, x)] ([8],
Corollary 4.2). Theorem 3.5 in [8] explicitly gives a necessary and sufficient condition for
two ΛE-modules N(m, n, x) and N(m, n, x ′) to be isomorphic.

In this paper, we consider the case of deg(f (T )) = 4. More precisely, we treat the case
in which

f (T ) = (T − α)(T − β)(T − γ )(T − δ) ,

where α, β, γ , and δ are distinct elements of the maximal ideal of OE . By the same reason for

the case of deg(f (T )) = 3, for each isomorphism class C ∈ME
f (T ), we can take a submodule

M(	,m, n; x, y, z) := 〈(1, 1, 1, 1), (0, π	, x, y), (0, 0, πm, z), (0, 0, 0, πn)〉OE

of ΛE/(T −α)⊕ΛE/(T −β)⊕ΛE/(T −γ )⊕ΛE/(T − δ) with [M(	,m, n; x, y, z)] = C,
where 	,m, n are non-negative integers and x, y, z are elements of OE . We can prove that
	,m, n are determined by C (see Proposition 1). In Section 2, we define the notion of “ad-
missibility” (see Definition 1). Let (	,m, n; x, y, z) be a 6-tuple with 	,m, n ∈ Z≥0 and
x, y, z ∈ OE satisfying the conditions (a), (b), . . . , (f) in Lemma 1 in Section 2. We prove
that there is an admissible 6-tuple (	,m, n; x, y, z) such that [M] = [M(	,m, n; x, y, z)]
for each [M] ∈ Mf (T ) (see Proposition 4 (2)). By the definition of admissibility of

(	,m, n; x, y, z), we have [M(	,m, n; x, y, z)] ∈ ME
f (T ) if (	,m, n; x, y, z) is admissible

(see Proposition 4 (1)).
The following is our main theorem, which gives a necessary and sufficient condition for

two ΛE-modules M(	,m, n; x, y, z) and M(	,m, n; x ′, y ′, z′) to be isomorphic:

THEOREM 1. Let (	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′) be two admissible 6-tuples.
Suppose that ordE(x) = ordE(x ′) and ordE(z) = ordE(z′), where ordE is the normalized
additive valuation on E such that ordE(π) = 1. Suppose also that ordE(1−x) = ordE(1−x ′)
if 	 = 0. Then the following statements are equivalent:

(i) We have M(	,m, n; x, y, z) ∼=M(	,m, n; x ′, y ′, z′) as ΛE-modules.
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(ii) (I), (II), . . . , and (XII) hold for (	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′).
Here the statements (I), (II), . . . , and (XII) are described in Section 3.

We note that our assumptions ordE(x) = ordE(x ′), ordE(z) = ordE(z′), and ordE(1 − x) =
ordE(1− x ′) are necessary conditions for the two modules to be isomorphic (see Proposition
5, Lemma 2).

In Theorem 1, the number of the quantities we have to check is at most 12, because for
given two 6-tuples (	,m, n; x, y, z), (	,m, n; x ′, y ′, z′), we have only to apply one statement
among (I), (II), . . . , (XII).

We note that the classification in the case of λ = 4 is essentially different from that of
λ = 3. In fact, we have to investigate three elements x, y, z ∈ OE to study M(	,m, n; x, y, z)

in the case of λ = 4, though in that of λ = 3, we need only one element x ∈ OE to study
N(m, n, x).

In the end of Section 3, we also give an algorithm to determine the isomorphism classes
of modules (see Remark 1).

Chase Franks [2] also studies the ΛE-isomorphism classes. He gave an algorithm to
determine whether two ΛE-modules are isomorphic or not for any separable polynomial f (T )

of degree λ ≥ 0. He determined all the elements of ME
f (T ) for a separable distinguished

polynomial f (T ) with deg(f (T )) = 4 satisfying some conditions ([2], Section 5.3). This
algorithm is proceeded by checking whether some matrices he defined belong to GLλ(OE),
where λ =deg(f (T )). In the case of λ = 4, his method is similar to our method in this
paper, but there are some differences, which we will explain here. Let E be a splitting field of
f (T ) and OE the ring of integers of E. He got equations ([2], Section 2.1, Section 5) which
are essentially equivalent to our congruence equations in Proposition 3. He did not solve his
equations explicitly. He considered a map

ϕ1,2 :
(O×E )4 −→ GL4(E)

for ΛE-modules M1 = M(	1,m1, n1; x1, y1, z1) and M2 = M(	2,m2, n2; x2, y2, z2).

This map is defined by ϕ1,2(u1, u2, u3, u4) = G−1
2 diag(u1, u2, u3, u4)G1, where

diag(u1, u2, u3, u4) is the diagonal matrix with u1, u2, u3, u4 ∈ O×E along its diagonal and

Gi =

⎛⎜⎜⎝
1 0 0 0
1 π	i 0 0
1 xi πmi 0
1 yi zi πni

⎞⎟⎟⎠ for i = 1, 2 .

He proved that M1 ∼= M2 as ΛE-modules if and only if im(ϕ1,2) ∩ GL4(OE) 
= ∅ ([2],

Section 2, Theorem 2.1.2), which corresponds to finding units a1, a2, a3, a4 ∈ O×E in our
Proposition 2. In order to check this property im(ϕ1,2)∩GL4(OE) 
= ∅, he took some finite set

S ⊂ (O×E)4 and reduced this property to ϕ1,2(S) ∩ GL4(OE) 
= ∅ ([2], Section 5.2, Theorem
5.2.1). Consequently, he gave an algorithm ([2], Section 5.3) which is proceeded by checking
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the property above for all elements in S. It is a merit of his algorithm to work for arbitrary λ

and separable polynomial f (T ). Our algorithm is different from his and more explicit. The
key to get our main theorem is to solve our congruence equations in Proposition 3 completely
and to give a necessary and sufficient condition whether the roots of our congruence equations
exist in OE or not. The merit of our method is as follows. First, we reduce the problem to
checking the p-adic valuations of the quantities obtained from modules M(	,m, n; x, y, z),
M(	,m, n; x ′, y ′, z′) (see (I), (II), . . . , and (XII) in Section 3). Furthermore, the number
of the quantities we have to check is at most 12 for each statement. On the other hand, the
number of S does not have a good upper bound (at least �S ≤ p	+m+n in the case of E = Qp).
Thus, we get a complete algorithm, see Table 1 in Remark 1.

The outline of this paper is as follows. In Section 2, we prepare some notation and
introduce the notion of admissibility of a 6-tuple (	,m, n; x, y, z). In Section 3, we describe
the statements (I), (II), . . . , and (XII). In Section 4, we prove our main theorem. Applying
Theorem 1, we determine in Corollary 1 the number of the isomorphism classes of ME

f (T )

in the case of E = Qp and ordp(α − β) = ordp(β − γ ) = ordp(γ − δ) = ordp(δ − α) =
ordp(β − δ) = ordp(α − γ )=1, where we write ordp for ordQp . In Section 5, we determine
the isomorphism classes of Iwasawa modules associated to the cyclotomic Z3-extension of

imaginary quadratic fields for Q(
√−12453) and Q(

√−78730).

2. Preliminaries

As in Introduction, let p be a prime number. Let E be a finite extension over the field
Qp of p-adic numbers. Let OE, π, and ordE be the ring of integers in E, a prime element,
and the normalized additive valuation on E such that ordE(π) = 1, respectively. We put
ΛE := OE[[T ]] the ring of power series over OE .

Let M be a finitely generated torsion ΛE-module. By the structure theorem of ΛE-
modules, there is a ΛE-homomorphism

ϕ : M −→
(⊕

i

ΛE/
(
πmi

))⊕
⎛⎝⊕

j

ΛE/
(
fj (T )nj

)⎞⎠
with finite kernel and finite cokernel, where mi, nj are non-negative integers and fj (T ) ∈
OE[T ] is a distinguished irreducible polynomial. We put

char(M) =
⎛⎝∏

i

πmi
∏
j

fj (T )nj

⎞⎠
which is an ideal in ΛE . We denote the ΛE-isomorphism class of M by [M]E or [M].

For a distinguished polynomial f (T ) ∈ OE[T ], we consider finitely generated torsion
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ΛE-modules whose characteristic ideals are (f (T )), and define the set ME
f (T ) by

ME
f (T ) =

{
[M]E

M is a finitely generated torsion ΛE-module ,

char(M) = (f (T )) and M is free over OE

}
. (2)

Now we consider

f (T ) = (T − α)(T − β)(T − γ )(T − δ) , (3)

where α, β, γ , and δ are distinct elements of πOE . We classify all the elements of ME
f (T ) in

the next section.
Let [M]E ∈ ME

f (T ). As in Introduction, we may regard the ΛE-module M as a Λ-

submodule of ΛE/(T − α)⊕ΛE/(T − β)⊕ΛE/(T − γ )⊕ΛE/(T − δ). Namely, since M

has no non-trivial finite ΛE-submodule, there exists an injective ΛE-homomorphism

ϕ :M ↪→ ΛE/(T − α)⊕ΛE/(T − β)⊕ΛE/(T − γ )⊕ΛE/(T − δ) =: E
with finite cokernel. We write E for the right hand side.

Now we fix notation to express such submodules in E . First, by using the canonical
isomorphism ΛE/(T − α) ∼= OE (f (T ) �−→ f (α)), we define an isomorphism

ι : E = ΛE/(T − α)⊕ΛE/(T − β)⊕ΛE/(T − γ )⊕ΛE/(T − δ) −→ O⊕4
E

by (f1(T ), f2(T ), f3(T ), f4(T )) �−→ (f1(α), f2(β), f3(γ ), f4(δ)). We identify E with O⊕4
E

via ι. Thus an element in E is expressed as (a1, a2, a3, a4) ∈ O⊕4
E . Since the rank of M is

equal to 4, we can write M of the form

M = 〈(a1, a2, a3, a4), (b1, b2, b3, b4), (c1, c2, c3, c4), (d1, d2, d3, d4)〉OE
⊂ E ,

where 〈∗〉OE
is the OE-submodule generated by ∗. Further, using this notation, we can ex-

press the action of T by

T (a1, a2, a3, a4) = (αa1, βa2, γ a3, δa4) .

Let M be an OE-submodule of E with rank(M) = 4.

M = 〈(a1, a2, a3, a4), (b1, b2, b3, b4), (c1, c2, c3, c4), (d1, d2, d3, d4)〉OE
⊂ E .

By the same method as [8], we have

M = 〈(πs, a, b, c), (0, πt , d, e), (0, 0, πu, f ), (0, 0, 0, πv)〉OE

for some non-negative integers s, t, u, v and a, b, c, d, e, f ∈ OE . Further, by Lemma 1 in
[13], we may assume that a ΛE-module M is of the form

M = 〈(1, 1, 1, 1), (0, π	, x, y), (0, 0, πm, z), (0, 0, 0, πn)〉OE
⊂ E
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for some non-negative integers 	,m, n and x, y, z ∈ OE . We define an OE-module M by

M(	,m, n; x, y, z) := 〈(1, 1, 1, 1), (0, π	, x, y), (0, 0, πm, z), (0, 0, 0, πn)〉OE
⊂ E ,

where 	,m and n are non-negative integers. We can prove the next lemma by the same method
as Lemma 3.1 in [8].

LEMMA 1. The following two statements are equivalent:
(i) The OE-module M(	,m, n; x, y, z) is a ΛE-submodule.
(ii) The integers 	,m, n and x, y, z ∈ OE satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) 	 ≤ ordE(β − α) ,

(b) m ≤ ordE{(γ − α)− (β − α)π−	x} ,
(c) n ≤ ordE

[
(δ − α)− (β − α)π−	y − {(γ − α)− (β − α)π−	x}π−mz

]
,

(d) m ≤ ordE(γ − β)+ ordE(x) ,

(e) n ≤ ordE{(δ − β)y − (γ − β)xπ−mz} ,
(f) n ≤ ordE(δ − γ )+ ordE(z) .

PROPOSITION 1. Let [M]E, [M ′]E ∈ ME
f (T ), M = M(	,m, n; x, y, z), and M ′ =

M(	′,m′, n′; x ′, y ′, z′). If [M]E = [M ′]E , then we have 	 = 	′, m = m′ and n = n′.

PROOF. For any Λ-module M and ξ ∈ ΛE , we define a map Πξ = ΠM
ξ : M −→ M

by Πξ(y) = ξy. Then we have

�
(

Ker
(
ΠM

(T−α)

)
/Im

(
ΠM

(T−β)

))
= q{ordE(δ−α)+ordE(δ−β)+ordE(δ−γ )−n} ,

�
(

Ker
(
ΠM

(T−γ )

)
/Im

(
ΠM

(T−α)(T−β)(T−δ)

))
= q{ordE(γ−α)+ordE(γ−β)+ordE(γ−δ)−m} .

We put N = Im
(
ΠM

(T−γ )(T−δ)

)
. Then we have

�
(

Ker
(
ΠN

(T−β)

) )
/Im

(
ΠN

(T−α)

))
= q{ordE(β−α)−	} .

Since M ∼= M ′, we have Ker
(
ΠM

(T−γ )

) ∼= Ker
(
ΠM ′

(T−γ )

)
and Im

(
ΠM

(T−α)(T−β)(T−δ)

) ∼=
Im
(
ΠM ′

(T−α)(T−β)(T−δ)

)
. This implies m = m′. We get 	 = 	′ and n = n′ by the same

method. �

For M = M(	,m, n; x, y, z), we put e1 = (1, 1, 1, 1), e2 = (0, π	, x, y), e3 = (0, 0, πm, z),
e4 = (0, 0, 0, πn). For M ′ = M(	,m, n; x ′, y ′, z′), we also put e1

′ = (1, 1, 1, 1), e2
′ =
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(0, π	, x ′, y ′), e3
′ = (0, 0, πm, z′), e4

′ = (0, 0, 0, πn) and

G =

⎛⎜⎜⎝
1 0 0 0
1 π	 0 0
1 x πm 0
1 y z πn

⎞⎟⎟⎠ , G′ =

⎛⎜⎜⎝
1 0 0 0
1 π	 0 0
1 x ′ πm 0
1 y ′ z′ πn

⎞⎟⎟⎠ .

The matrix G is the transition matrix from the basis e1, e2, e3, e4 to the basis
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). The matrix G′ is the transition matrix from
the basis e1

′, e2
′, e3
′, e4
′ to the basis (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). Let

g : M −→ M ′ be a ΛE-isomorphism. Since we have g(T x) = T g(x) for x ∈ M

and T (1, 0, 0, 0) = (α, 0, 0, 0), T (0, 1, 0, 0) = (0, β, 0, 0), T (0, 0, 1, 0) = (0, 0, γ , 0),
T (0, 0, 0, 1) = (0, 0, 0, δ), we can prove the next proposition by the same method as Propo-
sition 4.3 in [8].

PROPOSITION 2. Let M = M(	,m, n; x, y, z) and M ′ = M(	,m, n; x ′, y ′, z′) be
ΛE-modules satisfying [M]E, [M ′]E ∈ ME

f (T ). Assume that g : M −→ M ′ is a ΛE-

isomorphism. We take 〈e1, e2, e3, e4〉 and 〈e1
′, e2
′, e3
′, e4
′〉 as a basis of M and that of M ′,

respectively. Let A be the matrix corresponding to g with respect to the basis 〈e1, e2, e3, e4〉
and the basis 〈e1

′, e2
′, e3
′, e4
′〉. Then we have

G′AG−1 =

⎛⎜⎜⎝
a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎞⎟⎟⎠
for some a1, a2, a3, a4 ∈ O×E .

Let A = (aij ), 1 ≤ i, j ≤ 4. Using this proposition, we have aii = ai for i = 1, 2, 3, 4
and aij = 0 for i < j . Since we have aij ∈ OE for i > j , we get the following proposition
(cf. Proposition 4.5 and Lemma 4.6 in [8] and Lemma 2.1.2 in [2]). We note that we write
a1, a2, a3 for a1

a4
, a2

a4
, a3

a4
, respectively, in the following proposition.

PROPOSITION 3. Let [M]E, [M ′]E ∈ ME
f (T ), M = M(	,m, n; x, y, z), and M ′ =

M(	,m, n, x ′, y ′, z′). Then the following two statements are equivalent:
(i) We have M ∼= M ′ as ΛE-modules.
(ii) There exist a1, a2, a3 ∈ O×E satisfying

a2 ≡ a1 mod π	, (4)

a3 − a1 − (a2 − a1)π
−	x ′ ≡ 0 mod πm , (5)

1− a1 − (a2 − a1)π
−	y ′ − {a3 − a1 − (a2 − a1)π

−	x ′}π−mz′ ≡ 0 mod πn , (6)

a3x ≡ a2x
′ mod πm , (7)
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y − a2y
′ − (a3x − a2x

′)π−mz′ ≡ 0 mod πn , (8)

z ≡ a3z
′ mod πn . (9)

Let R be a set of complete representatives in OE of the elements of the residue field
OE/(π). Namely, R is a subset of OE and each class of OE/(π) contains a unique element in
R. We assume that R contains 0, 1 and fix this complete representatives R. For non-negative
integers k, we set

Sk =
{

k−1∑
i=0

aiπ
i ai ∈ R for i = 0, 1, . . . , k − 1

}
if k > 0 ,

S0 = {0} if k = 0 .

DEFINITION 1. Let (	,m, n; x, y, z) be a 6-tuple with 	,m, n ∈ Z≥0 and x, y, z ∈ OE

satisfying the conditions (a), (b), . . . , (f) in Lemma 1. We call a 6-tuple (	,m, n; x, y, z)

admissible if x ∈ Sm and y, z ∈ Sn.

PROPOSITION 4. (1) If a 6-tuple (	,m, n; x, y, z) is admissible, then

M(	,m, n; x, y, z) becomes a ΛE-module and [M(	,m, n; x, y, z)] ∈ME
f (T ).

(2) Suppose that [M] ∈ ME
f (T )

. Then there is an admissible 6-tuple (	,m, n; x, y, z) such

that [M] = [M(	,m, n; x, y, z)].
PROOF. (1) This follows from Lemma 1.
(2) We suppose that [M] ∈ ME

f (T ). Then, as we explained before Lemma 1, we can

take M(	,m, n; x ′, y ′, z′) such that [M] = [M(	,m, n; x ′, y ′, z′)], where 	,m, n ≥ 0 and
x ′, y ′, z′ ∈ OE . We choose x ∈ Sm and y, z ∈ Sn satisfying x ′ ≡ x mod πm, y ′ + (x −
x ′)π−mz′ ≡ y mod πn and z′ ≡ z mod πn. Then (	,m, n; x, y, z) is admissible. Put
a1 = a2 = a3 = 1. Then equations (4), (5), (6), (7), (8), (9) hold. By Proposition 3, we have
[M] = [M(	,m, n; x ′, y ′, z′)] = [M(	,m, n; x, y, z)]. Thus we get (2). �

The next theorem is the main theorem of our previous paper, which will be used in the proof
of our main theorem. We consider

g(T ) = (T − α)(T − β)(T − γ ) ,

where α, β, γ are distinct elements of the maximal ideal of OE . As in Introduction, we write
N(m, n, x) = 〈(1, 1, 1), (0, πm, x), (0, 0, πn)〉OE

⊂ ΛE/(T −α)⊕ΛE/(T −β)⊕ΛE/(T −
γ ).

THEOREM 2 (Theorem 3.5 in [8]). Let [N(m, n, x)] and [N(m, n, x ′)] ∈ ME
g(T ).

Suppose that ordE(x) < n or x = 0 and that ordE(x ′) < n or x ′ = 0. Then the follow-
ing are equivalent:

(i) We have N(m, n, x) ∼= N(m, n, x ′) as ΛE-modules.
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(ii) Either (I′), (II′), or (III′) holds, where (I′), (II′), and (III′) are

(I′) m 
= 0, x ′ 
= 0 and min

{
ordE

(
πn

x ′

)
, ordE(πm − x ′)

}
≤ ordE

(
x

x ′
− 1

)
,

(II′) x ′ = 0 ,

(III′) m = 0 and ordE(1− x) = ordE(1− x ′) ,

and ordE(x) = ordE(x ′) holds.

�

3. The statements (I) - (XII)

In this section, we describe the statements (I), (II), . . . , and (XII) in Theorem 1. For two
6-tuples (	,m, n; x, y, z), (	,m, n; x ′, y ′, z′), we set the following quantities. If x ′ 
= 0, z′ 
=
0, we put

A= πn

z′
x

x ′
y ′, B = πm

x ′
y ′ − z′ ,

C =−y + z

z′
x

x ′ y
′, D = x ′ − y ′ ,

E = πm − z′, F = π	 − x ′ + (x ′ − y ′)
(

1− x

x ′
)

,

G=−πm + (πm − z′)
(

1− x

x ′
)

.

(I) If x ′ 
= 0, z′ 
= 0, and ordE(A) ≤ ordE(B), then either the following (I-1), (I-2), or (I-3)
hold.

(I-1) All of the following (I-1-a), (I-1-b), (I-1-c), and (I-1-d) are satisfied.

(I-1-a) min

{
ordE

(
πm

x ′

)
, ordE(F ), ordE(G)

}
= ordE

(
πm

x ′

)
,

(I-1-b) ordE(A) ≤ ordE(C) ,

(I-1-c) x = x ′ ,

(I-1-d) min

{
ordE

(
D + x ′

z′
A−1BFπn−m

)
, ordE

(
E + x ′

z′
A−1BGπn−m

)
,

ordE

(
πn

y ′

)}
≤ ordE

(
1− y

y ′

)
.

(I-2) All of the following (I-2-a), (I-2-b), (I-2-c), and (I-2-d) are satisfied.

(I-2-a) min

{
ordE

(
πm

x ′

)
, ordE(F ), ordE(G)

}
= ordE(F ) ,
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(I-2-b) ordE(A) ≤ ordE(C) ,

(I-2-c) ordE(F ) ≤ ordE

(
1− x

x ′
)

,

(I-2-d) min

{
ordE

(
A−1B

πn

z′
+ πm

x ′
DF−1

)
, ordE(E −DF−1G), ordE

(
πn

y ′

)}
≤ ordE

(
z

z′
− 1− A−1C

πn

z′
−
( x

x ′
− 1
)

DF−1
)

.

(I-3) All of the following (I-3-a), (I-3-b), (I-3-c), and (I-3-d) are satisfied.

(I-3-a) min

{
ordE

(
πm

x ′

)
, ordE(F ), ordE(G)

}
= ordE(G) ,

(I-3-b) ordE(A) ≤ ordE(C) ,

(I-3-c) ordE(G) ≤ ordE

(
1− x

x ′
)

,

(I-3-d) min

{
ordE

(
A−1B

πn

z′
+ πm

x ′
EG−1

)
, ordE(D − EFG−1), ordE

(
πn

y ′

)}
≤ ordE

(
z

z′
− 1− A−1C

πn

z′
−
( x

x ′
− 1
)

EG−1
)

.

(II) If x ′ 
= 0, z′ 
= 0, and ordE(A) > ordE(B), then either the following (II-1), (II-2), or
(II-3) holds.

(II-1) All of the following (II-1-a), (II-1-b), (II-1-c), and (II-1-d) are satisfied.

(II-1-a) min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)

}
= ordE

(
πn

z′

)
,

(II-1-b) ordE(B) ≤ ordE(C) ,

(II-1-c) z = z′ ,

(II-1-d) min

{
ordE

(
F + z′

x ′
AB−1Dπm−n

)
, ordE

(
G+ z′

x ′
AB−1Eπm−n

)
,

ordE

(
πn
(

1− x

x ′
)
+ z′AB−1 πm

x ′

)
, n+m− ordE(Bx ′)

}
≤ ordE

(
x

x ′
− 1− B−1C

πm

x ′

)
.

(II-2) All of the following (II-2-a), (II-2-b), (II-2-c), and (II-2-d) are satisfied.

(II-2-a) min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)} = ordE(D) ,

(II-2-b) ordE(B) ≤ ordE(C) ,
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(II-2-c) ordE(D) ≤ ordE

(
1− z

z′

)
,

(II-2-d) min

{
ordE

(
AB−1 πm

x ′
+ πn

z′
D−1F

)
, ordE(G−D−1EF) ,

n+ ordE

(
−
(

1− x

x ′
)
+D−1F

)
, n+m− ordE(Bx ′)

}
≤ ordE

(
x

x ′
− 1− B−1C

πm

x ′
−
(

z

z′
− 1

)
D−1F

)
.

(II-3) All of the following (II-3-a), (II-3-b), (II-3-c), and (II-3-d) are satisfied.

(II-3-a) min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)

}
= ordE(E) ,

(II-3-b) ordE(B) ≤ ordE(C) ,

(II-3-c) ordE(E) ≤ ordE

(
1− z

z′

)
,

(II-3-d) min

{
ordE

(
AB−1 πm

x ′
+ πn

z′
E−1G

)
, ordE(F −DE−1G) ,

n+ ordE

(
−
(

1− x

x ′
)
+ E−1G

)
, n+m− ordE(Bx ′)

}
≤ ordE

(
x

x ′
− 1− CB−1 πm

x ′
−
(

z

z′
− 1

)
E−1G

)
.

(III) If 	 
= 0,m 
= 0, and n = 0, then the following (III-a) holds.

(III-a) min

{
ordE

(
πm

x ′

)
, ordE(π	 − x ′)

}
≤ ordE

( x

x ′
− 1
)

if x ′ 
= 0 .

(IV) If 	 
= 0 and m = 0, then either the following (IV-1), (IV-2), or (IV-3) holds.
(IV-1) All of the following (IV-1-a), (IV-1-b), and (IV-1-c) are satisfied.

(IV-1-a) y ′ 
= 0 and z′ 
= 0 ,

(IV-1-b) ordE(y) = ordE(y ′) ,

(IV-1-c) min

{
n, ordE

(
(1− z′)π

n

y ′

)
, ordE(π	(1− z′)− y ′)

}
≤ ordE

(
z− 1− (z′ − 1)

y

y ′

)
.

(IV-2) All of the following (IV-2-a), (IV-2-b), and (IV-2-c) are satisfied.

(IV-2-a) y ′ 
= 0 and z′ = 0 ,
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(IV-2-b) ordE(y) = ordE(y ′) ,

(IV-2-c) min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′)

}
≤ ordE

(
y

y ′
− 1

)
.

(IV-3) All of the following (IV-3-a) and (IV-3-b) are satisfied.

(IV-3-a) y ′ = y = 0 ,

(IV-3-b) ordE(1− z) = ordE(1− z′) .

(V) If 	 
= 0,m 
= 0, n 
= 0, and z′ = 0, then either the following (V-1), (V-2), (V-3), (V-4),
or (V-5) holds.

(V-1) All of the following (V-1-a), (V-1-b), and (V-1-c) are satisfied.

(V-1-a) x ′ 
= 0, y ′ 
= 0 and min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′)

}
= ordE

(
πn

y ′

)
,

(V-1-b) y = y ′ ,

(V-1-c) min

{
ordE

(
πm

x

)
, ordE

(
π	 − x ′ − x ′

x
− (π	 − y ′)

(
1− x ′

x

))}
≤ ordE

(
1− x ′

x

)
.

(V-2) All of the following (V-2-a), (V-2-b), (V-2-c), and (V-2-d) are satisfied.

(V-2-a) x ′ 
= 0, y ′ 
= 0 and min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′)

}
= ordE(π	 − y ′) ,

(V-2-b) ordE(y) = ordE(y ′) ,

(V-2-c) ordE(π	 − y ′) ≤ ordE

(
y

y ′
− 1

)
,

(V-2-d) min

{
ordE

(
πn

y ′

(
1− x ′

x

)
− πn

y ′
π	 − x ′ − x ′x−1

π	 − y ′

)
, ordE

(
πn(π	 − x ′ − x ′x−1)

π	 − y ′

)
,

ordE

(
πm

x

)}
≤ ordE

(
y

y ′
(

1− x

x ′
)
−
(

y

y ′
− 1

)
π	 − x ′ − x ′x−1

π	 − y ′

)
.

(V-3) All of the following (V-3-a), (V-3-b), and (V-3-c) are satisfied.

(V-3-a) x ′ 
= 0 and y ′ = 0 ,

(V-3-b) y = 0 ,

(V-3-c) min

{
ordE

(
πm

x

)
, ordE(π	 − x)

}
≤ ordE

(
1− x ′

x

)
.

(V-4) All of the following (V-4-a), (V-4-b), and (V-4-c) are satisfied.

(V-4-a) x ′ = 0 and y ′ 
= 0 ,
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(V-4-b) ordE(y) = ordE(y ′) ,

(V-4-c) min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′)

}
≤ ordE

(
1− y

y ′

)
.

(V-5) The following is satisfied.

x ′ = x = 0 and y = y ′ = 0 .

(VI) If 	 
= 0,m 
= 0, x ′ = 0, and z′ 
= 0, then either the following (VI-1), (VI-2), (VI-3), or
(VI-4) holds.

(VI-1) All of the following (VI-1-a), (VI-1-b), and (VI-1-c) are satisfied.

(VI-1-a) y ′ 
= 0 and min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′), ordE(z′)

}
= ordE

(
πn

y ′

)
,

(VI-1-b) y = y ′,

(VI-1-c) min

{
ordE

(
πn

z′

)
, ordE(y ′), ordE(πm − z′)

}
≤ ordE

(
1− z

z′

)
.

(VI-2) All of the following (VI-2-a), (VI-2-b), (VI-2-c), and (VI-2-d) are satisfied.

(VI-2-a) y ′ 
= 0 and min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′), ordE(z′)

}
= ordE(π	 − y ′) ,

(VI-2-b) ordE(π	 − y ′) ≤ ordE

(
y

y ′
− 1

)
,

(VI-2-c) min

{
ordE

(
πn

z′

)
, ordE

(
πm − z′π	

π	 − y ′

)}
≤ ordE

(
z

z′
− 1+ y − y ′

π	 − y ′

)
,

(VI-2-d) ordE(y) = ordE(y ′) .

(VI-3) All of the following (VI-3-a), (VI-3-b), (VI-3-c), and (VI-3-d) are satisfied.

(VI-3-a) y ′ 
= 0 and min

{
ordE

(
πn

y ′

)
, ordE(π	 − y ′), ordE(z′)

}
= ordE(z′) ,

(VI-3-b) ordE(z′) ≤ ordE

(
y

y ′
− 1

)
,

(VI-3-c) min

{
ordE

(
πn

z′

)
, ordE

(
πn

y ′
1

z′
(πm − z′)

)
, ordE

(
−y ′ + (π	 − y ′) 1

z′
(πm − z′)

)}
≤ ordE

(
z

z′
− 1+

(
y

y ′
− 1

)
1

z′
(πm − z′)

)
,

(VI-3-d) ordE(y) = ordE(y ′) .
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(VI-4) All of the following (VI-4-a) and (VI-4-b) are satisfied.

(VI-4-a) y = y ′ = 0 ,

(VI-4-b) min

{
ordE

(
πn

z′

)
, ordE(πm − z′)

}
≤ ordE

(
z

z′
− 1

)
.

(VII) If 	 = 0,m 
= 0, n 
= 0, x ′ 
= 0, 1, y ′ 
= 0, and z′ = 0, then the following (VII-a) and
(VII-b) hold.

(VII-a) ordE(y) = ordE(y ′), ordE(1− y) = ordE(1− y ′) ,

(VII-b) min

{
ordE

(
πn

y ′
(1− y ′)

)
, ordE

(
πm

x
(1− y ′)

)
, ordE

(
πm

1− x ′
(1− y ′)

)
, n

}
≤ ordE

(
1− y − y

y ′
x ′

x

1− x

1− x ′
(1− y ′)

)
.

(VIII) If 	 = 0,m 
= 0, n 
= 0, x ′ 
= 0, 1, y ′ = 0, and z′ = 0, then the following holds.

(VIII-a) y = 0 .

(IX) If 	 = 0,m 
= 0, n 
= 0, and x ′ = 0, then either the following (IX-1), (IX-2), (IX-3), or
(IX-4) holds.
(IX-1) All of the following (IX-1-a), (IX-1-b), and (IX-1-c) are satisfied.

(IX-1-a) y ′ 
= 0 and z′ 
= 0 ,

(IX-1-b) ordE(y) = ordE(y ′) ,

(IX-1-c) min

{
ordE

(
πn

z′
(1− y ′)

)
, n, ordE

(
πm(1− y ′)− z′

)}
≤ ordE

(
y − 1− z

z′
(y ′ − 1)

)
.

(IX-2) All of the following (IX-2-a) and (IX-2-b) are satisfied.

(IX-2-a) y ′ 
= 0 and z′ = 0 ,

(IX-2-b) ordE(y) = ordE(y ′), ordE(1− y) = ordE(1− y ′) .

(IX-3) All of the following (IX-3-a), (IX-3-b), and (IX-3-c) are satisfied.

(IX-3-a) y ′ = 0 and z′ 
= 0 ,

(IX-3-b) y = 0 ,

(IX-3-c) min

{
ordE

(
πn

z′

)
, ordE(πm − z′)

}
≤ ordE

(
z

z′
− 1

)
.
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(IX-4) The following is satisfied.

(IX-4-a) y = y ′ = 0 and z = z′ = 0 .

(X) If 	 = 0,m 
= 0, n 
= 0, and x ′ = 1, then either the following (X-1) or (X-2) holds.
(X-1) All of the following (X-1-a), (X-1-b), and (X-1-c) are satisfied.

(X-1-a) z′ 
= 0 ,

(X-1-b) ordE(1− y) = ordE(1− y ′) ,

(X-1-c) min

{
ordE

(
πn

z′
y ′
)

, ordE(πmy ′ − z′), n
}
≤ ordE

(
z

z′
y ′ − y

)
.

(X-2) All of the following (X-2-a) and (X-2-b) are satisfied.

(X-2-a) z′ = 0 ,

(X-2-b) ordE(y) = ordE(y ′), ordE(1− y) = ordE(1− y ′) .

(XI) If 	 = 0 and m = 0, then the following (XI-a) and (XI-b) hold.

(XI− a) ordE(y) = ordE(y ′) ,

(XI− b) ordE(1− y − z) = ordE(1− y ′ − z′) .

(XII) 	 = 0, m 
= 0, and n = 0.

REMARK 1. We can check the statements (I), (II), . . . , (XII) by calculating p-adic
valuations of quantities described by using (	,m, n, x, y, z) and (	,m, n, x ′, y ′, z′). The fol-
lowing Table 1 is the algorithm of our main Theorem 1. This table can be used when we
check whether two ΛE-modules M(	,m, n; x, y, z) and M(	,m, n; x ′, y ′, z′) are isomorphic
or not.
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TABLE 1

	 = 0

m = 0 m = 0(XI) (IV)

n = 0 n = 0(XII) (III)

x′ = 0 z′ = 0(IX) (V)

x′ = 1 x′ = 0(X)
YES

(VI)

z′ 
= 0 ordE(A) ≤ ordE(B) (I)

y′ = 0 (II)(VIII)

YES

NO

NO

(VII)

YES

�����
���

���
���

��
NO

����
���

���
���

���

YES
��

YES
��

NO

��
�� ��

�� ��

YES
��

YES
��

��

YES ��

YES
��

NO

��

NO

��

NO

��

NO

��

NO

��

YES ��

YES ��

YES ��

��

NO

��

NO

��

NO

��

��

��

A = πn

z′
x

x′ y
′ and B = πm

x′ y′ − z′, which is defined before the statement of (I).

4. Proof of Theorem 1

In this section, we prove our main Theorem 1. We fix notation. Let Mmn(E) be the set
of m× n matrices with entries in E and GLm(OE) be the group of m×m matrices over OE

that are invertible. For A and B ∈ Mmn(E), we write A ∼ B if there is P ∈ GLm(OE) such
that PA = B. This is an equivalence relation on Mmn(E).

First we give necessary conditions for the two modules M(	,m, n; x, y, z) and
M(	,m, n; x ′, y ′, z′) to be isomorphic.
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PROPOSITION 5. Let (	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′) be admissible. Assume
that M(	,m, n; x, y, z) ∼= M(	,m, n; x ′, y ′, z′) as ΛE-modules. Then we have ordE(x) =
ordE(x ′) and ordE(z) = ordE(z′).

PROOF. We assume that M(	,m, n; x, y, z) ∼= M(	,m, n; x ′, y ′, z′) as ΛE-modules.
Then we have (7) and (9) by Proposition 3. If ordE(x) > ordE(x ′), we get ordE(a3x−a2x

′) =
ordE(x ′) ≥ m by (7). Since (	,m, n; x ′, y ′, z′) is admissible, this implies x ′ = 0. This
contradicts ordE(x) > ordE(x ′). By the same reason, ordE(x) < ordE(x ′) does not hold.
Therefore, we have ordE(x) = ordE(x ′). In the same way, we get ordE(z) = ordE(z′). �

Further in the case of 	 = 0, we have the following

LEMMA 2. Let [M]E, [M ′]E ∈ ME
f (T ). We put M = M(0,m, n; x, y, z), M ′ =

M(0,m, n; x ′, y ′, z′). Then the following two statements are equivalent:
(i) We have M ∼= M ′ as ΛE-modules.
(ii) There exist a1, a2, a3 ∈ O×E satisfying (6), (7), (8), (9) in Proposition 3 and

a3(1− x) ≡ a1(1− x ′) mod πm. (10)

In particular, if (i) holds and (0,m, n; x, y, z), (0,m, n; x ′, y ′, z′) are admissible, we have

ordE(1− x) = ordE(1− x ′) .

PROOF. The conditions (10) and (5) are equivalent under the condition (7). Hence we
get the conclusion. �

PROOF (Proof of Theorem 1). By the Table 1 in Remark 1, for given two 6-tuples
(	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′), we have only to apply one statement among (I), (II),
. . . , and (XII). Using the following Propositions 6, 7, 8, we can prove Theorem 1 in the case
of (I), (III), and (VII). By the same method as these Propositions, we can prove for the rest
cases. This implies that our Theorem 1 holds. �

Let [M(	,m, n; x, y, z)] ∈ME
f (T )

. We fix non-negative integers 	,m, and n.

PROPOSITION 6. Let (	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′) be admissible. Assume
that x ′ 
= 0, z′ 
= 0 if 	 
= 0 and that x ′ 
= 0, 1, z′ 
= 0 if 	 = 0. Suppose that ordE(x) =
ordE(x ′), ordE(z) = ordE(z′), and ordE(A) ≤ ordE(B), where A,B are defined before the
statement (I). Suppose also that ordE(1− x) = ordE(1− x ′) if 	 = 0. Then the following are
equivalent:

(i) We have M(	,m, n; x, y, z) ∼=M(	,m, n; x ′, y ′, z′) as ΛE-modules.
(ii) The statement (I) holds for (	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′).
PROOF. First we prove (i) ⇒ (ii). Let A,B,C,D,E,F,G ∈ OE be the elements

defined before the statement (I). We note that these elements are all in OE . By Proposition 3,

we have units a1, a2, a3 ∈ O×E satisfying

a2 − a1 = π	v, (11)
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a3 − a1 − (a2 − a1)π
−	x ′ = πmw , (12)

1− a1 − (a2 − a1)π
−	y ′ −

{
a3 − a1 − (a2 − a1)π

−	x ′
}

π−mz′ = πnη , (13)

a3x − a2x
′ = πmξx , (14)

y − a2y
′ − ξxz

′ = πnξy , (15)

z− a3z
′ = πnξz (16)

for some v,w, η, ξx , ξy and ξz ∈ OE . By the equations (11), (14) and (16), we have

a1 =
(

z

z′
− πn

z′
ξz

)
x

x ′
− πm

x ′
ξx − π	v ,

a2 =
(

z

z′
− πn

z′
ξz

)
x

x ′
− πm

x ′
ξx ,

a3 = z

z′
− πn

z′
ξz .

By the equations (12), (13), (15), we have

πn

z′
( x

x ′
− 1
)

ξz + πm

x ′
ξx + (π	 − x ′)v − πmw = z

z′
( x

x ′
− 1
)

, (17)

πn

z′
x

x ′
ξz + πm

x ′
ξx + (π	 − y ′)v − z′w − πnη = z

z′
x

x ′
− 1 , (18)

πn

z′
x

x ′
y ′ξz +

(
πm

x ′
y ′ − z′

)
ξx − πnξy = z

z′
x

x ′
y ′ − y . (19)

By the equations (17), (18) and (19), we obtain

⎛⎜⎝ −πn

z′
(
1− x

x ′
)

πm

x ′ π	 − x ′ −πm 0 0
πn

z′
x
x ′

πm

x ′ π	 − y ′ −z′ −πn 0
πn

z′
x
x ′ y
′ πm

x ′ y
′ − z′ 0 0 0 −πn

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ξz

ξx

v

w

η

ξy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎝ − z

z′
(
1− x

x ′
)

z
z′

x
x ′ − 1

z
z′

x
x ′ y
′ − y

⎞⎠ .

Therefore, the augmented matrix for the system of the equations (17), (18) and (19) is⎛⎜⎝ −πn

z′
(
1− x

x ′
)

πm

x ′ π	 − x ′ −πm 0 0 − z
z′
(
1− x

x ′
)

πn

z′
x
x ′

πm

x ′ π	 − y ′ −z′ −πn 0 z
z′

x
x ′ − 1

A B 0 0 0 −πn C

⎞⎟⎠ . (20)
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By elementary row operations, the matrix in (20) is equivalent to⎛⎜⎝ −πn

z′
(
1− x

x ′
)

πm

x ′ π	 − x ′ −πm 0 0 − z
z′
(
1− x

x ′
)

πn

z′ 0 x ′ − y ′ πm − z′ −πn 0 z
z′ − 1

A B 0 0 0 −πn C

⎞⎟⎠

∼
⎛⎜⎝ A B 0 0 0 −πn C

πn

z′ 0 D E −πn 0 z
z′ − 1

−πn

z′
(
1− x

x ′
)

πm

x ′ π	 − x ′ −πm 0 0 − z
z′
(
1− x

x ′
)
⎞⎟⎠

∼
⎛⎜⎝ A B 0 0 0 −πn C

πn

z′ 0 D E −πn 0 z
z′ − 1

0 πm

x ′ F G −πn
(
1− x

x ′
)

0 x
x ′ − 1

⎞⎟⎠ . (21)

By the matrix (21), we get Aξz + Bξx − πnξy = C. Since ξx, ξy, ξz ∈ OE and ordE(A) ≤
ordE(B), we have min {ordE(A), n} ≤ ordE(C). Further we have ordE(A) ≤ ordE(C).
Indeed, if ordE(y ′) ≥ ordE(z′), we have ordE(B) = ordE(z′) < n, since we assume that
(	,m, n; x, y, z), (	,m, n; x ′, y ′, z′) are admissible. If ordE(y ′) < ordE(z′), we have ordE(A)

< n. Thus we get ordE(A) ≤ ordE(C). We will prove that the statement (I) holds for
(	,m, n; x, y, z) and (	,m, n; x ′, y ′, z′). First we note that either (I-1-a), (I-2-a) or (I-3-a)

holds. We suppose that (I-2-a) holds. By the matrix (21), we have πm

x ′ ξx + Fv + Gw −
πn(1 − x

x ′ )η = x
x ′ − 1. Since we suppose (I-2-a), min{ordE(

πm

x ′
), ordE(F ), ordE(G)} =

ordE(F ). This implies ordE(F ) ≤ ordE( x
x ′ − 1). Thus we get the condition (I-2-c). Since

ordE(A) < n, ordE(F ) < m, we have A 
= 0 and F 
= 0. By elementary row operations for
(21), we have⎛⎜⎝ 1 A−1B 0 0 0 −A−1πn A−1C

0 −A−1B πn

z′ D E −πn A−1 π2n

z′ −A−1C πn

z′ + z
z′ − 1

0 πm

x ′ F
−1 1 GF−1 −πn

(
1− x

x ′
)
F−1 0

(
x
x ′ − 1

)
F−1

⎞⎟⎠

∼
⎛⎜⎝ 1 A−1B 0 0 0 −A−1πn A−1C

0 πm

x ′ F
−1 1 GF−1 −πn

(
1− x

x ′
)
F−1 0

(
x
x ′ − 1

)
F−1

0 U 0 E −GF−1D S A−1 π2n

z′ T

⎞⎟⎠ ,

where T = −A−1C πn

z′ + z
z′ − 1 − ( x

x ′ − 1)F−1D, S = −πn + πn(1 − x
x ′ )F

−1D and

U = −A−1B πn

z′ − πm

x ′ F
−1D. By the matrix above, we have

Uξx + (E −GF−1D)w + Sη + A−1 π2n

z′
ξy = T .

This implies that min{ordE(U), ordE(E − DF−1G), ordE(S), ordE(A−1 π2n

z′ )} ≤ ordE(T ).

Since we have ordE(A−1 π2n

z′ ) = ordE(πn

y ′ ), this is the condition (I-2-d). (I-2-b) was already
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obtained after (21). Therefore (I-2) holds. We can prove the case of (I-1) and that of (I-3) by
the same method. Thus we have obtained (ii).

We next prove (ii)⇒ (i). Then either (I-1), (I-2) or (I-3) holds. We suppose that (I-2)
holds. By the condition (I-2-d), there exist integers ξx,w, η, ξy ∈ OE satisfying

Uξx + (E −DF−1G)w + Sη + A−1 π2n

z′
ξy = T .

We put

v =
( x

x ′
− 1
)

F−1 − πm

x ′
F−1ξx −GF−1w + πn

(
1− x

x ′
)

F−1η ,

ξz =A−1C − A−1Bξx + A−1πnξy .

By (I-2-a), (I-2-b), (I-2-c), we have v, ξz ∈ OE . By the converse operation of the proof of
(i)⇒ (ii), ξx, ξy, ξz, w, η and v satisfy (17), (18) and (19). We also set

a1 =
(

z

z′
− πn

z′
ξz

)
x

x ′
− πm

x ′
ξx − π	v ,

a2 =
(

z

z′
− πn

z′
ξz

)
x

x ′
− πm

x ′
ξx ,

a3 = z

z′
− πn

z′
ξz .

Then a1, a2, a3 satisfy (11), (12), (13), (14), (15), (16). In the case where 	 
= 0, we can check
a1, a2, a3 ∈ O×E since ordE(x) = ordE(x ′), ordE(z) = ordE(z′), and z′ 
= 0. In the case of
	 = 0, we have

a1 = z

z′
1− x

1− x ′
− πn

z′
1− x

1− x ′
ξz + πm

1− x ′
ξx − πm

1− x ′
w .

We note that we have ordE(
πm

1− x
) > 0 since x ∈ Sm. Thus we have a1 ∈ O×E . By the

same method, we can show a2, a3 ∈ O×E . Then a1, a2, a3 satisfy equalities (4), (5), (6), (7),
(8), (9). By Proposition 3, we obtain (i). If (I-1) or (I-3) holds, we can prove (i) by the same
method. �

Next we treat the case where 	 
= 0 and n = 0. In this case, we have y = z = 0 for any
admissible (	,m, n; x, y, z).

PROPOSITION 7. Suppose that (	,m, 0; x, 0, 0) and (	,m, 0; x ′, 0, 0) are admissible.
Suppose also that ordE(x) = ordE(x ′) and 	 
= 0. Then the following are equivalent:

(i) We have M(	,m, 0; x, 0, 0)∼=M(	,m, 0; x ′, 0, 0) as ΛE-modules.
(ii) The statement (III) holds for (	,m, 0; x, 0, 0) and (	,m, 0; x ′, 0, 0).
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PROOF. We prove (i)⇒ (ii). By Proposition 3, we have units a1, a2, a3 ∈ O×E satisfy-
ing

a2 ≡ a1 mod π	,

1− a1 − (a2 − a1)π
−	x ′ ≡ 0 mod πm ,

x ≡ a2x
′ mod πm .

By Proposition 4.5 and Lemma 4.6 in [8], this is equivalent to say that N(	, n, x) ∼=
N(	, n, x ′), where N(	, n, x) = 〈(1, 1, 1), (0, π	, x), (0, 0, πn) 〉OE

⊂ ΛE/(T − α) ⊕
ΛE/(T − β) ⊕ ΛE/(T − γ ). By Theorem 2, this implies that (I’) or (II’) holds. This is the
same as statement (III). Hence we have (ii).

Next we suppose (ii). Then M(x, 0, 0) ∼= M(x ′, 0, 0) by Theorem 2. Thus we have
(i). �

From now on, we treat the case where 	 = 0 and z′ = 0. Let (0,m, n; x, y, z) and
(0,m, n; x ′, y ′, 0) be admissible. If ordE(z) = ordE(z′), then we have z = 0.

PROPOSITION 8. Suppose that (0,m, n; x, y, 0) and (0,m, n; x ′, y ′, 0) are admissi-
ble. Suppose also that ordE(x) = ordE(x ′), ordE(1 − x) = ordE(1 − x ′), x ′ 
= 0, 1, and
y ′ 
= 0. Then the following are equivalent:

(i) We have M(0,m, n; x, y, 0)∼=M(0,m, n; x ′, y ′, 0) as ΛE-modules.
(ii) The statement (VII) holds for (0,m, n; x, y, 0) and (0,m, n; x ′, y ′, 0).

PROOF. First we assume (i). By Lemma 2, we have units a1, a2, a3 ∈ O×E satisfying

(10), (6), (7), (8), and (9). By (8), we have ordE(y) = ordE(y ′). Further using (6) and (8), we
get

1− y ≡ a1(1− y ′) mod πn . (22)

Hence we have (VII-a). We show (VII-b). By (10), (7), (8), we obtain

a1 =
{(

y

y ′
− πn

y ′
ξy

)
x ′

x
+ πm

x
ξx

}
1− x

1− x ′
− πm

1− x ′
w′, (23)

a2 = y

y ′
− πn

y ′
ξy , (24)

a3 =
(

y

y ′
− πn

y ′
ξy

)
x ′

x
+ πm

x
ξx (25)

for some ξx, ξy,w′ ∈ OE . By (22), we have 1 − y − a1(1 − y ′) = πnη for some η ∈ OE .
This implies that

−πn

y ′
1− x

1− x ′
x ′

x
(1− y ′)ξy + πm

x

1− x

1− x ′
(1− y ′)ξx + πm

1− x ′
(1− y ′)w′ + πnη
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= 1− y − y

y ′
x ′

x

1− x

1− x ′
(1− y ′) . (26)

This implies that (VII-b). Conversely, we suppose that (ii) holds. By (VII-b), there ex-
ist ξx, ξy,w′, and η ∈ OE satisfying (26). We put a1, a2, and a3 as (23), (24), and (25),
respectively. Since (0,m, n; x, y, 0), (0,m, n; x ′, y ′, 0) are admissible and (VII-a) holds,

a2, a3 ∈ O×E . Using ordE(1− x) = ordE(1 − x ′), we have a1 ∈ O×E . It is easy to check that
a1, a2, and a3 satisfy (10), (5), (6), (7), (8), and (9). By Lemma 2, we get (i). �

As an example, we classify all the elements of Mf (T ) in the case of E = Qp and
ordp(α−β) = ordp(β−γ ) = ordp(γ − δ) = ordp(δ−α) = ordp(β− δ) = ordp(α−γ )=1,

where we write Mf (T ) for MQp

f (T ) and ordp for ordQp . This example was also treated by

C.Franks. We note that there is no distinguished polynomial which has this property in the
case of p = 2 and 3. In the following, we take R = {0, 1, . . . , p − 1}, which is a set of
complete representatives in Zp of the elements of the residue field Zp/(p).

COROLLARY 1. Let p ≥ 5. Let f (T ) be the same polynomial as (3) in Section 2 and
E = Qp. Assume that ordp(α−β)= ordp(β−γ )= ordp(γ−δ)= ordp(δ−α)= ordp(β−δ)

= ordp(α − γ ) = 1. Then we have �Mf (T ) = 2p + 36.

We note that this corollary holds for any totally ramified extensions of Qp.

PROOF (Sketch of the proof of Corollary 1). For fixed non-negative integers 	,m, and
n, we put

ME
f (T )(	,m, n) :=

{
[M(	,m, n; x, y, z)] ∈ME

f (T ) x, y, z ∈ Zp

}
.

By Proposition 5, we have

ME
f (T ) =

∐
	

∐
n

∐
m

ME
f (T )(	,m, n) . (27)

Using the conditions of Lemma 1, we have 0 ≤ 	 ≤ 1, 0 ≤ m ≤ 2, and 0 ≤ n ≤ 3. Indeed,
by (a), we have 0 ≤ 	 ≤ ordp(β − α) = 1. If ordp(x) ≥ 2, we have m ≤ 1 by (b). If
ordp(x) ≤ 1, we obtain m ≤ 2 by (d). These imply 0 ≤ m ≤ 2. We can prove that 0 ≤ n ≤ 3
by Lemma 1. In fact, by (f ), we have n ≤ 3 in the case of ordp(z) ≤ 2. We suppose
ordp(z) ≥ 3. In the case of ordp(y) ≤ 1, we have n ≤ 2 by (e). If ordp(y) ≥ 2, we have
n ≤ 1 by (c). Thus we get 0 ≤ n ≤ 3. We denote M(	,m, n; x, y, z) by M(x, y, z) for the
fixed triple 	,m, and n. Then we get the following:

ME
f (T )(0, 0, 0)= {[M(0, 0, 0)]} ,

ME
f (T )(0, 0, 1)=

{
[M(0, 2, p − 1)], [M(0, 1, 1)], [M(0, 0, 0)], [M(0, 0, 1)],
[M(0, 0, 2)], [M(0, 1, 0)], [M(0, 2, 0)]

}
,
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ME
f (T )(0, 1, 0)= {[M(0, 0, 0)], [M(1, 0, 0)], [M(2, 0, 0)]} ,

ME
f (T )(0, 1, 1)=

⎧⎪⎪⎨⎪⎪⎩
[M(2, 2, 0)], . . . , [M(p − 1, 2, 0)], [M(p − 2, 4, 0)],
[M(1, 1, 0)], [M(1, 2, 0)], [M(2, 1, 0)], [M(1, 0, 0)],
[M(0, 0, 0)], [M(0, 1, 0)], [M(0, 2, 0)], [M(2, 0, 0)]

⎫⎪⎪⎬⎪⎪⎭ ,

ME
f (T )(0, 1, 2)=

⎧⎨⎩
[
M
(

0, 0, δ−α
γ−α

p
)]

,
[
M
(

0, p, δ−α
γ−α

p
)]

,
[
M
(

1, 1+ p,
δ−β
γ−β

p
)]

,[
M
(

1, 1,
δ−β
γ−β

p
)]

,
[
M
(

β−δ
β−α

,
β−γ
β−α

, p
)] ⎫⎬⎭ ,

ME
f (T )(1, 0, 0)= {[M(0, 0, 0)]} ,

ME
f (T )(1, 0, 1)= {[M(0, 0, 0)], [M(0, 0, 1)], [M(0, 0, 2)]} ,

ME
f (T )(1, 0, 2)=

{[
M

(
0,

δ − α

β − α
p, 0

)]
,

[
M

(
0,

δ − α

β − α
p, p

)]}
,

ME
f (T )(1, 1, 0)= {[M(0, 0, 0)]} ,

ME
f (T )(1, 1, 1)=

{
[M(0, 0, 0)],

[
M

(
0,

γ − α

β − α
, 1

)]}
,

ME
f (T )(1, 1, 2)=

{[
M

(
0, 0,

δ − α

γ − α
p

)]
,

[
M

(
0, pu,

δ − α

γ − α
p

(
1− β − α

δ − α
u

))]
u = 1, . . . , p − 1

}
,

ME
f (T )(1, 2, 0)=

{[
M

(
γ − α

β − α
p, 0, 0

)]}
,

ME
f (T )(1, 2, 1)=

{[
M

(
γ − α

β − α
p, 0, 0

)]}
,

ME
f (T )(1, 2, 2)=

{[
M

(
γ − α

β − α
p,

δ − α

β − α
p, 0

)]}
,

ME
f (T )(1, 2, 3)=

{[
M

(
γ − α

β − α
p,

δ − α

β − α
p,

(δ − α)(δ − β)

(γ − α)(γ − β)
p2
)]}

.

The following table is the number of ME
f (T )(	,m, n) for each (	,m, n). We pick up the case

of (	,m, n) = (1, 0, 0), (0, 1, 1) and determine ME
f (T )(1, 0, 0) and ME

f (T )(0, 1, 1), using

our Theorem 1. The rest cases are proved by the same method as the case of (1, 0, 0) and
that of (0, 1, 1). First, we consider the former (	,m, n) = (1, 0, 0). This is the simplest case.
Since we have x, y, z ∈ S0, we get x = y = z = 0. Thus we obtain the conclusion.

Next we consider the case of (	,m, n) = (0, 1, 1). This is one of the most complicated
cases. In this case, if (0, 1, 1; x, y, z) is admissible, then we have z = 0. Indeed we suppose
that (0, 1, 1; x, y, z) is admissible. Then x, y, z satisfy (a), (b), (c), (d), (e), (f ) in Lemma
1. We have ordE(zx) ≥ 1 by (e). We have also ordE(z) ≥ 1 by (c). Since z ∈ S1, we
have z = 0. We classify all the elements of ME

f (T )(0, 1, 1). We note that (0, 1, 1; x, y, 0) is
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(	,m, n) �ME
f (T )(	,m, n)

(0, 0, 0) 1
(0, 0, 1) 7
(0, 1, 0) 3
(0, 1, 1) p + 7
(0, 1, 2) 5
(1, 0, 0) 1
(1, 0, 1) 3
(1, 0, 2) 2
(1, 1, 0) 1
(1, 1, 1) 2
(1, 1, 2) p

(1, 2, 0) 1
(1, 2, 1) 1
(1, 2, 2) 1
(1, 2, 3) 1

admissible for any x, y ∈ S1. Let (0, 1, 1; x ′, y ′, 0) be admissible. We consider the following
two cases: {

(i) x ′ ∈ {0, 1} or y ′ ∈ {0, 1} ,
(ii) x ′ 
∈ {0, 1} and y ′ 
∈ {0, 1} .

(i) We suppose that x ′ ∈ {0, 1} or y ′ ∈ {0, 1}. Then we have

M(x, y, 0) ∼= M(x ′, y ′, 0)⇔ ordE(x) = ordE(x ′), ordE(1− x) = ordE(1− x ′) ,

ordE(y) = ordE(y ′) and ordE(1− y) = ordE(1− y ′) .

Indeed, using the Table 1 in Remark 1, the 6-tuple (0, 1, 1; x ′, y ′, 0) corresponds to (VII),
(VIII), (XI), or (X). Therefore the isomorphism classes of M(x, y, 0) satisfying (i) are{

[M(0, 0, 0)], [M(0, 1, 0)], [M(0, 2, 0)], [M(1, 0, 0)],
[M(1, 1, 0)], [M(1, 2, 0)], [M(2, 0, 0)], [M(2, 1, 0)]

}
.

(ii) We suppose that x ′ 
∈ {0, 1} and y ′ 
∈ {0, 1}. Then we have the following

LEMMA 3. We suppose (ii). Then we have

M(x, y, 0) ∼=M(x ′, y ′, 0)⇔ x 
= 0, 1, y 
= 0, 1 and

1− x

x

y

1− y
≡ 1− x ′

x ′
y ′

1− y ′
mod p .
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Further we have

1− x ′

x ′
y ′

1− y ′
mod p ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2− 2

k
mod p

if (x ′, y ′) = (k, 2) ,

2 mod p

if (x ′, y ′) = (p − 2, 4) .

PROOF. Since we suppose (ii), the 6-tuple (0, 1, 1; x ′, y ′, 0) corresponds to (VII) by
the Table 1. Since we assume that x ′ 
= 0, 1 and y ′ 
= 0, 1, the condition (VII-a) says that
x 
= 0, 1 and y 
= 0, 1. By the same reason, the condition (VII-b) says that

1− x

x

y

1− y
≡ 1− x ′

x ′
y ′

1− y ′
mod p .

Thus we get the former. It is easy to show the latter. �

Using Lemma 3, the isomorphism classes of M(x, y, 0) satisfying (ii) are

{[M(p − 2, 4, 0)], [M(k, 2, 0)] 2 ≤ k ≤ p − 1} .

Therefore we obtain �ME
f (T )(0, 1, 1) = p + 7,

ME
f (T )(0, 1, 1)=

⎧⎪⎪⎨⎪⎪⎩
[M(2, 2, 0)], . . . , [M(p − 1, 2, 0)], [M(p− 2, 4, 0)],
[M(1, 1, 0)], [M(1, 2, 0)], [M(2, 1, 0)], [M(1, 0, 0)],
[M(0, 0, 0)], [M(0, 1, 0)], [M(0, 2, 0)], [M(2, 0, 0)]

⎫⎪⎪⎬⎪⎪⎭ .

�
As a preparation for the next section, we prove some propositions. First by Proposition 5.1 in
[8], we have

PROPOSITION 9. For a distinguished polynomial f (T ) ∈ Zp[T ], let E be the splitting
field of f (T ) over Qp. Then the natural map

Ψ :MQp

f (T )
−→ME

f (T ) ([M]Qp �−→ [M ⊗Λ ΛE]E)

is injective.

In order to determine isomorphism classes of modules, we will use the higher Fitting
ideals in the next section. For a commutative ring R and a finitely presented R-module M , we
consider the following exact sequence

Rm f→ Rn → M → 0 ,
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where m and n are positive integers. For an integer 0 ≤ i < n, the i-th Fitting ideal Fitti,R(M)

of M is defined to be the ideal of R generated by all (n − i) × (n − i) minors of the matrix
corresponding to f . This definition does not depend on the choice of the exact sequence above
(see [10]).

PROPOSITION 10. Let E be the splitting field of f (T ) over Qp. Let [M]E ∈ME
f (T )

and M =M(	,m, n; x, y, z). Then we have

Fitt1,ΛE (M) mod (T − δ)= ((δ − α)(δ − β)(δ − γ )π−n) ,

Fitt1,ΛE (M) mod (T − γ )=
{

((γ − α)(γ − β)(γ − δ)zπ−m−n) if z 
= 0 ,

((γ − α)(γ − β)(γ − δ)π−m) if z = 0 .

PROOF. By the action of T , we have

T (1, 1, 1, 1)= (α, β, γ, δ)

= α(1, 1, 1, 1)+ (β − α)π−	(0, π	, x, y)+ {γ − α − (β − α)π−	x}π−m(0, 0, πm, z)

+
[
(δ − α) − (β − α)π−	y − {(γ − α)− (β − α)π−	x}π−mz

]
π−n(0, 0, 0, πn) ,

T (0, π	, x, y)= (0, βπ	, γ x, δy)

= β(0, π	, x, y)+ (γ − β)xπ−m(0, 0, πm, z)

+{(δ − β)y − (γ − β)xπ−mz}π−n(0, 0, 0, πn) ,

T (0, 0, πm, z)= (0, 0, γ πm, δz)

= γ (0, 0, πm, z)+ (δ − γ )zπ−n(0, 0, 0, πn) ,

T (0, 0, 0, πn)= δ(0, 0, 0, πn) .

Then we get the following matrix⎛⎜⎜⎝
T − α −(β − α)π−	 −{γ − α − (β − α)π−	x}π−m a14

0 T − β −(γ − β)xπ−m a24

0 0 T − γ −(δ − γ )zπ−n

0 0 0 T − δ

⎞⎟⎟⎠ ,

where a24 = −{(δ − β)y − (γ − β)xπ−mz}π−n and a14 =
− [(δ − α)− (β − α)π−	y − {(γ − α)− (β − α)π−	x}π−mz

]
π−n. We prove the for-

mer part. By the definition of Fitting ideals, we obtain

Fitt1,ΛE (M) mod (T − δ)

= (ã41, (δ − α)(δ − β)(δ − γ )zπ−n, (δ − α)(δ − β)(δ − γ )π−ny) mod (T − δ) ,
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where

ã41 = det

⎛⎝ −(β − α)π−	 −{γ − α − (β − α)π−	x}π−m a14

T − β −(γ − β)xπ−m a24

0 T − γ −(δ − γ )zπ−n

⎞⎠ .

Since we have

ã41 mod (T − δ) = (δ − α)(δ − β)(δ − γ )π−n mod (T − δ) ,

we obtain the conclusion. We can also prove the latter equation by the same method above. �

PROPOSITION 11. Let f (T ) = g(T )(T − δ), where δ ∈ pZp and g(T ) ∈ Zp[T ]
is an Eisenstein polynomial of degree 3. Let E be the splitting field of g(T ) over Qp. Let

[M]Qp ∈MQp

f (T ) and [M ⊗ ΛE] = [M(	,m, n; x, y, z)] ∈ME
f (T ). Assume that ordE(δ −

α) = ordE(δ − β) = ordE(δ − γ ) = 1, and

M/T M ∼= Z/piZ⊕ Z/pj Z (i, j ∈ Z≥1) .

Then we have n = 0.

PROOF. We have Fitt1,ΛQp
(M) 
= ΛQp , since Fitt1,Zp (M/T M) = (pmin{i,j}). By our

assumption, g(T ) is an Eisenstein polynomial. Hence we have Fitt1,ΛE (M⊗ΛE) mod (T−
δ) = (π3i ) for some i ≥ 1. Using Proposition 10, we obtain Fitt1,ΛE (M ⊗ΛE) mod (T −
δ) = (π3−n). This implies that 3i = 3− n. Thus we have n = 0. �

5. Numerical Examples

In this section, we introduce numerical examples. Let p = 3. We suppose that k =
Q(
√−12453) or Q(

√−78730). In this case, p does not split in k and we have λp(k) = 4,
where λp(k) is the Iwasawa λ-invariant with respect to the cyclotomic Zp-extension. Let
k∞/k be the cyclotomic Zp-extension of k. For each n ≥ 0, we denote by kn the intermediate
field of k∞/k such that kn is the unique cyclic extension over k of degree pn. Let An be the p-
Sylow subgroup of the ideal class group of kn. We put X = lim←−An, where the inverse limit is

taken with respect to the relative norms. Then X becomes a Zp[[Gal(k∞/k)]]-module. Since
there is an isomorphism of rings between Λ = Zp[[T ]] and Zp[[Gal(k∞/k)]], which depends
on the choice of a topological generator of Gal(k∞/k), X becomes a finitely generated torsion
Λ -module. Let f (T ) be the distinguished polynomial which generates char(X). It is known

that X is a free Zp-module, so [X]Qp ∈MQp

f (T ) and we can apply our theorem to the Iwasawa

module X.
We can calculate the polynomial f (T ) mod pn for small n numerically. Let χ be the

Dirichlet character associated to k, ω be the Teichimüler character and f0 be the least common
multiple of p and conductor of χ . By the Iwasawa main conjecture, there exists a power series
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gχ−1ω(T ) ∈ Λ such that

char(X) = (gχ−1ω(T )) .

Here, gχ−1ω(T ) is the p-adic L-function constructed by Iwasawa. We can approximate
gχ−1ω(T ) such as

gχ−1ω(T ) ≡ − 1

2f0pn

∑
0<a<f0p

n,(a,f0p
n)=1

aχω−1(a)(1+ T )in(a) mod ωn ,

where in(a) is the unique integer such that aω−1(a) ≡ (1+p)in(a) mod pn+1 and 0 ≤ in(a) <

pn. By Weierstrass preparation theorem ([14], Theorem 7.3), there exists uχ−1ω ∈ Λ× such
that gχ−1ω(T ) = f (T )uχ−1ω(T ). Thus we can get f (T ) approximately ([14], Proposition

7.2). For the detail about computation of gχ−1ω(T ), see [1] and [4]. We computed f (T )

by Mizusawa’s program Iwapoly.ub ([9], Research, Programing, Approximate Computation
of Iwasawa Polynomials by UBASIC), and referred Fukuda’s table for the λ-invariants of
imaginary quadratic fields [3].

For a non-negative integer n, we put ωn = ωn(T ) = (1+T )p
n−1. In order to determine

the structure of X, we use the following fact. In our case, exactly one prime is ramified in
k∞/k and it is totally ramified. So there are Λ-isomorphisms

X/ωnX ∼= An (28)

for any non-negative integers ([14], Proposition 13.22). We determine the Λ-isomorphism
class of X by the information on the structures of An for some n ≥ 0.

EXAMPLE 1. Let k = Q(
√−12453). In this case, we have A0 ∼= Z/3Z⊕ Z/3Z (cf.

[11]). We have

f (T ) ≡ (T 3 + 204T 2 + 567T + 426)(T + 525) mod 36 .

By Hensel’s Lemma, there exist δ ∈ Zp and an irreducible polynomial g(T ) ∈ Zp[T ] such
that

f (T ) = g(T )(T − δ) ,

where δ ≡ 204 mod 35 and g(T ) ≡ T 3 + 204T 2 + 81T + 183 mod 35. Let E be the
minimal splitting field of g(T ) and g(T ) = (T − α)(T − β)(T − γ ), where α, β, γ ∈
E. Then [E : Qp] = 3 and the ramification index is 3 in E/Qp. Indeed, let d(g) be the

discriminant of g(T ). Then we have d(g) ≡ (−1) · 34 · 13 · 104 ≡ −162 mod 35. Thus
we have

√
d(g) ∈ Qp. This implies that [E : Qp] = 3 and E/Qp is a totally ramified

extension. Further we have ordE(α−β) = ordE(β− γ ) = ordE(γ −α) = 2, ordE(α− δ) =
ordE(β − δ) = ordE(γ − δ) = 1, ordE(α) = ordE(β) = ordE(γ ) = 1 and ordE(δ) = 3. Let
[X⊗Λ ΛE] = [M(	,m, n; x, y, z)] ∈ME

f (T ). By Proposition 11, we have n = 0. Therefore

we may assume that [X ⊗Λ ΛE] = [M(	,m, 0; x, 0, 0)] = [N(	,m, x) ⊕ 〈(0, 0, 0, 1)〉Zp ],
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where N(	,m, x) are defined before Theorem 2. Since we have X/T X⊗OE
∼= A0⊗OE

∼=
OE/(π3)⊕OE/(π3), N(	,m, x)/T N(	,m, x) is a cyclic module. Then N becomes a ΛE-
cyclic module by Nakayama’s Lemma. Using Proposition 5.2 in [8], we have N(	,m, x) =
N(2, 4, uπ2), where u = γ − α

β − α
. Hence we obtain X ⊗Λ ΛE

∼= M(2, 4, 0; uπ2, 0, 0).

EXAMPLE 2. Let k = Q(
√−78730). In this case, we have A0 ∼= Z/9Z⊕ Z/3Z (cf.

[11]). We have

f (T ) ≡ (T 2 + 4068T + 5817)(T + 3189)(T + 888) mod 38 .

By Hensel’s Lemma, there exist γ and δ ∈ Zp and an irreducible polynomial g(T ) ∈ Zp[T ]
such that

f (T ) = g(T )(T − γ )(T − δ) ,

where γ ≡ 84 mod 35, δ ≡ 213 mod 35 and g(T ) ≡ T 2 + 180T + 228 mod 35. Let
E be the minimal splitting field of g(T ) and g(T ) = (T − α)(T − β), where α, β ∈ E.
Since g(T ) is an Eisenstein polynomial, the extension E/Qp is a totally ramified extension.
Therefore, we have ordE(α) = ordE(β) = 1, ordE(γ ) = ordE(δ) = 2, ordE(γ − δ) = 2,
ordE(α−β) = ordE(β−γ ) = ordE(β−δ) = ordE(α−δ) = ordE(γ−α) = 1. By Proposition
10, we obtain Fitt1,ΛE (X⊗ΛE) mod (T−δ)= (π4−n). Since we have A0 ∼= Z/9Z⊕Z/3Z,

we obtain Fitt1,Λ(X) mod (T −δ) 
= Λ. We put Fitt1,Λ(X) mod (T −δ)= (pi) for some

i ≥ 1. Then we have (π4−n) = (π2i ). This implies 4 − n = 2i. Clearly, we have n = 0 or
n = 2. Using Proposition 10, we get

Fitt1,ΛE (X ⊗ΛE) mod (T − γ )=
{

(πordE(z)+4−m−n) if z 
= 0 ,

(π4−m) if z = 0 .

Therefore we may consider the only three cases

(�)

⎧⎪⎪⎨⎪⎪⎩
n = 2 and m = ordE(z) ,

n = 2 and z = 0 ,

n = 0 .

The isomorphism classes of ΛE-module M(	,m, n; x, y, z) satisfying (�)are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[M(0, 1, 2; 0, 0, π)], [M(0, 1, 2; 0, π, π)], [M(0, 1, 2; 1, 1, π)] ,
[M(0, 1, 2; 1, 1+ π, π)], [M(0, 1, 2; 2, 2, π)], [M(0, 1, 2; 2, 2+ π, π)] ,
[M(0, 1, 2; 2, 2+ 2π, π)], [M(1, 0, 2; 0, 0, 1)], [M(1, 0, 2; 0, π, 2)] ,
[M(1, 0, 2; 0, 0, 1+ π)], [M(1, 1, 2; 0, π, 2π)], [M(1, 1, 2; 0, 0, π)] ,
[M(1, 0, 2; 0, 2π, 0)], [M(1, 2, 2; 2π, 2π, 0)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∪ { [N ⊕ΛE/(T − δ)ΛE] | [N] ∈ME

(T−α)(T−β)(T−γ )}
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∪ { [M(0, 0, 2; 0, y, z)] | ordE(z) = 0} . (29)

It is easy to see that M = N ⊕ ΛE/(T − δ)ΛE does not satisfy M/T M ∼= OE/π4OE ⊕
OE/π2OE if N 
∼= N(1, 2, uπ), where u = γ − α

β − α
. We note that N(1, 2, uπ) ∼= ΛE/(T −

α)(T − β)(T − γ )ΛE by Proposition 5.2 in [8]. We can also check M/T M 
∼= OE/π4OE ⊕
OE/π2OE for [M] ∈ {[M(0, 0, 2; 0, y, z)] | ordE(z) = 0} and [M(0, 1, 2; 0, 0, π)],
[M(0, 1, 2; 1, 1, π)] and [M(1, 1, 2; 0, 0, π)].
Now we investigate the structure of A1 as a Gal(k1/k)-module. We have an isomorphism
A1 ∼= Z/27Z⊕Z/9Z⊕Z/9Z⊕Z/3Z. Furthermore, Pari-Gp gives explicit generators which
give this isomorphism. Let a1, a2, a3 and a4 be the generators Pari-Gp computed. (We do
not write down a1, a2, a3 and a4 because they are complicated.) Let σ be a generator of
Gal(k1/k). By Pari-Gp, we compute

(σ − 1)a1 = 6a1 − a2 + a3 ,

(σ − 1)a2 = 3a2 + 4a3 ,

(σ − 1)a3 = 9a1 + 6a2 + 6a3 ,

(σ − 1)a4 = 6a2 .

There is a topological generator σ̃ ∈ Gal(k∞/k) such that σ̃ is an extension of σ . By this
topological generator, we have an isomorphism

Zp[[Gal(k∞/k)]] ∼= Λ = Zp[[T ]] such that σ̃ ↔ 1+ T .

We regard X as a Λ-module by this isomorphism. Because Zp[Gal(k1/k)] ∼= Λ/ω1Λ, we get

T a1 = 6a1 − a2 + a3 ,

T a2 = 3a2 + 4a3 ,

T a3 = 9a1 + 6a2 + 6a3 ,

T a4 = 6a2 ,

where T = T mod ω1. Now we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T 2 − 12T )a1 + (T − 12)a2 = 0 ,

(4T − 24)a1 − (T − 7)a2 = 0 ,

6a2 − T a4 = 0 ,

27a1 = 0 ,

9T a1 = 0 ,

9a2 = 0 ,

3a4 = 0 .

(30)
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Therefore, we can calculate the 1-st Fitting ideal of A1 ⊗OE ;

Fitt1,ΛE/ω1ΛE (A1 ⊗OE) mod 9 = (T , 3) mod (ω1, 9) , (31)

where Fitt1,ΛE/ω1ΛE (A1 ⊗OE) is the 1-st Fitting ideal of A1 ⊗OE as a ΛE/ω1ΛE-module.
Then M(0, 1, 2; 0, π, π), M(1, 0, 2; 0, 0, 1), M(1, 0, 2; 0, 0, 1+ π), M(1, 1, 2; 0, π, 2π) do
not satisfy (31). Therefore we get

X ⊗Λ ΛE
∼=M(0, 1, 2; 2, 2+ π, π), M(0, 1, 2; 1, 1+ π, π), M(1, 0, 2; 0, π, 2) ,

M(0, 1, 2; 2, 2, π),M(0, 1, 2; 2, 2+ 2π, π), M(1, 0, 2; 0, 2π, 0) ,

M(1, 2, 2; 2π, 2π, 0), or M(1, 2, 0; uπ, 0, 0) .

Further, using the relations above (30), we get

Fitt1,ΛE/ω1ΛE ((T − γ )A1 ⊗OE) mod 9= (T , 3) mod (ω1, 9) , (32)

Fitt1,ΛE/ω1ΛE ((T − δ)A1 ⊗OE) mod 9= (T , 3) mod (ω1, 9) . (33)

Then only M(1, 0, 2; 0, π, 2) satisfies (32) and (33). Hence we obtain X ⊗Λ ΛE
∼=

M(1, 0, 2; 0, π, 2).
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