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Abstract. Let K, be the n-th layer of the cyclotomic Z;-extension of Q(\/g) and h;,, the class number of K.

We prove that, if £ is a prime number less than 6 - 10%, then £ does not divide h;, for any non-negative integer 7.

1. Introduction

Let B,, be the n-th layer of the cyclotomic Z,-extension of Q and /2 (B,,) the class number
of B,,. Weber [8] showed that #(B,,) is odd for any non-negative integer n. Iwasawa [3] gave
another proof in a more general situation. It is a natural question whether an odd prime
number £ divides 2(B,,) or not. Fukuda and Komatsu [5] showed that £ does not divide /(B,,)
for any non-negative integer n if £ is less than 10°.

Let £ be an odd prime number and 2¢¢ the exact power of 2 dividing £ — 1 or £2 — 1
according as £ = 1 (mod 4) or not. For a real number x, [x] denotes the greatest integer not
exceeding x. Let ¢ be 0 or 1 according as £ = 1 (mod 4) or not. Then the following are the
results of Fukuda and Komatsu [4], [5].

THEOREM 1 (Fukuda and Komatsu [4]; Theorem 1.2). Let £ be an odd prime number
and put

m =3¢ — 1+ 2[log, (€ — 1)] — 26, .
If £ does not divide h(B,), then £ does not divide h(B,,) for any non-negative integer n.

THEOREM 2 (Fukuda and Komatsu [S]; Theorem 1.1). Let £ be an odd prime number
and put

1
mo:=2c — 1+ [5 log, €:| . (1)

Then £ does not divide h(B,)/ h(B,,,) for any n > my.

In this paper, we consider the case that the base field is Q(\/g), and investigate the class
numbers of the intermediate fields of the cyclotomic Z,-extension of Q(\/g). The reason why
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we study the cyclotomic Z-extension of Q(+/5) is that Q(+/5) has the minimal discriminant
in all real quadratic fields. Our arguments in this paper can be applied to Q(+/3) and Q(+/6),
but more difficulty occurs when we study quadratic fields with larger discriminant.

We put K = Q(\/g) and K, = K - B,,. Then K,, is the n-th layer of the cyclotomic Z,-
extension of K. We denote by %,, the class number of K,,. It is well known that hg = h; = 1.
Applying the result of Iwasawa [3], we obtain the fact that 4, is odd for any non-negative
integer n. So we are interested in whether an odd prime number ¢ divides 4, or not. We have
the following result.

THEOREM 3. Let £ be an odd prime. Put

2+ [logy (56 — D] — 8¢ —2 if L #£5,
my =
‘ ife=5.

Then £ does not divide hy, [ hy,, for any n > my.

We remark that my > mg for each odd prime number £. In particular, my = mo = 4 for
£ = 5. We prove Theorem 3 in Section 2. As a corollary of Theorem 3, we obtain the
following result.

COROLLARY 1. If{ is a prime number less than 6 - 10*, then £ does not divide h,, for
any non-negative integer n.

2. Proof of Theorem 3

Let 1 be a non-negative integer, £ an odd prime number, Q, the algebraic closure of the
£-adic number field Qg, v, the additive £-adic valuation normalized by ve(¢) = 1 and ¢y a
primitive £-th root of unity in C. We put K, = K,(¢¢). Let A, and A, be the £-Sylow
subgroup of the ideal class group of K, and K}, respectively. We abbreviate ¢ as c.

Let I}, be the Galois group of B,,/Q, G, the Galois group of K, /Q and G, the Galois
group of K, /Q. We denote by G, and é\;, the character group of G, and G/, respectively.
We also denote by v, an even character mod 2”2 whose order is 2. Then 1, generates the
character group of I7,.

For all 4 € @, we define the idempotent ey, € Z,[G,]by

1
ey =

x > ey () @)
" oeG),
where Tr is the trace mapping from Q¢ (¥ (G},)) to Q. Then ey can act on A,. We call
A, 4 = ey A the yr-partof A;.

Let A, be the Galois group of Q(¢¢)/Q. Then we have Ay = Z/(¢ — 1)Z and

Gnx Ay ifl#5,

G, = .
LixAg ife=5
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for all non-negative integer n. We denote by w¢ : Ay — Q, the character such that ¢, @ _

Y f forall § € Ay. Then a)g generates the character group of Gal(K /Q).
Ify e @ is odd, then the following equality holds by [6].
ve(|Ay g ) = Ze[W(G)] : Ze)ve(By 1)
where By y is the generalized Bernoulli number defined by

1 5¢.2042
Biy =572 >y
b=1

for all Y € ézl We also define idempotents e; (0 <i < € —2)in Zy[A¢] by
1 .
e = > w5,

SeNy

Since

~

Gal(K,/K,) ift+#5,
Gal(K,/B,) ift=5
canonically, we can act ¢; on A),. We abbreviate ws as . Then we have the following by [2].

LEMMA 1. Letn be a positive integer.
(i) For £ # 5, we have

2"—1

veller ) = veler Ay iD= Y. (ve(By 1y +0e(By 1, 000)) -
j=l:odd
(i1) For £ = 5, we have
2"—1
vs(lesAn) —vs(lesA,_ D= D vs(By 5,
j=l:odd

First, let £ # 5. We have the following by [4]; pp. 219-221.

LEMMA 2. Ifn > mo+ 1, we have vg(B1 ) = 0 for all odd integer j with

w[—lwn—f
1<j<2"—1.
Since my > mo, Lemma 2 implies that vg(B1 ) = 0 for any n > my + 1 and any odd

For B1

—1, -
Wy Yn
integer j with 1 < j < 2" — 1. Thus we study B, we define

-1 —Jj —1 —J
szw”lj w, w2wﬂ]9
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f1(T) € Q¢(T) by

A= Y oo’ (T“‘Z‘“—l)_l. 3)

b=1 (mod 2¢)
0<b<5¢.2¢+1

Then we have the following by [7]; pp. 386-387.

LEMMA 3. Letn > 2c— 1. If fi(n) # 0 (mod ?) for any primitive 2"+2-th root of
unity 1 in Qy, then B, ol w2y # 0 (mod ¢) for any odd integer j, where € is the ideal of
»Wy n

Z,[n] generated by .
LEMMA 4. Ifn > my+ 1, then f1(n) # 0 (mod 0) for any primitive 22 _th root of
unity n in Q,.

PROOF. We put

9(T) = AT =T~ )
For convenience, we put y = wew?. Since x ~1(j) = x~1(j +5¢) for any integer j, we have
gMy= > x'ertrhi Tt 4!
b=1 (mod 2°)
0<b<5¢-2¢+1

= (@3 1 )T ()T D e TN 5= D29 7O

o 450297582 4N+ (50— 1)2° + 5¢ -2C)T<5‘f—1>2‘+5“”)
— (T3 4 1)—1()(—1(1)(1 LTy 4

7 (14 (58 — 1)29) TS0 (1 4 Tse-sz)>

= ) x'orlezar.

b=1 (mod 2°)
0<b=<1+(5£—1)-2¢

We denote by deg(g) the degree of g(T'). For all n > my + 1 and any primitive 2" 2-th root
of unity 7 in Q,, we have
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[Qe(n) : Q] = 2" T2t
> pctlogy(56-1)]+1

> 2¢(5¢ — 1) > deg(g) .

Hence we have g(17) # 0 (mod ¢) for any primitive 2"+2-th root of unity 7 in Q,. Thus we
have fi(n) # 0 (mod ¢) for any 7. O

Lemmas 3 and 4 allow us to obtain the following.
LEMMA 5. Ifn > my + 1, then we have vg(B1 w,lw_zllfj) = 0 for all odd integer j
Wy n
with) < j <2" — 1.

Next, let £ = 5. For B1 we define f1(7T) and g(T') by replacing w3 with

w3y
a)zla)_2 and £ with 5¢ in (3) and (4‘; Then we have the following by [7]; pp. 386-387.
LEMMA 6. Letn > 2c— 1. If fi(n) # 0 (mod ¢) for any primitive 2"+2-th root of
unity n in Qs, then Bl,w*»*w,._j # 0 (mod ¢) for any odd integer j, where £ is the ideal of
Z,[n] generated by 5.
For £ =5, we putd = 2c¢ + [log, (£ — 1)] — §¢ — 2 = 4 = m,. Then we obtain the following
by a similar argument in the proof of Lemma 4.
LEMMA 7. Ifn > my+ 1, then we have v5(BLw,3%_j) = 0 for all odd integer j with
1<j=<2"—1.
Lemmas 1, 2, 5 and 7 allow us to obtain the following lemma.

LEMMA 8. Foralln > my + 1, we have

le1 Al = le1 Al || ife#5,
les Al = lesAl || ife=5.

/

Now we prove Theorem 3. Since natural mappings A,—1 — A, and A _,

— Al are
injective by [7]; Lemma 16.15, we can regard A/ _, as G,,-submodule of A},. Let D, and D),
' _» respectively. Then we
have A, = A,—1 ® Dy and A), = A _| ® D, by [7]; Lemma 16.15. Let L;, be the maximal
unramified elementary abelian ¢-extension of K,,. Note that L}, /Q is a Galois extension since
K, /Q is a Galois extension. Since Gal(L) /K) is a normal abelian subgroup of Gal(L/,/Q),
G, can act on Gal(L),/K},). Therefore, Gal(L) /K, is isomorphic to A}, /¢A), as G|-module
by the Artin mapping. By class field theory, we have Gal(L,,/L! _,K;) = D, /D, Since

be the kernels of the norm mappings A, — A,—; and A, — A

Gal(L,/K)) = Al JLA! = A JtA,_, & D,/tD,,
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there exists an intermediate field M, of L, /K, such that Gal(L, /M,) = A/ _,/tA’ _, by the
Artin mapping. Note that D), is a G/,-submodule of A},. Then we have the following;
L,=M,L,_,,
L, \K,nM, =K,
Gal(M, /K;) = D, /tD, ,
M, /Q is a Galois extension.
Since ¢¢ € K, M, /K, is a Kummer extension. Hence there exists a subgroup V of

K /(K.*)¢ such that M/ = K/ (~/V) in the obvious notation. Let W be the subgroup in C*
generated by ¢;. Then there is a non-degenerate pairing

Gal(M! /K!) x V. — W; (h,b) — (h,b),

which is defined by
-~ h(Jb -
(h,b) = (ZT\/b—) forall h € Gal(M! /K!) and b = b(K*)*

and satisfies (h9, b9) = (h, b)Y for all g € G,. Then the reflection theorem says ¢;V =
e;Gal(M, /K)) fori, j withi + j =1 (mod £ — 1). For £ # 5, we have

61V = eOGal(My/l/Ky/,) = Dn/KDn = (An/An—l)/K(An/An—l) .

For £ = 5, noting that the 5-Sylow subgroup of the ideal class group of B, is trivial for each
non-negative integer n by [4], we have the following;

e3V = exGal(M, /K,) = Dy /5Dy = (An/An-1)/5(An/Ap-1) .
We can prove the following in a similar method to prove [5]; Proposition 2.2.

LEMMA 9. (i) Let £ # 5. If e (A}, /A ) =0, then Ay = Ap_1.
(ii) Let £ = 5. If e3(A, /A _ ) =0, then Ay = Ap_1.

We assume that n > my + 1. Then Lemma 8 says that |ex A}, | = |exA),_ || = --- = |ex A}, |,
where k is 3 or 1 according as £ = 5 or not. Hence we have |A,| = |A,—1| =+ = |Am,| by
Lemma 9. Therefore ¢ does not divide A,/ by, . O

3. Calculation

In this section, we explain how to verify Corollary 1 numerically. We use notations
defined in Section 2 and assume ¢ < 10°. For all X € E;T,, we define the idempotent e, by
replacing G, with G/, in (2). The y-part Ay, of Ay is also defined by A, , = ey A,. Then
we have A, = ®,/A, ,/, where x’ runs over all representatives of Q¢-conjugacy classes of

-~

G,.
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For non-negative integer n, let {5.,:+2 be a primitive 5 - 2"+2_th root of unity in C. We

n+2
put o2 = 4“55‘2,&2 and &5 = 5522”2. We also put

En = (582 — D@50 — D& Gz = D5 00 — D € Ky
We define a truncation e, ¢ € Z[G,] of e, by
exe=ey, (modfd).
Then we can act e, ¢, on §,. The following is the special case of [1]; Lemma 1.

LEMMA 10. If there exists a prime number p congruent to 1 modulo 5¢ - 2"*t2 and

satisfies
ey 2oL
&™) T #1 (modp) (5)

for some prime ideal p of K,, lying above p, then we have |A, | = 1.

Let s = ¢ — 8§;. Then 2° is the exact power of 2 dividing £ — 1 or £ 4 1 according as
£ =1 (mod 4) or not.

Owing to Lemma 10, we may regard x as a character of G, into Fg, where Fe is the

algebraic closure of Fy = Z/¢Z. Let n, be a primitive 2"-th root of unity in F; and L =
F¢(n,). We may also define e, to be an element of F¢[G,]. Let p be the generator of I},

induced by {yui2 §25n 120 0 the generator of Gal(K/Q) induced by ¢5 — ;52 and ¥ the

2
character of I, defined by ¥ (p) = 77,,_1- We put F,, = Krlf_irlw ¥ and H, = Gal(F,/Q). We

define X C Z to make {y/|j € X} be a set of representatives of injective characters of I},.
Then {a)zi/fj |j € X} is a set of representatives of injective characters of H,, and we have

An = An—l D @ An’wj ) @ An,w2¢j .
jeXx jeXx
Note that A, , = A,, where A, is the x-part of the £-Sylow subgroup of the ideal class group
of the subfield of K, corresponding to Kery. Hence for each j € X, we have [Ap,yil =1 if
£ < 10° by [5]. By induction, we may assume that x = w”/ with j € X. Then we have

27
1 o .
€0yl = Sl Z Trrp, (017 (p’ - op’) .
i=0

Now, let p be a prime number satisfying p = 1 (mod 5¢ - 2"+?) and gp a primitive root
modulo p. Since p is totally decomposed in Q(¢5.,.+2)/Q, there exists a prime ideal °B in
Q(¢5.9n+2) lying above p which satisfies

p—1
55,2n+2 = g[?zn-*—2 (mOd m) .
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We pute,pyj = Y2 (0 — op') and fix non-negative integers z1, z2, 23, z4 satisfying
po1
71 Egps (mOd P),
2z1 =1 (mod p),

p—1
on+2

3=40p (mOd p) 5

z24z3=1 (mod p).

Then we have

R __2f;11 (;5§§Z+2 D(EsyS — D! ;2n+2 hesh -\
0 \ @560 = DEEEE = DG 60 = DE e = D
- D(z1z3 — D20z — D2y — 1\
l—[ ((z;z; )(Z;Z;‘l ) (2223 )(zzzit )) od p)
= 1Z3 - 1)(Z1Z4 - 1)(Z223 - 1)(Z — 1)

with p = P N K,,. For convenience, we fix ¢ (b') € Z satisfying 0 < ¢(b') < p — 1 and

(@izf = D@z = D@z — D — 1)
B35 — D -3 - @&y -1

HE (mod p)

for each integer b > 1 and i > 0. Since 71 = 1, we may assume thatn > 2.

3.1. Thecasef =1 (mod4)and2 <n <s. Inthiscase, we have L = F,. Hence
Trz /¥, (Mn) = n,. Since the choice of 7, is arbitrary, we may assume that

=1
Ny = glzn (mod ¢),

where gy is a primitive root modulo ¢. Since there are 2"~ non-conjugate primitive 2"-th
roots of unity in Fy, there are also 2"~ Fy-conjugacy classes of injective characters of H,,.
We put

X={jeZl<j<2"—1,jisodd}.

Then {w>y/|j € X} is a set of representatives of the Fy-conjugacy classes of injective char-
acters of H,. We fix non-negative integers a;;’s by

_
ajj = g, (mod ¢)

foreach0 <i <2" — 1 and j € X. Then we have the following criterion.

CRITERION 1. If for each j € X, there exists a prime number p congruent to 1 modulo
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5¢ - 2"*2 satisfying

p—1
4

2"—1
[[esH ]  #£1 (modp).
i=0

then ¢ does not divide h,, / h;,—1.

3.2. Thecasef/ =1 (mod4)ands + 1 <n. Inthiscase, we have [L : F;] =2"75.
The minimal polynomial of 7, over Fy is

n—s n—s
T2 —n2 .

n

Therefore, if 2"~° does not divide i, then Try /F, ('72) = 0. So we have

25—1

l N=sii n—s; n—s;
Cotyl = T > Trom, G ) <P2 f—op? l)
i=0
| 251 N . .
= g7 2 Trepw (0 <p2 i —op? ")
i=0

= . .
=23+1277;](/02 —op l)‘
i=0

Since there are 2°~! non-conjugate primitive 2"-th roots of unity in Fy, there are also 25~
F¢-conjugacy classes of injective characters of H,. We put

X={jeZl<j<2" -1, isodd}.

Then {w?¥/|j € X} is a set of representatives of the F,-conjugacy classes of injective char-
acters of H,. We fix non-negative integers a;;’s satisfying

2lij
aij = g,° (mod £)

foreach0 <i <2° — 1 and j € X. Then we have the following criterion.

CRITERION 2. If for each j € X, there exists a prime number p congruent to 1 modulo
5¢ - 2"*2 satisfying

25 _1 [

[Tes® D% | #1 (mod p).
i=0

then ¢ does not divide h,, / h;,—1.
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3.3. Thecase ! =3 (mod4)and 2 < n < s. In this case, we have [L : F;] = 2.
Hence we obtain

Trz k(1) = 0 + 115 -

Since there are 2”2 non-conjugate primitive 2"-th roots of unity in Fy, there are also 22
F(-conjugacy classes of injective characters of H,. We put

X={jeZl<j<2"'—1,jisodd}.

Then {w?¥/|j € X} is a set of representatives of the Fy-conjugacy classes of injective char-
acters of H,. We fix non-negative integers a;;’s satisfying

al] = t2v+l—nlj (mOd e)

foreach0 <i < 2" — 1 and j € X, where #;’s are elements in F; defined in (6) in subsec-
tion 3.4. Then we have the following criterion.

CRITERION 3. If for each j € X, there exists a prime number p congruent to 1 modulo
5¢ - 2"*2 satisfying

p—1
2"—1 ¢

[TesH ]  #£1 (modp).
i=0

then ¢ does not divide h,, / h;,—1.

3.4. Thecasel/ =3 (mod4)ands + 1 <n. Inthiscase, we have [L : F;] =2"75.
Let

T? —aT — 1
be the minimal polynomial of n41 over Fy. Then the minimal polynomial of 5, over Fy is
T2 —ar? T o1,

Thus if 2"~ does not divide i, then Trz, /¥, (nil) = (. Therefore, we have

s+l _q
1 2n—s—l ;s n—s—1: n—s—1+
oty = gomr 2 w0 (p2 f—op? ’)
i=0
1 2s+l_q
i j n—s—1;: n—s—1;
= pntl Z Trz s, (0} ) (,02 s l)
i=0
2s+l_q
ij on—s—1; on—s—1;
- 2542 Z TrF@(ns+1)/Fz('75+1) (;0 '—op l) .

i=0
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We put

ti = THR, ()6 (011 - ©)
We need to calculate #;’s. But the calculation of them is done in [4].

LEMMA 11 (Fukuda and Komatsu [4]; Lemma 3.3). Putay = 0 € Fy and define a; €
Fy forall 3 <i < s+ 1 by the recursive formula

ai=+2+ai1 (B=<ic=<ys),
as+1 :V_2+as-
Then we have t| = as1.

We remark that for each step, we have two square roots. So we have just 2°~! instances of 7.

Since they correspond to the 2°~! non-conjugate primitive 2°*!-th roots of unity in Fy, we fix
an arbitrary one.

LEMMA 12 (Fukuda and Komatsu [4]; Lemma 3.6). We have ti12 = titi41 + t; for
alli > 0.

Since there are 2°~! non-conjugate primitive 2"-th roots of unity in Fy, there are also 2°~!
F,-conjugacy classes of injective characters of H,. We put

X={jeZ:oddl<j<2lor2’+1<j<2°421—-1}.

Then {w?y/|j € X} is a set of representatives of the F,-conjugacy classes of injective char-
acters of H,. We fix non-negative integers a;;’s satisfying

ajj = tjj (mod ¢)
foreach 0 <i < 25t! — 1 and Jj € X. Then we have the following criterion.

CRITERION 4. If for each j € X, there exists a prime number p congruent to 1 modulo
5¢ - 2"*2 satisfying

p—1
2S+| —1 [

[T ¢ %] #1 (mod p),
i=0
then ¢ does not divide h,/ h;,—1.

3.5. The Logarithmic Algorithm. It takes too much time to verify that an odd prime
number ¢ with large s does not divide h,,, with the previous criteria. For example, it takes
more than 3 weeks on a computer with Mathematica 9 to verify that 6143 = 3 - 2!1 — 1 does
not divide h3s.

To obtain Corollary 1, we need to verify that 8191 = 213 _ 1 does not divide h4o. Thus
we are led to a logarithmic version of the previous criteria.
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For x € F; , let v, (x) be the unique non-negative integer less than p satisfying

_ Vp(x)
X =4p .

The calculation of v, (x) is considered hard for large p. But v, (x) modulo £ is enough for our
purpose. Let v,(x) =i + j€ with 0 <i < £. Then we can determine i by

p—1 p—1\ i
p-1 i+je\ T =
X ¢ = (gp ) = gp .

Hence we can fix x; € Z satisfying 0 < x; < £ and

xi =vp(E(b)) (mod 0),
where b is defined by

E if2<n<s,
52 ifs+1<n.

We also put r by

n if2<n<s,

c ifs+1<n.

Then Criteria 1 through 4 shift to the following form.

CRITERION 5. If for each j € X, there exists a prime number p congruent to 1 modulo
5¢ - 2"*2 satisfying

2'—1
Y aijxi #0 (mod £),
i=0
then ¢ does not divide h,, / h;,—1.
Criterion 5 allows us to verify that 8191 = 213 _ 1 does not divide h,, for any non-
negative integer 7 in two days. Moreover, we can verify that, if 10* < £ < 6-10%, then £ does
not divide 4, for any non-negative integer n with this criterion.
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