TokYO J. MATH.
VoL. 38, No. 2, 2015
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Abstract. In this paper we study the John-Nirenberg inequalities with variable exponents on a probability
space. Let Y be a rearrangement invariant Banach function space defined on (£2, F, P) and a measurable function

p() : 2 — RT be a variable exponent. We prove that if the stochastic basis is regular, then
BMOd,,y:BMOq;!p(.), Vlfp(~)<00,

where ¢(r) =1/ ro—1 (1/r) and @ is a concave function with proper condition.

1. Introduction

Let (£2, F, P) be a probability space and {F,},>1 be a non-decreasing sequence of sub-
o-algebras of F such that F = o (|, F»). The expectation operator and the conditioned
expectation operator are denoted by E and E,,, resp. A sequence f = (f,)n>1 of random
variables such that f;, is J,-measurable is said to be a martingale if E(|f;|) < oo and
E,(fu+1) = foforeveryn > 1. For 1 < p < oo, the Banach space BM O, is defined
as:

1
BMO, = {f = (filnz1: I flBmo, = sup IE. (I f — ful ))& < o0},

where the f in | f — f,|” means foo. Let 7 be the set of all stopping times with respect to
{Fuln=1. It is easy to check that (see for instance Theorem 4.2.5 in [14] or [31])

sup [ (1 = ful”) o sup (P < %)) 7 = Frxesal -
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We also refer to [15] for the Carleson measures characterization of BMO norms. Based mainly
on duality, John-Nirenberg’s theorem and something else, the space BMO (Bounded Mean
Oscillation; see John-Nirenberg [18]) plays an important role in classical analysis and martin-
gale theory. The well known John-Nirenberg Theorem (one of the most important theorems
in martingale theory) says that if the stochastic basis {F},},>1 is regular, then

(1.1) BMO, = BMO;.

We refer to [11] and [12] for the fact above. Recently, Miyamoto, Nakai and Sadasue [26]
extend (1.1) to a much more general setting. We briefly recall their result. Let G be the set of
all functions @ : [0, co) — [0, oo) satisfying @ (0) = 0, lim,_, o @ (r) = oco. Denote by S,
the set

S = [(p €& :3ce > landl € (0, 1] s.t. D(tr) < co max{r’, 1)@ (r) fort, r € [0, oo)}.

For g € [1, 00) and a function ¢ : (0, c0) — (0, 00), the generalized Campanato martingale
space BM Oy 4 is defined by

BMOy.q ={f = (flnz1: I fllBmo,, < oo},

where

1 1 1/q
- — (— —E,fl%dP) .
17lBm0,., i‘i‘ffﬁ%qﬁ(F(A))(P(A)A'f fl >

Then if there exists @ € Gy such that ¢ (r) = and the stochastic basis is regular, the

1
r@=1(1/r)
John-Nirenberg type inequality holds. Namely, forall 1 < g < co

(1.2) BMOy, = BMOy | .

On the other hand, we also note that in the past few years the subject of variable exponent
spaces has undergone a vast development. We refer to two monographs [3, 6] for the recent
progress on variable Lebesgue spaces and their applications to partial differential equations
and variational integrals with non-standard growth conditions, and [5, 29] for the variable
Hardy spaces.

Although variable exponent Lebesgue spaces on Euclidean space have attracted a
steadily increasing interest, the variable exponent framework has not yet been applied to the
probability space setting. Compared with Euclidean spaces, the essential difficulty is that the
general probability space has no natural metric structure to define the so-called log-Holder
continuity of variable exponents. In the present paper, we find the following condition with-
out metric characterization of p(x) to replace log-Holder continuity in some sense. That is,
there exists an absolute constant K () > 1 depending only on p(-) such that

(1.3) P(A)P-A=p+) < g VAEeF.
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See Section 2 for the notations. We often denote K., simply by K if there is nothing con-
fused. Under the condition of (1.3), we study the John-Nirenberg inequalities with variable
exponents on a probability space. We refer to the very recent paper [17] for the Doob maximal
inequality and atomic decomposition on variable Hardy martingale spaces.

Now let us briefly state the main result in the present paper. Let Y be a rearrangement
invariant Banach function space and p(-) : 2 — R™ be a variable exponent. We define the
generalized Campanato martingale spaces associated with ¥

BMOgy ={f = (fin=1: I fllamo,, < oo},
where

I fllBMo,y = sup ! ICf = P xw<ooplly
o veT ¢(P(v < 00)) ||X{v<oo}||Y ’

and we also define the generalized Campanato martingale space with variable exponent p(-)

BMOy py = {f = (fdnz1 : | fllBro,,,, < o0},

where
1 I(f = f)xw<ootllp)
Il fliBmO, ,, = Sup .
PrO T ¢(P(v < 00)) 1 X1 <oo | pcy
Let ® € &¢ and ¢(r) = m. The main result in this paper is if the stochastic basis is

regular and p(-) satisfies the condition (1.3), then
BM0¢,Y = BMO(p’p(.) , V1<p()<oo.

Our strategy is to prove that BM Oy y and BM Oy 5. are respectively equivalentto BM Oy 1.
The present results can be regarded as probability versions of [20, 21, 22]; however the method
is very different, and the condition (1.3) makes us avoid the use of log-Holder continuity or
the boundedness of Hardy-Littlewood maximal operator.

Throughout this paper, we always denote by C an absolute positive constant, which can
vary from line to line, and denote by C),(.) the constant depending only on p(-). The symbol
A < B stands for the inequality A < CB for some constant C. If we write A = B, then it
stands for A < B < A.

2. Preliminaries

In this section, we give some preliminaries necessary to the whole paper.

2.1. Rearrangement invariant Banach function spaces. Let us first recall some ba-
sic facts on the rearrangement invariant Banach function spaces. Given two random variables

. d N .
f and g, we write f ~ ¢ to mean that they have the same distribution. A Banach function
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space (Y, || - ||y) is said to be a rearrangement invariant Banach function space if f é g and
g € Y, then f € Y and || flly = |lglly. We refer to Chapter 2 in [2] for the more concrete
definition.

A rearrangement invariant Banach function space is simply called an r.i. space in this
paper. For example, Lebesgue spaces, Orlicz spaces and Lorentz spaces are r.i. spaces, while
weighted Lebesgue spaces with suitable weights are Banach function spaces that are not r.i.
spaces.

In order to describe our results we need the Boyd indices of Y introduced by Boyd in [9].
We define, for every 0 < ¢ < oo, the dilation operator D, acting on the space of measurable
functions on [0,1] by D.(f)(t) = f(ct), if 0 < ¢t < 1; D.(f)(t) = 0, otherwise. The lower
Boyd index and the upper Boyd index of Y are respectively defined by

_ o logDeill _ log [ Dect|

ay = lim ————— = sup ——
c—>0+ logc 0<c<1 logc
log || D~ log || D,.-

By — tim NPl o Tog Dot
c—00 logc l<c<oo logc

where || D, || stands for the operator norm of D. : Y — Y. Noting that for any r.i. space Y,
O<ay<pBy=<l.

We shall need the following fact for Boyd indices (see [24], Theorem 11.4.110). If Y is an r.i.
space on 2 with associate space Y, then

ay + By =1, ay + By =1.
The following lemmas can be found in [2].

LEMMA 2.1. Let Y be an ri. space on §2 with associate space Y'. If f € Y and
g € Y/, then f g is integrable and

/Q [f(@)g(@)dP < | fllylglly

LEMMA 2.2. LetY be an ri. space on §2 with associate space Y'. Then

lxallyllxally = P(A),

for any measurable set A C §2 with P(A) < oo.

LEMMA 2.3. LetY be an ri. space on §2 with associate space Y'. Then

Iflly = sup \/Qf(w)h(@dp.

I2lly <1
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2.2. Variable exponents. In this subsection, we introduce variable exponent

Lebesgue spaces L) (£2) defined on a probability space (£2, F, P) and some useful lem-
mas.

DEFINITION 2.4. Given a probability space (§2, F, P), a measurable functions p(-) :
£2 —> [1, 00) is called a variable exponent. Let P(§2) be the set of all variable exponents.

Let A C £2. We denote

p+(A) =sup p(x), p—(A) = inf p(x).
XEA X€A

If A = $2, we simply write py = p1(£2) and p_ = p_(£2). Given p(-) € P, we always as-
sume that p, < oo. The space LP) = LP()(£2) is the collection of all measurable functions
f such that for some A > 0,

p(x)
p(f/k):/;2<|fix)|) dP < 0.

This becomes a Banach function space when equipped with the Luxemburg norm

1 llpe) = inf(x > 0: p(f /2) < 1.

We note that LP() is not an r.i. space generally.

LEMMA 2.5 (see [3], page 24). Given p(-) € P, thenforall f € LPY and || f | ».) #

0, we have
(x)
/‘ f ‘pdezl.
2 " lpe

LEMMA 2.6 (see [10], Theorem 1.3). Given p(-) € P and f € LP", then we have
W fllpey < (=1, > Difand only if p(f) < I(=1,> 1);

O If 1 fllpey > 1. then p(HVP+ < || fllpey < p(HYP-

GV IFO < [ fllpey < 1, then p()HYP= < I fllpey < p(HYP.

LEMMA 2.7 (see [3], Holder’s inequality). Given p(-), q(-), r(-) € P, such that

ot
p(x)  q(x)  r(x)’

Then there exists a constant Cp(.y such that for all f € LY and g e L0, fge LPY and

1f9llpy = Cprll fllgrllgliee) -

DEFINITION 2.8. Given p(-) € P and a function ¢ : (0, co) — (0, 00), the general-
ized Campanato martingale space with variable exponent BM Oy p(.) is defined by

BMOg piy = {f = (fidnz1: I fllBMO, ) < 0}
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where

sup 1 ICf = ) xw<oo)ll pey
veT ¢ (P(v < 00)) ||X{v<oo}||p(‘)

I fllBmOs 0, =

2.3. Hardy-Orlicz martingale spaces. Let ® € &, with £ € (0,1]. The Or-
licz space Lg is defined as all measurable functions f with respect to (£2, F, P) such that
E(®(c|f])) < oo for some ¢ > 0 and

£y = inf{c > 0: E(2(If1/c) < 1}.

Now we define the Orlicz—Hardy martingale spaces. For a martingale f = (f;;),>1, we denote
its martingale difference by df; = f; — fi—1 (with convention fy = 0). Then the conditional
quadratic variation, the square function and the maximal function of martingale f are defined
by

1/2

n 1/2 00
sn<f)=<ZEi_1|dfi|2> : s(f)=(ZEi_1|dﬁ|2> ;
i=1 i=1

1/2

n 1/2 00
Sn<f>=<2|dﬁ|2> : S(f)=(2|dﬁ|2) ;
i=1 i=1

fr= sup |fil, f*=suplfil.

1<i<n i>1
For @ € Gy, we define
Hy ={f = fi)nz1: I/ s, = lIs(HliLe < oo} .

Hy = {f = (f)nz1: 1 lgs = IS(HllLe < oo}

Ho = {f = (fi)nz1 : 1 fllHe = 1 /Ly < 00}

The stochastic basis (F;),>1 is said to be regular, if for n > 0 and A € F,,, there exists
B e F,_1suchthat A C B and P(B) < RP(A), where R is a positive constant independent
of n. A martingale is said to be regular if it is adapted to a regular o-algebra sequence. This
amounts to saying that there exists a constant R > 0 such that

fn =< an—l

for all nonnegative martingales ( f;,),>1 adapted to the stochastic basis (F,),>1. For @ € Gy,
the authors in [26] proved that Hp = Hy = Hg when the stochastic basis (F,),>1 is regular,

and that the dual space of Hj is BM Oy 2, where ¢ (r) = We end this section by

1
collecting two useful properties of @ € S,. For the detailed proof of them, we refer to [26].
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PROPOSITION 2.9. If® € Gy withl € (0, 1], then
(1) @ is equivalent to a concave function in Sy ;
(2) @ is subadditive.

3. Main results

THEOREM 3.1. Let Y be an ri. Banach function space with ay > 0 and p(-) € P.
If there exists ® € Gy with £ € (0, 1] such that ¢(r) = forallr € (0,00), and

(Fu)n>1 is regular, then

1
réo=1(1/r)

BMOyy = BMOy ().

3.1.  John-Nirenberg inequalities with r.i. spaces. In this subsection we prove
BM Oy y = BM Oy, by constructing atomic decomposition of Orlicz-Hardy spaces Hy, via
atoms associated with r.i. spaces.

DEFINITION 3.2. Let @ € G, with £ € (0,1] and Y be an r.i. space on §2 with
By < 1. A measurable function a is a (@, ¥)*-atom (or (@, Y)S, (@, Y)* resp.) if there exists
a stopping time v € 7 such that

(al) a, =Eua=0ifv > n;

@) ls@ly = B (or [ S@)ly. la*]ly resp.).

Denote by A%(®, Y) (or A*(®, Y)) be the set of all sequences of pair (i, ak, vk ), Where
[k are nonnegative numbers, ak are (@, Y)*-atoms (or (@, Y)*-atoms) and vy, are the stopping
times corresponding to a* and also

> POy < Oo)q)(MkIIS(ak)IIY) -

ke Z ||X{vk<oo}||Y

<0r Z Py < oo)@(m) < oo)

ke Z ||X{vk<oo}||Y
Let (uk, ak, Vi) € AS(®,Y) (or A*(®P, Y)) and define

wiclls @)y ) - 1}

AS (i, d®, o) = inf[c >0: Py < oo)(P(
! 2 el <o0plly

keZ

k%
<0r A% (i, a, o) = inf{c >0: ZP(vk < oo)@(M) < 1})
keZ C||X{vk<oo}||Y

In order to prove the main theorem, we need the following lemma.
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LEMMA 3.3. Let® € Gy with € € (0, 1] and Y be an r.i. Banach function space. For
f €eYand B € Fwith P(B) #0,if{f # 0} C B, then

IS Il )

E(@(f)) < 2P(B)‘p(||x3||y

PROOF. Setm =

H ,1]and r € [0, 00), we

have

D7D =@ 1xp) = Pm +1FDxs = (14 L) omes

Thus, by Lemma 2.1 and Lemma 2.2 we obtain the conclusion as follows:
E@7D) <E((1+ L)oo
= cb(m)E((l + m) )

= oom (EGu + E(LL )

<o (P@) + LY 1siy)
=a(m)(P(B) + lxsllvlixsly)

—2®(m)P(B).

REMARK 3.4. By Lemma 3.3, we have that, for any positive constant u and for any
pair (a, v) of (@, Y)*-atom,

us(a) 1
/ﬂqﬁ(i(zc(p)l/e)dPg§/Qq§(us(a))dP

mlis(@)lly )

<P < oo)cp(
| X{v<oo}lly

THEOREM 3.5. Let @ € Gy with € € (0,1] and Y be an ri. Banach function space
with By < 1. Then

ILf ez %inf{ASy(Mk,ak, v f =Y, (kb v € A(@, Y)}-
keZ

PROOF. Suppose that f € Hg,. Then from [26] Theorem 2.3, there exists a sequence of

pair (g, a*, vg) € AY(®, Loo) such that f = 37 7 ura® and A5 (g, a*, v) < ¢l fllgs,,
where c is a constant independent of f. By the proof of [26] Theorem 2.3, we know that
E,a* = 0if vy > n and

s(ak) = 0 on the set {vy = o0},
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where v, is the stopping time corresponding to a*. Thus

s(a®) < 15(@) lloo X iy <00} -

Applying || - ||y on both sides of the above inequality, we find that

Is@)lly < ll5@)llooll X1 <00} v
< ||X{vk<oo}||Y
- ||X{uk<oo}||L4>
which means (a2) holds. And so for each k, akisa (@, Y)*-atom.
Next we show that (ug, ak, ve) € A%(®,Y). Since

3 P < 00— wells @)y )

= A (e, @, v | X <oy Iy

111 (@) oo Il v <00y Il )

< Py < oo)@(
Z AT (ks @, vl X <oot ly

keZ

= 3" Pl < 00 ills @) oo )

5 k
V
P A7 (ks a*, )

S 1’
which means
k g k
Ay (i, a®, ve) < Ay (i, a™ vi) < cll fllg,

namely, (u, ak v € AS(D, Y).

Moreover, again from the proof of [26] Theorem 2.3, > ;_,, urak converges to f in H
asm — —00,n — 0.

For the converse part, assume that f = ) ", wra® and (ug, ak, vy) € AS(®,Y). And

without loss of generality, we suppose that A‘; (ks ak, Vi) = 1. Then by the subadditivity of
@ and Remark 3.4, we have

s(f) > ez ks (@)
/xzé((zcwl/@)dp / (St )4
s (@)
—Z/ (Gegr )7
<3 Pl < sopp (@Dl

keZ ||X{vk<oo}||Y

<1.

This shows ||f||H;> < (2C¢)1/ZA§, (ux, a®, vr). The proof is complete.
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REMARK 3.6. 1) The condition By < 1 can be replaced by a weaker condition which
could be described by Orlicz indices. It is a well known fact that one has no atomic de-
composition for @(¢#) = ¢ in classical harmonic analysis when ¥ = L; (see Theorem 4.10
in [4] ), and that’s why we have such a condition.

2) If (Fu)n>1 is regular, then Hp = Hy = Hg for @ € &y, see [26]. Hence we can
also obtain the (@, Y)S (or (@, Y)* resp.)-atomic decomposition for H;g (or He resp.). The
proof is similar to the one of Theorem 3.5, so we leave the details to the reader.

THEOREM 3.7. LetY be an ri. Banachfunction space with ay > 0. If there exists
D € Gy with £ € (0, 1] such that ¢(r) = )for all r € (0,00), and (Fp)n>1 is

regular, then

réo— ](l/r

BMOyy = BMOy,; .

PROOF. First suppose that f € BM Oy y. Thenfor v € 7, by Lemmas 2.1 and 2.2, we
have

1 I1Cf = ) xw<oo}
¢(P(v < 00)) P(v < 00)
- 1 I1(f = fY) xw<oo Iy I X v <oy Iy
~ @(P(v < x0)) P(v < o0)
_ 1 ICf = ) xw<oo}lly
P (P(v < 00)) I xw<ooylly ’

This means || fllsmo,, < I fllBMOsy-
On the other hand, assume that f € BM Oy 1. Then for v € T, by Lemma 2.3, there

exists 1 € Y' and ||h|lys < I such that
I = Poxmsaly 2| [ (= fomar].
{v<oo}

By the Doob inequality in r.i. spaces, let ¢y be the constant (depending only on Y’) such that
I f*ly < collflly, Vf € Y’; see for instance [28]. Define

i ||X{v<oo} ly'(h — h")
2coll xp<oo} Lo

then
”X {v<oo} ly
la*lly < collally < ——————,
||X{l)<oo}||Lq>
C . 2
which implies a is a (&, Y')*-atom. Let u = H then

¥ . ) wlla* |y
y(,a,v) =infjc>0: Pv < 0)@| —— ) <1 < 1.
C||X{v<oo}||Y’
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Indeed, this is because

* , 2
P < oo)qﬁ(M) <P < oo)¢<7)
mllxw<oolly wll X <ooylly
2 /
— P < oo)d5< I xw<ooilly )
2||X{u<oo}||Y’||X{v<oo}||L4>

=Pl < oo)@(q)_l(l/P(v < oo)))
=1.
Since By = 1 — ay < 1, then by Remark 3.6 (2)
h—h" e Hyp,
with its quasi-norm
b =Rl < cpr.
By [26], if (F;)n>1is regular, (Hp)* = (Hg)* = BM Oy 2 = BM Oy 1. Therefore,

LI = Moy _ 2 fiyeoy (f = 121 P|
¢(P(v < 00)) 1 xtv<ooy lly T P(P(v < 00)) | X <oo} ¥

U 2| fas S =P
T $(P(v < 00)) Xv=<oo lly
5 2 b — Bl | £l B30 »
= ¢ (P < 00)) Xw=oo) I

c ||X{l)<oo}||Lq>
T Pp(P(v<0o0)P(v <00

=cllfllBmo,,

) I fllBmo,,

which means

I fllBmo,y < cllfllBmoy, -

3.2. John-Nirenberg inequalities with variable exponents. In this subsection we
prove BM Oy p() = BM Oy 1. We first state an extension of the converse Holder inequality,
which will be used to deal with variable exponent inequalities.

LEMMA 3.8. Let p(:) € P,0 < p_ < py < oo and satisfy (1.3). Then for all set
B € F, we have

P(B)Y/P-B) ~ p(B)1/PX) ~ p(B)!/P+(B) » lxslly) VxeB.
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PROOF. Obviously, we have P(B)!/P-B) < P(B)!/P() < P(B)!/P+(B) forall x € B.
Since (1.3), we have
P(B)!/P®) p—(B)=p(x) % N

<P(B) - <K,

P(B)!/r-(B) — K.

This implies P(B)!/P®) < KP(B)!/P-(B),
Then it is easy to check that P(B)!/P~(B) ~ P(B)!/P™) ~ P(B)!/P+(B) And we have

xB(x) ~ xB(x)
P(B)!/r-B)  P(B)!/px)’

that is

(L(x))l’(m - xB(x) - < xB(x) )p(x)
P(B)!/r-(B) =~ P(B) ~ \KP(B)!/r-B :

XB(x) p(x) 5 ()
L(W) dP’“/QP(B)dIP’_l,

Consequently, we get || x5 o) ~ P(B)Y/7-B) and we get the desired result.

So

COROLLARY 3.9. Let p(-) € P and satisfy (1.3).
(1) Then for all set B € F, we have

Ixsllt =~ Ixellpolxslgc

where
1 = L + L .
rx)  qx)
(2) Let q(-) € P and satisfies (1.3). Then for all set B € F, we have

lxsll-oy = Ixsllpollxslge

where
1 1 1

- = 4 X
r(x) pkx)  qx)
PrROOF. It follows from Lemma 3.8 that
1 0 I
lxallr) ~ B(B)™ =P(B)rn w0 ~ Ixsllpoyllxsllgey, Vx € B.

THEOREM 3.10. Let p(-) € P and satisfy the condition (1.3). If (F,)n>1 is regular,
then

BMOgy py=BMOy 1,
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where ¢ (r) = and ® € Sy .

1
réd=1(1/r)

PROOF.  First suppose that f € BMOy (). Then for v € T, by Lemma 2.7 and
Corollary 3.9, we have

1 I1Cf = ) xw<oco}
¢(P(v < 00)) P(v < 00)
< 1 1Cf = ) xw<oo}llp) X v <o}l pr ()
~ o(P(v < 00)) Py < o0)
. 1 G = ) xw<oolllpe)  IXfv<ootllp) X <o} Iy
¢(P(v < 00)) ll X{w<oo} I py | X{v<ocoy Il

S W llBmoy,

This means || fllsmo,, S N fllBmo, -
On the other hand, assume that f € BM Oy, 1. Then for v € T, by Lemma 2.7, we have

ICf = D) xw<ootllpe) S = ) Xw<oo} lps | Xpr<oo} | pire)

P+—pC)
I(f — fU)X{v<oo}||
= P <ot | peror I Xw<oc)llps -

||X{v<oo}||p+ P+—p0)

Hence, we can get

S EEE— —_ v < p. . .
$(P(v = o0)) I = O xw<oo}llpey S W fliBMO, IIX{v<oo}||])1++_pp(({) | X (w<oo} I p

Then from Theorem 2.9 in [26], we have

_ < ; )
$(P(v = 00)) I1Cf = ) xtv<ootllpey S N fllBMO, , ||X{u<m}||pp++£§(;) | X (v <o}l p

Henceforth, by Corollary 3.9,

I x Il piro llX l
1 ”(f _ fU)X{I)<OO}||p(~) < “f“BMO {v<oo} ﬁ {v<oo}lipt
¢(P(v < 00)) ||Xv<oo||p(-) ~ ¢! ||Xv<oo||p(-)

SIfllBmoy,, s
which means

I fllBmoy ) < cllfllBmo,, -

According to Theorems 3.7 and 3.10, we get Theorem 3.1.

REMARK 3.11. DIf p(-) =land ¢(r) = 1 forr € (0, 00), then Theorem 3.1 reduces
to the main result recently obtained in [32].
2)If p(-) =1and Y = L, then Theorem 3.1 reduces to (1.2) in the first section.
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