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Abstract. As was pointed out by Nikulin [8] and Vinberg [10], a right-angled polyhedron of finite volume in
the hyperbolic n-space Hn has at least one cusp for n ≥ 5. We obtain non-trivial lower bounds on the number of
cusps of such polyhedra. For example, right-angled polyhedra of finite volume must have at least three cusps for
n = 6. Our theorem also says that the higher the dimension of a right-angled polyhedron becomes, the more cusps it
must have.

1. Introduction

Let P be a convex polyhedron in the hyperbolic n-space Hn with dihedral angles of the
form π/m (m ∈ N) at all its (n − 2)-dimensional faces. We call this polyhedron a Coxeter
polyhedron. In particular, a polyhedron is called right-angled if all its dihedral angles are
π/2.

We call a polyhedron acute-angled if all its dihedral angles do not exceed π/2. It is
known that any k-dimensional face of an acute-angled polyhedron P ⊂ Hn belongs only
to (n − k) hyperfaces; any k-dimensional face is represented by the intersection of (n − k)

hyperfaces (see [1]). In particular, any ordinary vertex belongs only to n hyperfaces. If P is a
right-angled polyhedron, then the number of hyperfaces of P which share one cusp is exactly
2(n − 1). Any of these hyperfaces is parallel to one other and adjacent to the remaining
2(n − 2) hyperfaces.

An n-dimensional combinatorial polytope is called simple if any of its vertices belongs
only to n hyperfaces, and simple at edges if any of its edges belongs only to (n−1) hyperfaces.
In addition, we call an n-dimensional hyperbolic polytope almost simple if it is simple at edges
and any of its vertices not at infinity belongs only to n hyperfaces. According to the above,
any compact acute-angled polyhedron in Hn is simple, and any acute-angled polyhedron of
finite volume with vertices at infinity added is simple at edges. In particular, any right-angled
polyhedron of finite volume in Hn is almost simple.
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Vinberg proved that there are no compact right-angled polyhedra in Hn for n > 4 (see
[10]). On the other hand, Dufour proved the following theorem.

THEOREM 1.1 ([3]). Right-angled polyhedra of finite volume may exist in Hn only if
n < 13.

REMARK 1. Before Dufour proved Theorem 1.1, Potyagailo and Vinberg had already
shown the nonexistence of right-angled polyhedra of finite volume in Hn for n > 14 in [9].

These results suggest that when the dimension of a right-angled polyhedron in the hyper-
bolic space becomes higher, then this polyhedron becomes far from compact. Therefore we
may expect that the higher the dimension of a right-angled polyhedron is, the more cusps it
has for 4 < n < 13. Let Qn be a right-angled polyhedron of finite volume in Hn. Denote the
number of cusps of Qn by c(Qn). Our main theorem shows that this expectation is actually
true.

MAIN THEOREM 1.2. For Qn, a right-angled polyhedron of finite volume in Hn, we
have the following lower bounds on the number of cusps c(Qn):

c(Q6) ≥ 3, c(Q7) ≥ 17, c(Q8) ≥ 36, c(Q9) ≥ 91 ,

c(Q10) ≥ 254, c(Q11) ≥ 741, c(Q12) ≥ 2200 .

Potyagailo and Vinberg [9] found some examples of right-angled polyhedra of finite
volume in Hn for n ≤ 8. However, we do not know whether there exist right-angled polyhedra
of finite volume in Hn for 9 ≤ n ≤ 12. According to [4], there is no simple ideal Coxeter
polyhedron in Hn with n ≥ 8. Furthermore in [6], it was shown that there is no right-angled
polyhedron in Hn with n ≥ 7.

The key element of the proof of the main theorem is a lower bound on the number of

2-dimensional faces of Q3, which we prove in Section 3. Before doing so, we introduce some
known results on right-angled polyhedra in Hn.

2. Right-angled polyhedra in Hn

Let us denote by Hn the hyperbolic n-space. There are some ways to describe it. In what
follows, we use two of them that we now explain below. Denote the unit open ball by

Bn := {x ∈ Rn || x |< 1} .

The metric space consisting of Bn equipped with a Riemannian metric of the form

(
2

1− | x |2
)2 n∑

i=1

dx2
i

is called the conformal ball model of Hn. Denote the upper half-space by

Un := {(x1, . . . , xn) ∈ Rn | xn > 0} .
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The metric space consisting of Un together with the metric

1

x2
n

n∑
i=1

dx2
i

is called the upper half-model of Hn.
Let Pn be a Coxeter polyhedron of finite volume in the hyperbolic n-space Hn. The

boundary of Hn is the (n − 1)-sphere Sn−1 when we consider the conformal ball model.

Because the volume of Pn is finite, the intersection of the Euclidean closure of Pn and Sn−1

is a finite set of points. Here, the Euclidean closure of a set A ⊂ Hn means the closure of A

in Rn contained in Bn. A cusp point (or a point at infinity, an ideal vertex) of Pn is a point c

of Pn ∩ Sn−1. We say that Pn has a cusp when there is a cusp point of Pn. Denote the set of
k-dimensional faces of Pn by Ωk(P

n). The number of k-dimensional faces of Pn is denoted
by ak(P

n), and the number of cusps of Pn is denoted by c(Pn). The expression “the faces
F1, . . . , Fk intersect” means that the faces F1, . . . , Fk have a common point. We say these
faces share a cusp or have a common cusp when their Euclidean closures have a common
point at infinity.

Two hyperplanes of Hn are called parallel if they do not intersect. We call that two
hyperfaces F1 and F2 of Pn are parallel if the hyperplanes containing them are parallel and
their Euclidean closures intersect in the boundary of Hn. If two hyperfaces are parallel, then
the intersection of their Euclidean closures is exactly one cusp of Pn.

Let Qn be a right-angled polyhedron of finite volume in Hn. A right-angled polyhedron
has some good properties stated as (P1), (P2) and (P3) below.

(P1) Any face of Qn is also a right-angled polyhedron.
(P2) For any hyperface of Qn passing through a cusp c, there is a unique other parallel

hyperface sharing same cusp.
(P3) The number of hyperfaces of Qn sharing a cusp of Qn is exactly 2(n − 1).
These properties follow from the local combinatorial structure of right-angled polyhedra

in Hn. In what follows, Qn always denotes a right-angled polyhedron of finite volume in Hn.
We denote by 〈F 〉 the Euclidean closure of the hyperplane containing a hyperface F of

Qn.

PROPOSITION 2.1. ([9, p.7]) Let F1, F2, . . . be hyperfaces of a right-angled polyhe-
dron. Then

(a) if 〈F1〉 and 〈F2〉 intersect, then F1 and F2 intersect;
(b) if F1, F2, F3 are pairwise mutually adjacent, then they meet at an (n−3)-dimensional

face;
(c) if F1 and F2 are parallel and F3 is adjacent to them, then F1, F2 and F3 meet at a

cusp;
(d) if F1 and F2 are parallel and F3 and F4 are adjacent to them, then F1, F2, F3 and

F4 meet at a cusp.
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Potyagailo and Vinberg proved certain inequalities describing the relations between the
number of cusps and faces of a right-angled polyhedron in Hn.

PROPOSITION 2.2 ([9, p.7, 8]). Let Qn be a right-angled polyhedron of finite volume
in Hn. Then the following inequalities hold:

a1(Q
2) + c(Q2) ≥ 5 , a2(Q

3) ≥ 6 , a2(Q
3) + 2c(Q3) ≥ 12 .

The first inequality follows from the following obvious lemma.

LEMMA 2.3. If Q2 is compact, then Q2 has more than four edges.

On the other hand, Nikulin considered the average number of k-dimensional faces in

l-dimensional faces of an acute-angled polyhedron P in Hn, denoted by al
k(P ):

al
k(P ) = 1

ak(P )

∑
F∈Ωk(P )

al(F ) .

One of the main ingredients for proving our main theorem is the following Nikulin’s inequal-
ity:

THEOREM 2.4. Let P be an acute-angled polyhedron of finite volume in Hn. Then

al
k(P ) <

(
n − l

n − k

)([ n
2 ]
l

) + ([ n+1
2 ]
l

)
([ n

2 ]
k

) + ([ n+1
2 ]
k

)
holds for l < k ≤ [ n

2 ].
This inequality is proved by Nikulin [8] for simple convex polyhedra and a generalization

is due to Khovanskij [5] for polyhedra simple at edges.
By Nikulin’s inequality and Lemma 2.3, we obtain the following proposition, as ex-

plained in [10].

PROPOSITION 2.5. There are no compact right-angled polyhedra in Hn for n > 4.

This proposition shows that Qn must have at least one cusp for n ≥ 5.
Fix a cusp c. Denote the set of all k-dimensional faces which contain c by Ωc

k (Qn). As
we have mentioned in the introduction, the number of elements of this set is 2(n − 1). In the
next section, we focus on the case n = 3.

3. A lower bound on the number of 2-dimensional faces of Q3

In this section, we consider a right-angled polyhedron Q3 in the upper half-model. In
this model, the hyperplane must be a vertical Euclidean plane or an upper hemisphere which
intersects the boundary of the upper half-space orthogonally. We assume that Q3 has a cusp
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FIGURE 1. Combinatorial structure of Q3

c. And we also assume that c is the point at infinity of the upper half-space. The set Ωc
2(Q3)

has exactly four elements: A0, A1, A2, A3. In this case, the 2-dimensional faces A0, A1, A2

and A3 are parts of vertical Euclidean planes. We assume that A0 and A2 are parallel, and that
A1 and A3 are parallel.

The aim of this section is to prove the following lemma.

LEMMA 3.1. If Q3 has only one cusp, then Q3 has at least twelve 2-dimensional faces.

Moreover, if Q3 has exactly twelve 2-dimensional faces, then, after replacing A0 with A1 and
A2 with A3, if necessary, A0 and A2 are quadrangles, and A1 and A3 are pentagons.

Assume that c(Q3) = 1, and denote this cusp by c. There are exactly four 2-dimensional
faces which share c. Denote these 2-dimensional faces by A0, A1, A2, A3 as before. Because
the faces A0 and A1 are adjacent, they have a common edge. This edge starts from a vertex
and terminates at c. We denote this vertex by v1. In the same manner, we denote by v2 (resp.
v3, v4) the vertex belonging to A1 and A2 (resp. A2 and A3, A3 and A0) which is an endpoint

of an edge terminating at c. Then the local combinatorial structure of Q3 around c can be
depicted as in Fig. 1.

Each vertex v1, v2, v3 and v4 belongs to two non-compact 2-dimensional faces and one

compact 2-dimensional face of Q3 because Q3 is almost simple and has only one cusp.

Since Q3 is a right-angled polyhedron in H3, it must satisfy the following five conditions:
(1) Any compact 2-dimensional face must have more than four edges.
(2) If two 2-dimensional faces are adjacent, then they have only one common edge.
(3) Any vertex must be shared by exactly three edges.
(4) There are no three 2-dimensional faces which are pairwise adjacent but do not share

a vertex.
(5) There are no four 2-dimensional faces which are cyclically adjacent except for A0,

A1, A2 and A3.
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Condition (1) comes from Lemma 2.3, and Conditions (2–3) can be seen from the local
combinatorial structure of a right-angled polyhedron in H3. We use the following theorem
due to Andreev to obtain Conditions (4–5).

THEOREM 3.2 ([2]). An acute-angled almost simple polyhedron of finite volume with

given dihedral angles, other than a tetrahedron or a triangular prism, exists in H3 if and only
if the following conditions are satisfied:

(a) if three 2-dimensional faces meet at a vertex or a cusp, then the sum of the dihedral
angles between them is at least π (π for a cusp);

(b) if four 2-dimensional faces meet at a vertex or a cusp, then all the dihedral angles
between them equal π

2 ;
(c) if three 2-dimensional faces are pairwise adjacent but share neither a vertex nor a

cusp, then the sum of the dihedral angles between them is less than π;
(d) if a 2-dimensional face Fi is adjacent to 2-dimensional faces Fj and Fk , while Fj

and Fk are not adjacent but have a common cusp which Fi does not share, then at least one
of the angles formed by Fi with Fj and with Fk is different from π

2 ;
(e) if four 2-dimensional faces are cyclically adjacent but meet at neither a vertex nor a

cusp, then at least one of the dihedral angles between them is different from π
2 .

Since all the dihedral angles of Q3 are π
2 , by Theorem 3.2 (c), we obtain Condition (4).

Moreover, by Theorem 3.2 (b) and (e), we obtain Condition (5).
Before proving Lemma 3.1, we have to prove some sublemmas. Now we prepare suitable

notation which will be used in their proofs. Let Bi be a compact 2-dimensional face which
is adjacent to Ai and Ai+1 (integer i can be 0, 1, 2 or 3, and when i = 3, we assume that
Ai+1 = A0 ). One of the endpoints of the edge Ai ∩ Ai+1 is a cusp, and the other is a
vertex. Thus any 2-dimensional face which is adjacent to both Ai and Ai+1 must have this

vertex. But, since Q3 is almost simple, this vertex is shared only by three 2-dimensional faces.
That is to say, Bi is the only 2-dimensional face which is adjacent to both Ai and Ai+1 for
i = 0, 1, 2, 3. Thus we obtain the following sublemma.

SUBLEMMA 3.3. No compact 2-dimensional face of Q3 is adjacent to both Ai and
Ai+1 other than Bi .

On the other hand, by the following sublemma, we know that there is no compact 2-

dimensional face of Q3 which is adjacent to both Ai and Ai+2 for i = 0, 1.

SUBLEMMA 3.4. Assume that a right-angled polyhedra Q3 has a cusp c. Let A and
A′ be 2-dimensional faces of Q3 which are parallel but sharing this cusp c. Then any 2-
dimensional face which is adjacent to both A and A′ must also have the cusp c.

PROOF. Since Q3 is a right-angled polyhedron in H3, the number of 2-dimensional

faces of Q3 which have c is 4. We denote these faces by A, A′, A′′ and A′′′. We may
assume that A′′ and A′′′ (resp. A and A′) are parallel. We may also assume that the cusp c
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of Q3 is identified with the point at infinity of the upper half-space. In this case, each of the
hyperplanes 〈A〉, 〈A′〉, 〈A′′〉 and 〈A′′′〉 has to be a vertical Euclidean plane which intersects

the boundary of H3 orthogonally.
We suppose that there is a 2-dimensional face which is adjacent to both A and A′ other

than A′′ and A′′′. We denote this face by B. Since B does not have the cusp c, the hyperplane
〈B〉 must be an upper hemisphere which orthogonally intersects with 〈A〉 and 〈A′〉. Thus both
〈A〉 and 〈A′〉 share the north pole of 〈B〉 in H3. But A and A′ are parallel. Thus 〈A〉 does not

intersect 〈A′〉 in H3. Thus there are no 2-dimensional faces which are adjacent to both A and
A′ other than A′′ and A′′′. By the same reason, there are no 2-dimensional faces which are
adjacent to both A′′ and A′′′ other than A and A′. �

By this sublemma, we know that B0, B1, B2 and B3 are different. For example, if B0

and B1 are the same face, then this face is adjacent to both A0 and A2, which contradicts
Sublemma 3.4.

From the above, Q3 has at least eight 2-dimensional faces. Suppose that A0, A1, A2 and
A3 have m vertices in total. Then, other than the edges terminating at the cusp c, faces A0, A1,
A2 and A3 have m edges in total. Since each Bi (i = 0, 1, 2, 3) is adjacent to two of A0, A1,
A2 and A3, there are eight edges shared by Bi (i = 0, 1, 2, 3) and one of Aj (j = 0, 1, 2, 3).
Then there are (m − 8) edges left when m > 8. Take one of these edges, say e, and fix it. We
may assume that e belongs to A0. Since any pair of faces can share only one edge, e belongs
to neither B0 nor B3. Therefore there is a new face B4. Because of Sublemma 3.4, B4 cannot
be adjacent to A2 which is parallel to A0. On the other hand, Sublemma 3.3 tells us that B4

cannot be adjacent to A1 (resp. A3), since B4 is different from B0 (resp. B3) by our choice of
e. Moreover, by Condition (2), B4 has a unique common edge with A0. That is, if there is a 2-
dimensional face which is adjacent to A0 but does not have the edge e, then this face is not B4.
By this observation, Sublemmata 3.3–3.4 and Condition (2), the new compact 2-dimensional
faces which are adjacent to each of the (m − 8) edges above are different. Therefore, the

number of faces in Q3 must be greater than or equal to m, the number of vertices of the faces
A0, A1, A2 and A3. The configuration of 2-dimensional faces for the case m = 9 is shown in
Fig. 2.

We add one more sublemma.

SUBLEMMA 3.5. The compact 2-dimensional face B0 (resp. B1) is not adjacent to B2

(resp. B3).

PROOF. Suppose that B0 (resp. B1) is adjacent to B2 (resp. B3), then the four 2-
dimensional faces: A0, B0, B2 and A3 (resp. A1, B1, B3 and A0) are cyclically adjacent.
These contradicts Condition (5). Hence B0 (resp. B1) is not adjacent to B2 (resp. B3). �

In what follows, we present a proof of Lemma 3.1; it is divided into several cases ac-
cording to the number of vertices of A0, A1, A2 and A3.

3.1. The number of vertices of A0, A1, A2 and A3 is eight. In this case, A0, A1,
A2 and A3 are quadrangles. Thus, any compact 2-dimensional face which is adjacent to Ai
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FIGURE 2. The number of vertices of A0, A1, A2 and A3 is nine.

(i = 0, 1, 2, 3) must be B0, B1, B2 or B3. For example, the compact 2-dimensional faces
which are adjacent to A0 are only B0 and B3 since A0 has exactly four edges. These four
edges are A0 ∩ A1, A0 ∩ A3, A0 ∩ B0 and A0 ∩ B3. Since A0 has one cusp and three vertices,
the vertex of A0 other than v1 and v4 must be A0 ∩ B0 ∩ B3. Thus B0 is adjacent to B1.
Similarly, we can show that B1 (resp. B2, B3) is adjacent to B2 (resp. B3, B0). On the other
hand, Sublemma 3.5 says that B0 (resp. B1) is not adjacent to B2 (resp. B3). Thus B0, B1, B2

and B3 are cyclically adjacent. But this does not occur by Condition (5). That is, the present
case is impossible.

3.2. The number of vertices of A0, A1, A2 and A3 is nine. In this case, we may
assume that A0 is a pentagon, and that A1, A2 and A3 are quadrangles. We denote by B4

the new compact 2-dimensional face which is adjacent to A0 other than B0 and B3. Note
that B4 is adjacent to B0 and B3. If B4 is adjacent to B1 (resp. B2), then A0, B4, B1 (resp.
B2) and A1 (resp. B2) are cyclically adjacent. But this does not satisfy Condition (5). Thus
B4 is not adjacent to B1 or B2. Since B4 has at least five edges, it is adjacent to at least

two 2-dimensional faces besides A0, B0 and B3. Hence Q3 has at least eleven 2-dimensional
faces.

Assume that Q3 has exactly eleven 2-dimensional faces. In this case, B4 is adjacent to
exactly five 2-dimensional faces: A0, B0, B3 and two other 2-dimensional faces which are
compact. One of the last two compact 2-dimensional faces is adjacent to B0, and the other is
adjacent to B3. We denote by F the first one, and denote by F ′ the second one; F (resp. F ′)
is adjacent to both B4 and B0 (resp. B4 and B3). If B0 is adjacent to F ′, then B0, F ′ and B4

are pairwise adjacent. Thus, in this case, these faces must share a vertex by Condition (4).
But the endpoints of the edge B0 ∩ B4 are A0 ∩ B0 ∩ B4 and B0 ∩ B4 ∩ F . That is to say,
B0 is not adjacent to F ′. Since A0 has five edges, B0 is not adjacent to B3 by Condition (4).
Since B0 is adjacent to both A0 and A1, by Sublemma 3.4, it is adjacent to neither A2 nor A3.
Moreover, by Sublemma 3.5, B0 is not adjacent to B2. Thus B0 can be adjacent only to A0,
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FIGURE 3. a2(Q3) = 11 in the case 3.2.

A1, B1, B4 and F . On the other hand, by the same reason, B3 is adjacent only to A0, A3, B2,
B4 and F ′. Thus F must be adjacent to B0, B1, B2, B4 and F ′ to satisfy Condition (1). But
in this case F , B2, B3 and B4 are cyclically adjacent. This is a contradiction to Condition (5).

Hence Q3 has more than eleven 2-dimensional faces.
Now we assume that Q3 has exactly twelve 2-dimensional faces. Then there are ex-

actly eight compact 2-dimensional faces of Q3. We denote by F , F ′ and F ′′ the compact
2-dimensional faces which are different from Bi (i = 0, 1, 2, 3, 4). We can choose F and F ′
as above. If F is adjacent to B2, then F , B2, B3 and B4 are cyclically adjacent. And if F is
adjacent to B3, then F , B3 and B4 are pairwise adjacent but do not share a vertex because the
endpoints of the edge B3 ∩B4 are B3 ∩B4 ∩A0 and B3 ∩B4 ∩F ′. Thus, by Conditions (4–5),
F can be adjacent to neither B2 nor B3.

Suppose that B0 is adjacent to F ′′. Now we consider the 2-dimensional faces which F ′′
can be adjacent to. If F is adjacent to B1, then B0, B1 and F are pairwise adjacent. And then
they must have a common vertex by Condition (4). It means that one of the endpoints of the
edge B0 ∩ F is B0 ∩ B1 ∩ F and the other is B0 ∩ B4 ∩ F by Condition (2). But in this case
B0 has only five edges: A0 ∩ B0, A1 ∩ B0, B0 ∩ B1, B0 ∩ B4, B0 ∩ F . That is, B0 cannot be
adjacent to F ′′. This contradicts our assumption. Thus F is not adjacent to B1. Thus F can
be adjacent only to B0, B4, F ′ and F ′′. But this violates Condition (1). In the end, B0 cannot
be adjacent to F ′′. Analogously, we can conclude that B3 cannot be adjacent to F ′′. Thus F ′′
must be adjacent to B1, B2, B4, F and F ′. In this case, B0, B4, F ′′, B1 are cyclically adjacent.
This is a contradiction to Condition (5).

Hence, in this case, Q3 must have more than twelve 2-dimensional faces.

3.3. The number of vertices of A0, A1, A2 and A3 is ten. Under this assumption,
we may assume that one of the following three cases occurs:

(3.3.1) the face A0 is a hexagon, and the faces A1, A2 and A3 are quadrangles (Fig. 5),
(3.3.2) the faces A0 and A1 are pentagons, and the faces A2 and A3 are quadrangles
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FIGURE 4. a2(Q3) = 12 in the case 3.2.

(Fig. 6),
(3.3.3) the faces A0 and A2 are pentagons, and the faces A1 and A3 are quadrangles

(Fig. 7).

3.3.1. The face A0 is a hexagon, and the faces A1, A2 and A3 are quadrangles. We
denoted by B4 the compact 2-dimensional face which is adjacent to both A0 and B0. Let B5

be the compact 2-dimensional face which is adjacent to A0, B3 and B4. If B4 is adjacent to B1

(resp. B2), then the four 2-dimensional faces A0, A1, B1 and B4 (resp. A0, A3, B2 and B4)

are cyclically adjacent. But this contradicts Condition (5). That is to say, B4 is adjacent to
neither B1, nor B2. In addition, since A0, B3 and B4 cannot be pairwise adjacent by Condition
(4), B4 is not adjacent to B3. Thus there are at least two compact 2-dimensional faces which
are adjacent to B4, other than B0 and B5. We denote these faces by F and F ′. We suppose
that a2(Q

3) = 12. Then the compact 2-dimensional faces are only Bi (i = 0, 1, 2, 3, 4, 5),
F and F ′. Note that B5 also has to be adjacent to F and F ′. Thus F , F ′ and B4 are pairwise
adjacent, and F , F ′ and B5 are also pairwise adjacent. This means that one of the endpoints of
the edge F ∩F ′ is in B4, the other is in B5. But in this case, three compact 2-dimensional faces
B4, B5 and F (or F ′) must be pairwise adjacent but do not share a vertex. This is impossible

by Condition (4). Hence a2(Q
3) > 12.

3.3.2. The faces A0 and A1 are pentagons, and the faces A2 and A3 are quadrangles.
Let B6 be the compact 2-dimensional face which is adjacent to A1, B0 and B1. Denote by F

the compact 2-dimensional face which is adjacent to B0 and B4, and denote by F ′ the compact
2-dimensional face which is adjacent to B3 and B4. Suppose that Q3 has exactly twelve 2-
dimensional faces. By analogy to the case (3.3.1), we can show that B4 and B6 are adjacent
to F and F ′. But in this case there exist four 2-dimensional faces B4, B0, B6 and F (or F ′),
which are cyclically adjacent. This is a contradiction to Condition (5). Hence Q3 has more
than twelve 2-dimensional faces.
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FIGURE 5. A0 is a hexagon, and A1, A2 and A3 are quadrangle.

FIGURE 6. A0 and A1 are pentagons, and A2 and A3 are quadrangles.

3.3.3. The faces A0 and A2 are pentagons, and the faces A1 and A3 are quadrangles.
Let B7 be the compact 2-dimensional face which is adjacent to A2, B1 and B2. The facets
denoted by F and F ′ are as in the case (3.3.2). By Conditions (4–5), F is different from B1,
B2, B3, B7 and F ′. By the same reason, F ′ is different from B0, B1, B2 and B7. Thus Q3 has

at least twelve 2-dimensional faces. Note that if Q3 has exactly twelve 2-dimensional faces,

then the combinatorial structure of Q3 is exactly as shown in Fig. 8. By Andreev’s theorem

(Theorem 3.2), it is easy to prove that there exists such a polyhedron in H3.

3.4. The number of vertices in A0, A1, A2 and A3 is eleven. In this case, there are
seven compact 2-dimensional faces which are adjacent to either A0, A1, A2 or A3. And there
are some other compact 2-dimensional faces which are adjacent to those compact faces. Thus

Q3 has at least twelve 2-dimensional faces. If Q3 has exactly twelve 2-dimensional faces,
then there is only one compact 2-dimensional face which is adjacent to the compact faces
which are adjacent to either A0, A1, A2 or A3. But if there is only one such a face, then there
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FIGURE 7. A0 and A2 are pentagons, and A1 and A3 are quadrangles.

FIGURE 8. Q3 which has exactly one cusp and twelve 2-dimensional faces.

must be some compact 2-dimensional faces which are adjacent to either A0, A1, A2 or A3,

and which are either triangles or quadrangles. But they do not meet Condition (1). Thus Q3

has strictly more than twelve 2-dimensional faces.

3.5. The number of vertices in A0, A1, A2 and A3 is twelve. In this case, there are
eight compact 2-dimensional faces which are adjacent to either A0, A1, A2 or A3. And there

are some other compact faces which are adjacent to those compact faces. Thus Q3 has more
than twelve 2-dimensional faces.

3.6. The number of vertices in A0, A1, A2 and A3 is greater than twelve. In this
case, there are more than nine compact 2-dimensional faces which are adjacent to either A0,

A1, A2 or A3. Thus Q3 has more than twelve 2-dimensional faces.
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3.7. Conclusion of the proof of Lemma 3.1 and a corollary. By the cases 3.1–3.6,
we have proved Lemma 3.1.

By Proposition 2.2 and Lemma 3.1, we obtain the following corollary.

COROLLARY 3.6. If c(Q3) ≤ 1, then a2(Q
3) ≥ 12.

REMARK 2. If c(Q3) = 0 and a2Q
3) = 12, then we have the compact right-angled

dodecahedron. If c(Q3) = 1 and a2(Q
3) = 12, then we have a polyhedron in Fig. 8, which

arises by contracting an edge of the dodecahedron above, as described in [7].

4. Proof of Main Theorem: n = 6

Assume that Q6 has exactly one cusp. Then any 3-dimensional face of Q6 has at most

one cusp. Thus any 3-dimensional face of Q6 has at least twelve 2-dimensional faces by

Corollary 3.6. Thus we obtain a2
3(Q6) ≥ 12. But by Nikulin’s inequality (Theorem 2.4), we

obtain the opposite inequality a2
3(Q6) < 12. Hence Q6 has more than one cusp.

Now we assume that Q6 has exactly two cusps. If each of the 3-dimensional faces

of Q6 has at most one cusp, then each 3-dimensional faces of Q6 has more than twelve

2-dimensional faces. Thus we obtain a2
3(Q6) ≥ 12. But by Theorem 2.4, we obtain the

inequality a2
3(Q6) < 12. Hence there is a 3-dimensional face which has two cusps. Denote

this face by G. We denote one cusp of G by c, and the other cusp by c′. There are three
possibilities:

(4.1) there are no 2-dimensional faces of G which have two cusps,
(4.2) there is only one 2-dimensional face which has two cusps,
(4.3) there are two 2-dimensional faces which have two cusps.
Note that there is one edge which starts at c, and terminates at c′ in the case (4.3).
Define the 2-dimensional faces A0, A1, A2 and A3 as before. The case (4.1) (resp. (4.2),

(4.3)) is depicted in Fig. 9 (resp. 10, 11). A circle in these figures represents the cusp c′.
From now on, we examine each of the above cases.

4.1. There are no 2-dimensional faces of G which have two cusps. The number of
2-dimensional faces of G sharing c is four, and the number of 2-dimensional face sharing c′
is also four. There are no 2-dimensional faces which have both cusps. Thus a2(G) ≥ 8.

4.2. There is only one 2-dimensional face which has two cusps. We may assume
that A0 has two cusps. Let B0 be the 2-dimensional face which is adjacent to A0 and A1, and
let B1 be the 2-dimensional face which is adjacent to A1 and A2. Let B2 be the 2-dimensional
face which is adjacent to A2 and A3, and let B3 be the 2-dimensional face which is adjacent
to A3 and A0. Because A0 has c′, there is one 2-dimensional face which is parallel to A0 and
sharing the cusp c′ with A0. We denote this face by B4. Since both B0 and B3 are adjacent to
A0, they cannot coincide with B4. If G has exactly eight 2-dimensional faces, then B4 must
coincide with either B1 or B2. Assume that B4 is B1. Because B0 is adjacent to A0 and A1, it
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FIGURE 9. The case (4.1)

FIGURE 10. The case (4.2)

is adjacent to neither A2 nor A3. If B0 is adjacent to B2, then B0, B2, A3 and A0 are cyclically
adjacent. But this does not occur because of Theorem 3.2 (e). Thus B0 is not adjacent to B2.
Eventually, B0 can be adjacent only to A0, A1 and B4 in this case. That is to say, B0 must be
a triangle. But B0 has more than three edges because of Proposition 2.2. This means that B4

cannot coincide with B1. By the same reason, B4 cannot coincide with B2. Hence a2(G) ≥ 9.

4.3. There are two 2-dimensional faces which have two cusps. Let E1 and E2 be
the 2-dimensional faces which share the cusp c′, other than A0 and A1. Note that exactly four
2-dimensional faces A0, A1, E1 and E2 have c′. We may assume that E1 (resp. E2) and A0

(resp. A1) are parallel. Denote by B2 the 2-dimensional face which is adjacent to A2 and A3.
By Theorem 3.2 (c), B2 can be adjacent to neither A0, nor A1. That is to say, B2 is neither E1

nor E2. Thus B2 is compact. Then B2 has to be adjacent to at least five 2-dimensional faces
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of G. Then there exists a compact 2-dimensional face which is adjacent to B2. Denote this
face by H .

Assume that a2(G) = 8. In this case, the 2-dimensional faces of G are only A0, A1, A2,
A3, E1, E2, B2 and H . If H is adjacent to both A2 and A3, then H must coincide with B2.
Thus H can be adjacent only to one of A2 and A3. By Sublemma 3.4, H can be adjacent only
to one of A0 and E1, and be adjacent to one of A1 and E2. Thus H can be adjacent only to
at most four 2-dimensional faces of G. This is a contradiction to Condition (1) because H is
compact. Hence a2(G) 
= 8.

Assume that a2(H) = 9. In this case, there is another compact 2-dimensional face of G.
Denote this face by J .

Suppose that H is adjacent to A0. Then H is not adjacent to A1 because A0, A1 and H

do not have a common vertex. Moreover, H is adjacent to neither A2 nor E1 by Sublemma
3.4. Thus, H must be adjacent to A0, A3, E2, B2 and J because it has at least five edges.
Thus the endpoints of the edge A3 ∩ H are A0 ∩ A3 ∩ H and A3 ∩ B2 ∩ H . That is to say,
A3 is adjacent only to four 2-dimensional faces A0, A2, B2 and H . Because A0, E2 and H

are pairwise adjacent, A0 is adjacent only to four 2-dimensional faces A1, A3, E2 and H .
Thus J can be adjacent to A1, A2, E1, E2, B2 and H . But, since A1 and E2 are parallel, J

can be adjacent only to one of them. Thus J must be adjacent to A2, E1, B2 and H to satisfy
Condition (1). In this case, B2, H and J are pairwise adjacent, so they have a common vertex.
Thus the four 2-dimensional faces A2, A3, H and J are cyclically adjacent but share neither
a vertex nor a cusp because the endpoints of the edge A2 ∩ A3 are the cusp c and the vertex
A2 ∩ A3 ∩ B2. This is a contradiction to Theorem 3.2 (e). Thus H is not adjacent to A0.

Analogously, we can prove that H is not adjacent to A1. Thus H is adjacent to E1, E2,
B2, J and one of A2 and A3. Since one of the endpoints of the edge E1 ∩ E2 is the cusp
c′, H is the only 2-dimensional face which is adjacent to both E1 and E2. Thus J can be
adjacent only to one of E1 and E2. In this manner, we consider the 2-dimensional face J .
By Sublemma 3.4, J can be adjacent only to one of A0 and A2, and only to one of A1 and
A3. Because there is only one 2-dimensional face which is adjacent to both A2 and A3, J

cannot be adjacent to both A2 and A3. The common edge of A0 and A1 starts from one cusp
and terminates at the other cusp. Thus, by Theorem 3.2 (c), if there exists a 2-dimensional
face which is adjacent to both A0 and A1, then it must share a cusp with A0 and A1. But the
2-dimensional faces which share a cusp with A0 and A1 are nothing but the 2-dimensional
faces A2, A3, E1 and E2. Altogether, there is no 2-dimensional face which is adjacent to both
A0 and A1. Thus there are only two possibilities. One is that J can be adjacent only to A0,
A3, E2 and H , and the other is that J can be adjacent only to A1, A2, E1 and H . But both
cases do not meet Condition (1). Thus a2(G) 
= 9, and hence a2(G) ≥ 10.

4.4. An estimate for a2
3(Q6) and the conclusion of the proof of the Main Theorem.

Denote one cusp of Q6 by c. There are exactly ten 5-dimensional faces of Q6 which share
c. Denote these 5-dimensional faces by Pi (i = 1, . . . , 10). Assume that Pi and P11−i

(1 ≤ i ≤ 10) are parallel. It is easy to see that any k-dimensional face having c is the
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FIGURE 11. The case (4.3)

intersection of (6 − k) 5-dimensional faces. Thus there are eighty 3-dimensional faces which
have c. Assume that the 3-dimensional face P1 ∩ P2 ∩ P3 has two cusps.

LEMMA 4.1. If there is a 3-dimensional face which has two cusps, then this face and
P1 ∩ P2 ∩ P3 must satisfy one of the following cases:

(1) They are the same 3-dimensional face.
(2) They have one common 2-dimensional face which has two cusps but do not have an

edge which joins these two cusps.
(3) They have one common edge which starts at one cusp and terminates at the other

cusp.

PROOF. Denote the 3-dimensional face which has two cusps by Pi ∩ Pj ∩ Pk (i, j and
k are different). It is sufficient to prove that Pi ∩ Pj ∩ Pk is a 3-dimensional face of either
P1, P2 or P3. If this 3-dimensional face is a 3-dimensional face of either P8, P9 or P10, then
it is parallel to P1 ∩ P2 ∩ P3. But in this case, Pi ∩ Pj ∩ Pk must have exactly one cusp.
Thus Pi ∩ Pj ∩ Pk is not a 3-dimensional face of either P8, P9 or P10. Because P5 and P6

are parallel, if Pi ∩ Pj ∩ Pk is a 3-dimensional face of either P5 or P6, then it cannot be a
3-dimensional face of the other one. Thus Pi ∩ Pj ∩ Pk is a 3-dimensional face of either P1,
P2 or P3. �

To prove the main theorem, we need to prove the following lemma.

LEMMA 4.2. Assume that three 3-dimensional faces of Q6 have a common cusp, and
they do not share the other one. If these 3-dimensional faces are pairwise adjacent, then one
of them has more than twelve 2-dimensional faces.

PROOF. Let J1, J2 and J3 be the three 3-dimensional faces which have a common
cusp, and do not share the other one. By the assumption, J1, J2 and J3 are pairwise adjacent.
By Lemma 3.1, each of these faces has at least twelve 2-dimensional faces. Assume that
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one of these 3-dimensional faces has exactly twelve 2-dimensional faces. In this case, the
intersection J1 ∩ J2 is a quadrangle or a pentagon.

Assume that J1 ∩J2 is a quadrangle. Because the intersection J1 ∩J3 is a 2-dimensional
face of J1, and is adjacent to J1 ∩ J2, J1 ∩ J3 must be a pentagon by Lemma 3.1. The 2-
dimensional face J2∩J3 must be a pentagon because the intersection J2∩J3 is a 2-dimensional
face of J2, and it is adjacent to J1∩J2. The intersections J1∩J3 and J2∩J3 are a 2-dimensional
faces of J3. Note that these two faces are adjacent. Thus J3 must have more than twelve 2-
dimensional faces by Lemma 3.1. But J3 has only twelve 2-dimensional faces. Hence J1 ∩J2

is not a quadrangle. Thus J1 ∩ J2 is a pentagon. But as we have seen above, J1 ∩ J3 and
J2 ∩ J3 are quadrangles, and thus J3 must have more than twelve 2-dimensional faces. Hence
either J1, J2 or J3 must have more than twelve 2-dimensional faces. �

We consider the case (4.1) again. By Lemma 4.1, there is exactly one 3-dimensional
face which has two cusps. We may assume that this 3-dimensional face is the intersection
of three 5-dimensional faces P1, P2 and P3. This 3-dimensional face has more than seven
2-dimensional faces by Proposition 2.2. Moreover, by Corollary 3.6, this face is the only 3-
dimensional face which has less than twelve 2-dimensional faces. By Theorem 2.4, we obtain
the following inequality;

a2
3(Q6) < 12 . (4.1)

If there are more than three 3-dimensional faces which have more than twelve 2-dimensional
faces each, then Q6 cannot satisfy (4.1). By Lemma 4.2, one of the 3-dimensional faces
P1 ∩ P2 ∩ P4, P1 ∩ P2 ∩ P5 and P1 ∩ P2 ∩ P8 has more than twelve 2-dimensional faces.
Similarly, one of the 3-dimensional faces P1 ∩ P4 ∩ P5, P2 ∩ P4 ∩ P5 and P4 ∩ P5 ∩ P8 has
more than twelve 2-dimensional faces. And one of the 3-dimensional faces P1 ∩ P4 ∩ P6,
P2 ∩ P4 ∩ P6 and P4 ∩ P6 ∩ P8 has more than twelve 2-dimensional faces. In addition, one of
the 3-dimensional faces P1 ∩ P3 ∩ P9, P1 ∩ P4 ∩ P9 and P1 ∩ P5 ∩ P9 has more than twelve
2-dimensional faces. Thus there are more than three 3-dimensional faces which have more
than twelve 2-dimensional faces. Hence, there is no polyhedron Q6 corresponding to the case
(4.1).

We consider the case (4.2): only one 2-dimensional face has two cusps. We can express
this 2-dimensional face as the intersection of four 5-dimensional faces P1, P2, P3 and P4.
There are only four 3-dimensional faces P1 ∩ P2 ∩ P3, P1 ∩ P2 ∩ P4, P1 ∩ P3 ∩ P4 and
P2 ∩ P3 ∩ P4 which have two cusps. Note that each of these 3-dimensional faces has more
than eight 2-dimensional faces. By the same reason as in the case (4.1), if there are at least

twelve 3-dimensional faces which have more than twelve 2-dimensional faces each, then Q6

does not satisfy inequality (4.1). Table 1 is a part of the list of 3-dimensional faces which have
exactly one cusp. Any three 3-dimensional faces in the same row are pairwise adjacent. By
Lemma 4.2, at least one of the faces in a row has more than twelve 2-dimensional faces. Thus
there exist at least twelve 3-dimensional faces which have more than twelve 2-dimensional
faces each. Hence Q6 does not satisfy inequality (4.1).
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We consider the case (4.3): exactly one edge connects two cusps. Denote this edge
by P1 ∩ P2 ∩ P3 ∩ P4 ∩ P5. Then there are exactly ten 3-dimensional faces P1 ∩ P2 ∩ P3,
P1 ∩P2 ∩P4, P1 ∩P2 ∩P5, P1 ∩P3 ∩P4, P1 ∩P3 ∩P5, P1 ∩P4 ∩P5, P2 ∩P3 ∩P4, P2 ∩P3 ∩P5,
P2 ∩ P4 ∩ P5 and P3 ∩ P4 ∩ P5 which have two cusps. Note that each of these 3-dimensional
faces has at least ten 2-dimensional faces. By the same reason in the cases (4.1–4.2), if there
are more than twenty 3-dimensional faces which have more than twelve 2-dimensional faces

each, then Q6 does not satisfy inequality (4.1). Table 2 is a part of the list of 3-dimensional
faces any three of which in the same row are pairwise adjacent, analogous to Table 1.

By Lemma 4.2, there exist at least twenty 3-dimensional faces which have more than

twelve 2-dimensional faces. Thus Q6 does not satisfy inequality (4.1).

Thus neither of the cases (4.1–4.3) satisfies inequality (4.1). Thus c(Q6) 
= 2. Hence

c(Q6) ≥ 3.

5. Proof of the Main Theorem: n = 7

Assume that Q7 has exactly m cusps. Fix one cusp of Q7, and denote it by c. It is
clear that there are twelve 6-dimensional faces which share c. Denote these faces by Ei

(1 ≤ i ≤ 7), and assume that Ei and Ej are parallel if i + j = 13. Any of the 3-dimensional
faces which have c is represented by the intersection of four 6-dimensional faces which have
c. If a 3-dimensional face belongs to Ei , then it is not a 3-dimensional face of E13−i . Thus

the number of 3-dimensional faces of Q7 which have c is 12×10×8×6
4×3×2×1 , i.e. two hundreds and

forty 3-dimensional faces. By analogy to Lemma 4.1, we can prove the following statement.

LEMMA 5.1. If there are two different 3-dimensional faces of Q7 which share two
cusps, then these faces either have a common 2-dimensional face which has both cusps (but
no common edge joins the cusps), or have a common edge which starts at one cusp and
terminates at the other.

P1 ∩ P2 ∩ P6 P1 ∩ P2 ∩ P7 P1 ∩ P2 ∩ P8
P1 ∩ P3 ∩ P6 P1 ∩ P3 ∩ P7 P1 ∩ P3 ∩ P9
P1 ∩ P4 ∩ P6 P1 ∩ P4 ∩ P8 P1 ∩ P4 ∩ P9
P1 ∩ P5 ∩ P7 P1 ∩ P5 ∩ P8 P1 ∩ P5 ∩ P9
P2 ∩ P3 ∩ P6 P2 ∩ P3 ∩ P7 P2 ∩ P3 ∩ P10
P2 ∩ P4 ∩ P6 P2 ∩ P4 ∩ P8 P2 ∩ P4 ∩ P10
P2 ∩ P5 ∩ P7 P2 ∩ P5 ∩ P8 P2 ∩ P5 ∩ P10
P3 ∩ P4 ∩ P6 P3 ∩ P4 ∩ P9 P3 ∩ P4 ∩ P10
P3 ∩ P5 ∩ P7 P3 ∩ P5 ∩ P9 P3 ∩ P5 ∩ P10
P4 ∩ P5 ∩ P8 P4 ∩ P5 ∩ P9 P4 ∩ P5 ∩ P10
P2 ∩ P6 ∩ P10 P2 ∩ P7 ∩ P10 P2 ∩ P8 ∩ P10
P3 ∩ P6 ∩ P10 P3 ∩ P7 ∩ P10 P3 ∩ P9 ∩ P10

TABLE 1. 3-dimensional faces which satisfy the conditions of Lemma 4.2 in the case (4.2)
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P1 ∩ P2 ∩ P6 P1 ∩ P2 ∩ P7 P1 ∩ P2 ∩ P8
P1 ∩ P3 ∩ P6 P1 ∩ P3 ∩ P7 P1 ∩ P3 ∩ P9
P1 ∩ P4 ∩ P6 P1 ∩ P4 ∩ P8 P1 ∩ P4 ∩ P9
P1 ∩ P5 ∩ P7 P1 ∩ P5 ∩ P8 P1 ∩ P5 ∩ P9
P2 ∩ P3 ∩ P6 P2 ∩ P3 ∩ P7 P2 ∩ P3 ∩ P10
P2 ∩ P4 ∩ P6 P2 ∩ P4 ∩ P8 P2 ∩ P4 ∩ P10
P2 ∩ P5 ∩ P7 P2 ∩ P5 ∩ P8 P2 ∩ P5 ∩ P10
P3 ∩ P4 ∩ P6 P3 ∩ P4 ∩ P9 P3 ∩ P4 ∩ P10
P3 ∩ P5 ∩ P7 P3 ∩ P5 ∩ P9 P3 ∩ P5 ∩ P10
P4 ∩ P5 ∩ P8 P4 ∩ P5 ∩ P9 P4 ∩ P5 ∩ P10
P2 ∩ P6 ∩ P10 P2 ∩ P7 ∩ P10 P2 ∩ P8 ∩ P10
P3 ∩ P6 ∩ P10 P3 ∩ P7 ∩ P10 P3 ∩ P9 ∩ P10
P4 ∩ P6 ∩ P10 P4 ∩ P8 ∩ P10 P4 ∩ P9 ∩ P10
P5 ∩ P7 ∩ P10 P5 ∩ P8 ∩ P10 P5 ∩ P9 ∩ P10
P1 ∩ P6 ∩ P9 P1 ∩ P7 ∩ P9 P1 ∩ P8 ∩ P9
P6 ∩ P9 ∩ P10 P7 ∩ P9 ∩ P10 P8 ∩ P9 ∩ P10
P1 ∩ P7 ∩ P8 P2 ∩ P7 ∩ P8 P5 ∩ P7 ∩ P8
P6 ∩ P7 ∩ P8 P7 ∩ P8 ∩ P9 P7 ∩ P8 ∩ P10
P1 ∩ P6 ∩ P7 P2 ∩ P6 ∩ P7 P3 ∩ P6 ∩ P7
P2 ∩ P6 ∩ P8 P4 ∩ P6 ∩ P8 P6 ∩ P8 ∩ P10

TABLE 2. 3-dimensional faces which satisfy the conditions of Lemma 4.2 in the case (4.3)

Note that any edge of Q7 is given by the intersection of six 6-dimensional faces of Q7.
Thus if we fix one edge of Q7, then the number of 3-dimensional faces of Q7 which have this

edge is
(6

4

) = 15. Thus, by Lemma 5.1, there are no more than fifteen 3-dimensional faces
which have two common cusps.

Fix one 3-dimensional face and denote it by F . Assume that F has l cusps. By Lemma

5.1, there are at most 15
(
m−l

2

)
3-dimensional faces which have more than two cusps which

do not belong to F . By Proposition 2.2, each of these 3-dimensional faces has at least six
2-dimensional faces. In addition, by Lemma 5.1, there are at most 15l(m − l) 3-dimensional
faces which have one common cusp with F , and have one cusp which F does not have. By
the same reason as above, each of these faces has at least six 2-dimensional faces. By Lemma

5.1, there are at most 14
(
l
2

)
3-dimensional faces which have at least two common cusps with

F .
By the second inequality of Proposition 2.2, each of these 3-dimensional faces has at least

six 2-dimensional faces. But if a 3-dimensional face has exactly six 2-dimensional faces, by
the third inequality of Proposition 2.2, it must have more than two cusps. Thus if one of those
3-dimensional faces has only the cusps that F has, then this 3-dimensional face and F have
a common 2-dimensional face which has more than two cusps. Denote this 3-dimensional
face by F ′. There are at least three 2-dimensional faces of F ′ which are parallel to F ∩ F ′.
In addition, when we look at one cusp of F ∩ F ′, there are two faces which are adjacent to
F ∩F ′. Because F ′ has exactly six 2-dimensional faces, these two 2-dimensional faces which
share a cusp with F ∩ F ′ and are adjacent to F ∩ F ′ have every cusp of F ∩ F ′. The latter
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is impossible. Thus F ′ must have more than six 2-dimensional faces in this case. Thus, any
3-dimensional face which shares all the cusps with F has more than six 2-dimensional faces.

Fix one cusp of Q7, and denote it by c1. In this case, we note that there are at least
(240 − 15(m − 1)) 3-dimensional faces which have only one cusp c1 because the number of
3-dimensional faces which have at least two cusps including c1 is at most 15(m−1). Because
the number of these 3-dimensional faces which have only the cusp c1 is positive, m must
be smaller than 17. By Corollary 3.6, each of these 3-dimensional faces has at least twelve
2-dimensional faces. Thus,

a2
3(Q7) ≥ 1

a3(Q7)

(
6×15(m−l

2 )+6×15l(m−l)+7×14(l
2)+12(240−15(m−1))

+12(a3(Q
7)−(15(m−l

2 )+15l(m−l)+14(l
2)+(240−15(m−1))))

)

≥ 1
a3(Q7)

(
(9−3)×15(m−l

2 )+(9−3)×15l(m−l)+(9−2)×14(l
2)+(9+3)(240−15(m−1))

+9(a3(Q
7)−(15(m−l

2 )+15l(m−l)+14(l
2)+(240−15(m−1))))

)
= 9 + −3×15(

m−l
2 )−3×15l(m−l)−2×14(l

2)+3(240−15(m−1))

a3(Q7)
.

On the other hand, by Theorem 2.4, we obtain a2
3(Q7) < 9. In order for Q7 to satisfy all the

above inequalities, the following must hold:

−3 × 15

(
m − l

2

)
− 3 × 15l(m − l) − 2 × 14

(
l

2

)
+ 3(240 − 15(m − 1)) < 0 .

Fix another cusp of Q7, and denote it by c2. The number of 3-dimensional faces which have
exactly one cusp c2 is at least 240 − 15(m − 2). By analogy to the above, we obtain:

−3×15

(
m − l

2

)
−3×15l(m−l)−2×14

(
l

2

)
+3(240−15(m−1))+3(240−15(m−2)) < 0 .

By proceeding in this way, because Q7 has m cusps, we see that

−3 × 15

(
m − l

2

)
− 3 × 15l(m − l) − 2 × 14

(
l

2

)
+3(240 − 15(m − 1))

+3(240 − 15(m − 2))

. . .

+3(240 − 15 × 1) < 0 .

We simplify the left-hand side of this inequality, and finally obtain

17l2 − 17l − 90m2 + 1530m − 1440 < 0 .
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The left-hand side is an increasing function of l. Because these exist a face F with l ≥ 2
cusps, by substituting l = 2 in the above inequality, we get

90m2 − 1530m + 1406 > 0 .

To satisfy this inequality m must be greater than or equal to 17. A contradiction. Hence
c(Q7) ≥ 17.

6. Proof of the Main Theorem: 8 ≤ n ≤ 12

Our main theorem for 8 ≤ n ≤ 12 comes from the following lemma.

LEMMA 6.1. For 8 ≤ n ≤ 12, if any (n − 1)-dimensional face of Qn has at least m

cusps, then

c(Qn) ≥ 3m − 2n + 1 .

PROOF. Let L be an (n − 1)-dimensional face of Qn. The number of (n − 1)-
dimensional faces which are parallel to L and share exactly one cusp with L is c(L). De-
note these (n − 1)-dimensional faces by L′, L1, L2, . . . , Lc(L)−1. Assume that Qn has k

cusps which are not shared by neither L nor L′. Each Li (1 ≤ i ≤ c(L) − 1) shares at least
c(Li) − 1 − k cusps with L′. Because c(Li) ≥ m, k is less than or equal to m − 1. On the
other hand, the number of (n − 1)-dimensional faces sharing a cusp of L′ is 2(n − 1). Thus,
we obtain the following inequality:

(c(L1)− 1 − k)+ (c(L2)− 1 − k)+ · · · + (c(Lc(L)−1)− 1 − k) ≤ (2(n− 1)− 1)(c(L′)− 1).

Because each Li (1 ≤ i ≤ c(L) − 1) and L must have at least m cusps, we have

(m − 1 − k)(m − 1) ≤ (2(n − 1) − 1)(c(L′) − 1) . (6.1)

By this inequality, we obtain

k ≥ m − 1 − (2n − 3)(c(L′) − 1)

m − 1
.

Thus, we get

c(Qn) ≥ c(L) + c(L′) − 1 + k

≥ m + c(L′) − 1 + m − 1 − (2n − 3)(c(L′) − 1)

m − 1

≥ 2m − 2 + 2n − 3

m − 1
+ m − 2(n − 1)

m − 1
c(L′) .

Because Q7 has at least seventeen cusps, m is greater than or equal to 2(n−1) for 8 ≤ n ≤ 12.

Since m−2(n−1)
m−1 is positive and L′ has at least m cusps, we have

c(Qn) ≥ 2m − 2 + 2n − 3

m − 1
+ m − 2(n − 1)

m − 1
c(L′)
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≥ 2m − 2 + 2n − 3

m − 1
+ m − 2(n − 1)

m − 1
m

= 3m − 2n + 1 .
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