TokYO J. MATH.
VoL. 8, No. 2, 1980

Weak-* Maximality of Certain Hardy Algebras H>(m)

SHUICHI OHNO

Waseda University
(Communicated by J. Wada)

The purpose of this paper is to discuss the weak-*maximality of
certain Hardy algebras H<=(m). Merrill [7] obtained conditions for the
maximality of Hardy algebras for logmodular algebras. In this paper
we study this problem for hypo-Dirichlet algebras and obtain a similar
result as one of Merrill. We also discuss as an application the(uniform)
maximality of certain classes of hypo-Dirichlet algebras.

§1. Preliminaries.

Let A be a uniform algebra on a compact Hausdorff space X, i.e.,
let A be a closed subalgebra in C(X) separating points in X and con-
taining constant functions on X, where C(X) denotes the Banach algebra
of complex-valued continuous funetions on X with the supremum norm.
A is called a hypo-Dirichlet algebra on X if there exist finite elements
Z,, Zy, -+, Z, in the family A~ of invertible elements of A such that
the real linear space of functions of the form of

Re (f)+3cclog |Z| (fed,c,eR)

is dense in the space Cr(X) of real continuous functions on X.

Now let A be a hypo-Dirichlet algebra and M, be the maximal ideal
space of A. Then each element ¢ of M, has a finite dimensional set M,
of representing measures on X for ¢. And every ¢e M, has a unique
Arens-Singer measure m on X. A positive measure m on X is called an

Arens-Singer measure for ¢ if log [a( f)[-:S log | fldm for all fe A-* ([1];
[4], p. 116).
The abstract Hardy spaces H?(m), 1<p=< -, associated with A are

defined as follows; for 1<p<co, H?(m) is the L"(m)-closure of A and
H=>(m) is the weak-*closure of A in L*(m). We see that H>(m) is an
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algebra. For 1<p< oo, Hg’(m)={fe H?(m): Sfdm=0}. Let N* be the

real annihilator of A in L%(m) (1<p=< ) and N? be the complexification
of N?. Then we have the following ([4], p. 109).

N'=N7=N=,
H~*(m)=H?*(m)N L~(m) 1=p<=),

and
L*(m)=H?*(m)@H(m)PN; (1<p<co).

Let P be a Gleason part of M, containing ¢. When ¢ has a unique
Arens-Singer measure m (where ¢ has not a unique representing measure),
it is known that P is non-trivial, i.e., P is not a singleton ([1], Theorem
12.2). Though ¢ can be extended to H>(m), we shall denote the extended
one by ¢ again whenever no confusion arises. Let P be the Gleason
part of ¢ in My« the maximal ideal space of H<(m). Then P=
{«'ﬁ: f(«Tr)-:S fd+, d+y is a representing measure for 4 € P and fe H“(m)}.
The space P, endowed with the induced topology of My, can be com-
pactified by adding a boundary I" so that PUT can be given the structure
of a finite compact bordered Riemann surface and the functions in H>(m)
are analytic on P. There is a natural isometric embedding of the algebra
H=>(P) of bounded analytic functions on P into H*(m) so that H>(m) is
the direct sum of H=(P) and the ideal I of functions in H>(m) which
vanish identically on P ([4], p. 161; [6]).

A closed (weak-* closed for p= ) subspace M of L*(m) A1=p<s =)
is called invariant if fe A and ge M imply that fge M. Ahern and
Sarason [1] said that an invariant subspace M of L*(m) is of type B if
A,M is not dense in M (for p=, not weak-*dense), where A, is the
kernel of the functional ¢. And they offered the conjecture whether
every invariant subspace of L?(m) of type B is of the form wH?(m),
where w is a function in L*(m) that agrees in modulus almost every-
where with |Z,|* ... |Z,|% for some real numbers a,, ---, a,. They called
such a function w a 7rigid function and such a subspace wH?(m) a
Beurling subspace. For example, if the invariant subspace M of L*(m)
is generated by f such that log|f| is summable, it is known that M is
of type B and so a Beurling subspace ([1], Lemma 11.1). In general,
they proved that if the subspace HZ(m) is a Beurling subspace for every
« in P, then every invariant subspace of L?(m) of type B is a Beurling
subspace ([1], Theorem 13.1) and Gamelin answered that Hj(m) is a
Beurling subspace for every ++ in P ([6], Theorem 8.6). :
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§2. Weak-*maximality of H*(m).

We need the following theorem, essentially due to Gamelin (cf. [4],
p. 177, Lemma 8.1; [5]), in order to prove our main theorem.

THEOREM 2.1. Let A be a hypo-Dirichlet algebra on a compact
Hausdorff space X and m be a unique Arens-Singer measure on X for
6 € P, a non-trivial Gleason part of M,. Then the following properties
are equivalent:

(i) H~(m) is a maximal weak-*closed subalgebra of L=(m);

(ii) If fe L'(m), f+0, he L*(m) and fh*e H'(m) for n=0,1,2, ---,
then h € H*(m);

(iif) If feL'(m), f+0, heL*(m) and fh*ec H'(m) + N for n=
0,12, ---, themw he H*(m);

(iv) If M is a mon-zero closed invariant subspace of L‘(m) which
can not be reduced to the form XzL'(m), Xz the characteristic function
of a set E, and if h € L*(m) satisfies hMc M, then he H (m).

ProoF. (i)=(iv). Let M be a non-zero closed invariant subspace in
L'(m) and B be the family of fe L”(m) with fMcM. Then B is a weak-*
closed subalgebra of L*(m) containing H*(m). By (i), B=H>(m) or B=
L*(m). If B=L*(m), M must be the form X,L'(m). This contradicts
the assumption of (iv). Hence B=H<(m). From this, if he L (m)
satisfies hMcC M, then h € H (m).

(iv)=(iii). Assume (iv) and if M is the closed invariant subspace in
L'(m) generated by fh*, n=0,1, 2, --., then M satisfies the assumption
of (iv). Indeed, if M is of the form X L'(m), then X L'(m)=Mc H'(m)+
N7, Since H'(m)+ N7 is an invariant subspace of type B, H'(m)+ N> =
wH'(m) for a rigid function w. So w~'XzL'(m)cH*(m), and hence X,¢
H'(m) since we L'(m). This contradicts the antisymmetric property of
H'(m). So he H>*(m) by (iv).

(iii)=(ii). It is clear because H'(m)cC H'(m)+ Nz.

(ii)= (). Let heL”(m) and h¢ H”(m). Let B denote the weak-*
closed subalgebra generated by H>(m) and h. Then B is a weak-*closed
subalgebra of L*(m) and contains H*™(m) properly. We prove only that
B=L>(m). If feL'(m) is orthogonal to B, fh" is orthogonal to A for
n=0,1, 2,---. In particular, fh* L A,. So fh*e H'(m)+ N> n=0,1,2,.-.)
([1], Theorem 11.1). Since H'(m)+ N= is of the form wH'(m) for a rigid
function w, w'fh"e H'(m) (n=0,1,2, ---). By (ii) and the fact that
h¢ H*(m), w™f=0, and hence f=0. It follows that B=L>(m).

The implication (ii)=(i) of the theorem above is due to Dr. T.
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Nakazi. We are now in a position to give our main theorem. This is
an analogue of results of Merrill ([7], Theorems 1 and 2) in the case when
A is a hypo-Dirichlet algebra.

THEOREM 2.2. Let A be a hypo-Dirichlet algebra on a compact
Hausdorff space X and m be a unique Arens-Singer measure on X for
¢€ M, Supposethat P is the (non-trivial) Gleason part of ¢ in Mywom.
Then the following properties are equivalent:

(i) H>(m) is a maximal weak-*closed subalgebra of L*(m);

(ii) If fe H*(m) vanishes on P, then f=0;

(iii) FEach non-zero invariant subspace M in H*(m) is of the form

M=wH?*m) ,
where w s a rigid function in H>(m).

PROOF. (i)=(ii). Let I" be the ideal boundary of P. Then we can
regard C,(I") as a subspace of L%(m). Let I be the ideal of functions
in H*(m) which vanish on P. Then since Cx(I")ICI, we have Ly(INIcClI,
where L3(I") denotes the weak-*closure of Cr(I") in L3(m) ([6]). Suppose
now that (ii) is not true, then I+#{0}. If M is the L'(m)-closure of I,
then M is a non-zero invariant subspace of L'(m). And M is not reduced
to the form X,L'(m). This is because of the antisymmetric property of
H'(m). Now we have a X, e L3(I") such that X;JcTI and 0<Xz;<1. Hence
XeMc M. But X;e L*(m) and Xz; ¢ H”(m). Thus, by Theorem 2.1 (i)=(iv),
H*>(m) is not maximal.

(ii)= (iii). Let M be a non-zero invariant subspace in H*(m) and let
M'=MnL(m). In order to show that M has the form wH?*(m) for a
rigid function w, we show only that M’ is of the form wH>(m) since
the closure of MNL*(m) in L*m) is M ([4], p. 131, Theorem 6.1). By
(i) we have H*(m)=H>(P) and so M’'c H=(P).

Case I. If M’ contains a function which does not vanish at ¢, then
M’ is of type B and so is of the form wH>(m).

Case II. Suppose that all functions in M’ vanish at ¢. They have
a zero of a finite order at ¢. Let k be the smallest positive integer
among their orders at ¢. Let g be a function in H =*(P) which has a
simple zero at ¢ and vanishes nowhere else on PUr and log|g| be
summable (for example, [6], p. 139). Then g~*M’ is a non-zero invariant
subspace containing a function which does not vanish at . Hence g~*M’ is
of the form wH>(m), and so M'=wg*H>(m). Consequently, as M’ is gener-
ated by a function wg* in H*(m) such that log |wg*| is summable, M’ is
of type B and M’ itself is of the form w,H~(m) for a rigid function w,.
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(iii)=(i). If (iii) is true, it is easy to prove that any non-zero
invariant subspace M in H'(m) has the form wH'(m). Suppose that B
is a properly weak-*closed subalgebra of L*(m) containing H>=(m). We
must prove B=H>(m). Let M be an annihilator of B in L'(m). Then
M is a non-zero invariant subspace of L'(m) which is contained in
H'(m)+ N?. Since the invariant subspace H'(m)+ N> has the form
w,H*(m) for a rigid function w,, w;'M is a non-zero invariant subspace
contained in H'(m) and hence wi'M=w'H'(m) for a rigid function w’.
It follows that M=w'w H'(m)=w'(H'(m)+ N7), and so B=(w')"‘Hy(m).
As H(m) is a Beurling subspace, we can denote that B=wH>~(m) for a
rigid function w. Now B is an algebra, so it contains w® and there is
a function # in H*(m) with w*=wh. Hence w=h e H>(m). Consequent-

ly B=H>(m).

In the proof of (i)= (ii) above of Merrill in the case A is a logmoduarl
algebra, the Wermer’s embedding function Z plays an important role.
Our proof of (i)=(ii) is based on results of Gamelin ([6], p. 139-140).

REMARK. It is known that the corona conjecture is true for a finite
open Riemann surface; if R is a finite open Riemann surface, then R is
dense in M- (Alling [2]). So we can easily obtain the following; under
the hypothesis of Theorem 2.2, the property of that theorem is equivalent
to

(iv) P is dense in Mywim,.

In fact, if (ii) of the theorem is true, H=(m) is isometrically isomorphic
to H*(P). So My« is homeomorphicto My=3,. As Pis dense in My-3),
Pis dense in My, Conversely if f in H=(m) vanishes on P, f=0 by

@iv).

ExAMPLES. Now we present the examples of hypo-Dirichlet algebras
such that H>(m) is maximal.

(1) Let R be a finite open Riemann surface and X be its boundary.
Let A be the algebra of all functions on X that are restrictions of
functions continuous on RUX and analytic in E. Then A is a hypo-
Dirichlet algebra. Fix m a harmonic measure for some point in . Con-
structing the abstract Hardy algebra H=(m), H*(m) is a maximal weak-*
closed subalgebra of L«~(m) ([1]).

(2) Let K be a compact subset of the complex plane with a non-
empty interior whose complement has finitely many components and X
be its boundary. Let A be the algebra of all functions on X that can
be uniformly approximated by rational functions whose poles lie off K.
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Then A is a hypo-Dirichlet algebra. Fix m a unique Arens-Singer
measure on X for some point in K and construct the abstract Hardy
algebra H=(m). Then H>(m) is a maximal weak-*closed subalgebra of

L>(m).

§3. The uniform maximality of hypo-Dirichlet algebras.

Let K be a compact finitely connected subset in C, the interior K°
be connected and A=R(K)|,z, where bK denotes the topological boundary
of K. Then A is a hypo-Dirichlet algebra on bK (see examples in §2).
Here we see that only non-trivial Gleason part of M, is precisely the
interior K° of K ([4], p. 149). As an application of Theorem 2.2, we
can show the following, using a similar method as in a theorem of
Merrill ([7], Theorem 5).

THEOREM 3.1. A uniform algebra A=R(K)|,x as above is maximal
as a uniformly closed subalgebra of C(bK).

PrOOF. Suppose that B is a uniform algebra containing A and m is
a unique Arens-Singer measure for a point of K°. Then H*(m)cB~C
L=(m), where B> is the weak-*closure of B in L*(m). B> is a weak-*
closed subalgebra of L~(m). That B> is an algebra is proved as
follows; it is clear that BB B>~. Taking the weak-*closure, we have
B*B>cB>~. Now, since H=(m) is weak-*closed and maximal, B~=H>(m)
or B*=L*(m). Let B*=H>(m) and let ¢ be a measure on bK which is
orthogonal to A. By the theorem of Wilken ([4], p. 47) #« is absolutely
continuous with respect to a unique Arens-Singer measure for any z in
the interior K° of K. This is because of that K° is only non-trivial
Gleason part of the maximal ideal space of A. In particular, g is
absolutely continuous with respect to m, and so #=hdm for a function
h e L'(m). Since A and B have the same weak-*closure, ¢ 1 H>(m)=B",
and so ¢ L B. It follows that A=B. When B=L>(m), suppose that p
is a measure on bK which is orthogonal to B. Since g1 A, using the
theorem of Wilken again, pt=hdm for some h e L'(m). Hence g1 B>=
L~(m) since ¢ 1 B, and so ¢=0. Consequently B=C(bK). It proves the
theorem.

As a special case of the theorem above, we have the following.

COROLLARY 3.2 (Bjork and de Paepe [3]). Let K={zeC:r=<|z|=1,
where 0<r<1}, and A=R(K)|,x. Then A is a maximal uniformly

closed subalgebra of C(bK).
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