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Introduction.

Let X be a Banach space and let B(X) denote the set of all bounded
linear operators from X into itself. A one-parameter family {C(t); t e R=
(—o0, )} in B(X) is called a cosine family on X if it satisfies the
following conditions:

(0.1) Ct+s)+Cit—s)=2C(#)C(s) for all ¢, secR;
(0.2) C(0)=1I (the identity operator) ;
(0.3) C(t)x: R— X is continuous for every zecX.

The associated sine family {S(t); te R} is the one-parameter family in
B(X) defined by

(0.4) St)x= St C(s)xds for xre X and teR.

The infinitesimal generator A of {C(t); t e R} is defined by
(0.5) Ax=lim,_, 2h*(C(h)— I)x

whenever the limit exists. The set of elements 2« for which
lim,_, 2h*(C(h) —I)x exists is the domain of A, denoted by D(A).

The purpose of this paper is to prove some perturbation theorems
for cosine families. That is, we give several sufficient conditions such that
if A is the infinitesimal generator of a cosine family on X and B is a
linear operator in X, then A+ B (the closure of A+ B) is also the in-
finitesimal generator of a cosine family on X. The results are related
to those of Takenaka-Okazawa [4] and Travis-Webb [6] which are included
in ours.
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§1. The main results.

Let {C(t);te R} be a cosine family on X with the infinitesimal
generator A. We introduce a class of perturbing operators for A.

DEFINITION. A linear operator B in X is said to be of class P(A) if
(i) there exists a dense linear subset D of X such that DcD(A)N

D(B), Ct)Dc D for te R and BC(t)x: R— X is continuous for every « € D,
(ii) for some >0

@y sup {S: ort

|, BC(s)ads||dt; v e D, llzfj <1} < oo .

Let BeP(A) and set

P “ —at
(1.2) {L‘_S“p {So ¢
Lm=lim2_.°° L; .

|| BCG)wds|dt; ze D, llall <1} for rzp,

By condition (ii), 0 L. .<L,.< .
Our first result is the following

THEOREM 1.1. Let A be the infinitesimal generator of a cosine
Jamily {C®t);te R} on X. If BeP(A), then for each e with |e| <Lz},
where L, is defined by (1.2), the closure (A+eB)|, of (A+eB)|, is the
infinitesimal generator of a cosine family on X and D(A+¢eB)|,)=D(A).

The following properties about {C(t); t € R} are well known (see [5],
[1] and [3]):

1.3) there exist constants K=1 and ®=0 such that ||C(#)||<Ke“'
for teR;

1.4) C(—t)=C(#) for teR;

1.5) the infinitesimal generator A is a densely defined closed linear
operator;

(1.6) Cit)D(A)c D(A) and C(t)AxéAC(t)x for te R and xze€D(A);

1.7 S‘B'C(r)xdr]dsepm) and A S:U C('r)xdr:lds:C(t)x—x
for teR and =ze¢lX;
(1.8) if > then \*e p(A) (the resolvent set of A) and
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RO A)z=r §°° e~ C(D)adt = S‘” e~ 3S(t)zdt
0 0

for x € X, where R(\* A)=(\*I—A)™* (the resolvent of A).
Before giving the proof of Theorem 1.1 we prove the following

LEMMA 1.2. Let A be the infinitesimal generator of a cosine family
{C(t); te R}, and let D be a dense limear subset of X such that Dc D(A)

and CA)DcD for teR. Then A], = A.

PrOOF. Since A is a closed extension of Al,, it is clear that A|,
is closable and A[,cCA. To show D(A)CD(A[,), let € D(A) and choose
v,€D with lim,..z,=2. Since C(»)x,eD and (A[,)C(r)x,=ACr)x,=
C(r)Ax, is continuous in re R, the closedness of A[, implies that

So Cr)z,dr ¢ D(AT,) and (AT, g:C('r)x,,drz So C(r)Az,dr. Using again the
closedness of A[,, we have S:U: C('r)x,,dr]dseD(ZE) and hence

(AT S:D: C('r)x,,d'r:lds=A S:U: C('r')x,bol”r]ds_:=C'(t)oc,,—-:)c,L
by (1.7). Letting »— «, we have that S:D: C(r)xd'r]ds e D(A],) and
(4],) S:B:C(r)xdo']ds:C(t)x—x for te R. Since

2t“2S:B:C(7')xd'r]ds—>x and 2t *C{t)x—x)—Ax as t—0,

we obtain that x € D(A],) and (A[,)x=Azx. Q.E.D.

ProOF OF THEOREM l1l.1. For each non-negative integer » and tc R
we define a bounded linear operator C,(t) on D as follows:

1.9 Ce=Chx, c,,(t>x=5‘6,,_1(t—s)[§’BC(r)xdr]ds for zeD),
0 [}
where C,_,(t) denotes the extension of C,_,(¢) onto X. To observe that

C.(t) are well defined and bounded on D, we show that for every n and
xeD, C,(t)x: R— X is continuous and

(1.10) C.(®x|| < K(Ly)"e"||@|| for A=max{w, ¢} and tcR,

where L, is the constant in (1.2). Let xeD and M=max {w, #}. Since
BC(t)x: R— X is continuous and C,(t)=C(t) for te R,
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C,(t)x= S Clt—s) [S BC('r)wd'r:Ids

is well defined and continuous on R. Moreover, by (1.8) and the defini-
tion of L,,

[|C, ()| < \ S: Kt

S: BC(fr)acd'ers \

t
_S_Kelltl Sl le-—lc
0

S' BC('r)md'r,’dngLze““lle for tecR.

Since D is dense in X, C,(t) can be extended onto X. Suppose that (1.10)
holds for =k and C,(t)z: R—X is continuous for each zeD. Then
C.(t) has the extension C,(t) for each tc R, C.(t)z: R— X is continuous
for every ze X and ||C.(t)||SK(Ly***" for te R. Therefore C,,,(H)x=

St C’k(t—s)l:SaBC('r)xd'r]ds is well defined and continuous on R, and
0 [}

t
S gt
0

for t ¢ R. This shows that for every non-negative integer n, C,(t)x: R—
X is well defined and continuous for each x ¢ D, and (1.10) holds. Con-
sequently, for every n=0, C,(t)x: R— X is continuous for each x<€ X and

IChsi()]| = K(Lp)*

S BC(r)xdr“ds ‘ < K(L;)*e||]]

1.11) IC. @ <K(L)re' for A=max{w, ¢} and tcR.

Let |¢|<Lz' and choose A,=max {w, ¢} such th_at le| L;y<1. Then
lle*Ca®)l| = K(le] Ly)"e™'*' by (1.11) and hence 3.7.,¢e"C,(t) converges uni-
formly in ¢ on every compact interval. Define C(t) € B(X) by

(1.12) | ét)= g" eC.(t) for teR.

We now prove that {@(t);teR} is a cosirAle family on X. Clearly,
C(t)x: R— X is continuous for every ze€ X, C(0)=1I and

(1.13) IC@)| = K@L—|e| Ly) e for teR.
To see that
(1.14) Cit+8)+Ct—s)=2Ct)C(s) for all s, teR,

we first show

(1.15) C.(t+8)+C.(t—8)=2 ,,% Co®)Cr_i(s)
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for t,se R and n=0,1,2, ---. Since Cy(t)=C(t), (0.1) shows that (1.15)
holds for n=0. Assume that (1.15) holds. Then for every xz €D

Ce®)Crisi(8)= ZZCk(t)C,m W8z +2C,,,(t)C(s)x

gM+

=2 3% Cult) S C’,,_,,(s~—'r)[g BC(c)xdz]de Soén(t—T)l:S: BC(T)C(s)xdz']d'r

_l

S [C.(t+5—1)+C, (t——s—{—r)](S:BC(z')xdz')dT

+| cue- fr)U' 'BC@wde+| " BO@)ndr |ar

=\ Cut+s—)| | BO@adz |ar+| " Cuit—s- 'r')B BC()ads |ir
+{" e +s—n| || BC@wdz ar+| " Cut—s—n)| | BC@wdr jar

=Cpr(t+8)2+Copn(t—8)r . (We used (1.4) here.)

Therefore (1.15) holds true for every n. By virtue of (1.15)

Ct+8)+Ct—s)= ﬁ'j e(C.(t+8)+C,(t—s))
=2 Z 2 e*CL(t)e™ *C,_1(8) = 2(2 s"‘Cm(t)Xg,o s”‘C’,,,(s))

7n=0 k=0

=ZC(t)C(s) for all ¢, sck.
Thus (1.14) holds true, and hence {C(t); t ¢ R} is a cosine family on X.

Let :Zf be the infinitesimal generator of {C(t);te R}. By the defini-
tion of C(t) we have

1.16) CHoe=CE)z+e S C’(t—s)B: BC(fr)xd'r:‘ds for weD and tecR.
Hence
lim 2t~(C(t)x — ) = lim 2¢~(C(t)w—1)
+1lim 2t SO é(t—s)[gz BC(fr)xd'r:lds = Az +eBx

for xeD. This shows that A is a closed extension of (A+e&B)|, and

(A—i—eB)lDCfI. It follows from (1.13), (1.8) and (1.16) that if x>, then
A ep(A)Nnp(4) and

(1.17) VRO A)e — ARG A)x=\R(\* AeBax for xeD,
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where B;x-—Sw e % SSBC('r)xd'r]ds. By our assumption (1.1), B; can be
0 0 -

extended onto X and the extension B, satisfies

lleBil|<le| Lz, <1 for every A>N\,.

Thus (I—eB) e B(X) and R(; A)(I—eB)=R()% A) by (1.17), where
A>N,. Consequently D(A)=D(4). To show (A+eB)| D:)/f , note that

(1.18)  [|Ax|| =M (leBillllxl|+[|I—¢Bil|||Axl| for xeD(A)=D(A),

where A>X,. (This is easily obtained from RO\ A)(I—eB)=R(O A).)
Let x € D(A). Since D(A)=D(A) and A[,=A by Lemma 1.2, there exist
z, €D such that x,—»x and Az,—Ax as m—oco. Then [(A+eB),lx,.=
Agx,—Ax as m—o by (1.18), and hence zeD((A+eB),) and Ax=

[(A+eB)|p}x. This completes the proof.
The following theorem is useful for applications, and a corresponding
result for (C,)-semigroups has been obtained by Voigt [7] and Miyadera

[2].

THEOREM 1.3. Let A be the imfinitesimal generator of a cosine
Jamily {C(t);te R} on X, and let B be a linear operator in X. Assume
the following conditions (a,) and (a,):

(a,) there exists a dense linear subset D of X such that DcD(A)N
D(B), Ct)DcD for te R and BC(t)x: R— X is continuous for every « € D;

(a,) there exists an a>0 such that

(1.19) sup {HS:BC(s)xdsll; zeD, ||zl g1}{ o, and

(1.20) sup S“S’ BC(s)xdstt; ze D, |lal|s1} <o .

Set KZ-—:sup{S H BC(s)acdstt zeD, ||w||$1} for 320 and K.—
lim,.., K;. (Note that 0= K. <K, < .)
Then for each & with |e| <K', the closure (A+eB)|, of (A+eB)|, s

the infinitesimal generator of a cosine family on X and D((A+eB)[,) =
D(A).

REMARK. Since SaUtBC(s)xds]dt=a S“BC(s)xds—S“sBC(s)xds, (1.19)
0 0 0 ¢
is replaced by

(1.19)’ sup {HS:sBC(s)xds

;xeD, llxl|§1}<
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To prove the theorem we prepare the following

LEMMA 1.4. Under the hypothesis of Theorem 1.3, we have

(1.21) S:’ o3t

S:BC(s)xdstt_s_L;HwH for xeD and N>+ (og K)/a

where K and w are constants in (1.3) and

(1.22) L;:Kz[l+Ke*“(3—w)/(1_e—a(l~—w))]
+ LK% [, — w)(1— Ke™ 4= .

PrROOF. For each x€ D, ZBC(r)C(s)x BC('r—*-s)oc—k—BC('r s)x and hence

S BC(r)C(s)xdr= S BC('r)a:d'r+S BC('r)ocd'r-S BC('r)xdr—i—S BC(r)xdr.

Sl_r_nllarly 28 BC(fr')C(t)xd'r~~Slt BC(fr)xd'r—l—S BC(r)xdr = St BC(r)xdr —
S BC(»)xdr for xreD. Adding both equalities we obtain

(1.23) S”’ BC(r)wdr = S BC(r)C(s)wdr + S BO@)C(H)wdr
for ¢t,se R and xz e D.

Put L=sup {”So BC(s)zds

;e eD, Hngl}. Then we have

(1.24) HSZ“BC(s)xds”gnLK(Keaw)nnxn for weD and n=1,2, ---

In fact, (1.24) holds for n=1. Assume that (1.24) holds for n=Fk. Then
for xe D

(k+l)a ‘
S BC(s)xds

! 0

]: “S :a BC(r)Cla)xdr + S:BC('r)C(ka)xdrH (bj (1.23))
<kLEK(Ke*)*||C(@)xl|+ L ||Cka)w|| S kLK(Ke)* |||
+ LK (e*)*||#|| < (b + 1) LK(Ke*)** ||| .

Therefore (1.24) holds true.
Let x€e D and A\>w+a'log K. Then

oo
S o3t
0

(k+1)a

#=5).,

So"“BC(s)xdstt

S BC(s)xdsI

¢ S: BC(s)xds'ldt

S" BC(r)C(t)xdr"
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+ g BC(r)C(ka)xd'rH]dt (by (1.23))

1J0

< e—lakl:kLK(Keaw)k S:e—zt”C(t)xHdt.;.K)”C(ka)xH] (by (1.24))

Ms

=
I

0

SK| 14K 3 074 Jlall + (LR~ @) 3, k(K0 o]
=L}||%|| . Q.E.D.

ProOF OF THEOREM 1.3. By virtue of Lemma 1.4, BeP(4) and
L;=<L; for x\>w+a'log K, where L, is the constant in (1.2). Since
lim,. L;=lim, ., K;=K,, we have L.=lim,. L,<K.,. The conclusion
follows from Theorem 1.1. Q.E.D.

§2. Applications.

As a consequence of Theorem 1.1 we have the following which is
the main result in [4]:

COROLLARY 2.1. Let {C(t); t€ R} be a cosine family on X, with the
mfinitesimal gemerator A and the associated sine family {S(t); t e R}.
Assume that B 18 a linear operator in X satisfying

(b,) D(B)DD(A) and BR(r*; A)e B(X) for some p>w, where w is
the constant in (1.3), and

(b,) for some t,>0

sup{|” || BS()ell dt; = € D(4), |jo] <if<e.

Set L(x)=sup{§°° e~ || BS(t)z|| dt; = € D(A), Hxngl} for M=ty and L(co)=
0
Then for each € with |¢|<L(w)™, A+eB (defined on D(A)) is also
the infinitesimal generator of a cosine family on X.

PrROOF. We show that (i) and (ii) (in the definition of P(4)) with
D replaced by D(A) are satisfied and L(o)=L, (the constant in (1.2)).
By BR(¢#; A)e B(X), BC(t)R(¢*; A)z= BR(pe*; A)C(t)z: R— X is continuous
for every ze X. Thus (i) with D replaced by D(A) is satisfied. (Note
(1.5) and (1.6).) Next, by S(tt)R(pz; A)ztzR(ﬂ’; A) S: C(s)zds tand (b,), we have
BS(#)R(t; Ayz= BR(p%; A) SOC(s)zdsz SOBR(p"; A)C(s)2ds = SOBC(s)R(pZ; A)zds
for ze X and teR, i.e.,

2.1) BS(t)x=§:BC(s)xds for zeD(A) and tcR.
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Therefore (b,) implies (ii) with D replaced by D(4), and L(\)=L, for
A=tpt, and then L(oco)=L.. Q.E.D.

As corollaries of Theorem 1.3 we have the following:

COROLLARY 2.2. Let {C(t);te€ R} be a cosine family on X, with the
infinitesimal gemerator A and the associated sine family {S(f);te R}.
Assume that B is a linear operator in X satisfying (b,).

(1) If there exists an a>0 such that

(2.2) sup {|| BS(a)|; © € D(4), ||2l|=1} <o, and

2.3) sup {{1BS(t)elldt; o € D(A), [lal| <1} <o,
then for each e with |e|<K(e)™, A+eB (defined on D(A)) is also
the infinitesimal generator of a cosine family on X, where K(\)=

sup {So e”*||BS(t)a|| dt; « € D(A), Hxnél} for A=0 and K(oo)=lim,... K(\).
(I1) If there exists a non-negative function ¢ € L*(0, ¢) for some ¢>0

such that
(2.4) for a.e. te(0,c), [|BS(t)x|| =@(t)||x]| for all x e D(A),

then for every complex mumber ¢, A+eB is the infinitesimal gemerator
of a cosine family on X.

ProoF. Similarly as in the proof of Corollary 2.1, (a,) (in Theorem
1.3) with D replaced by D(A) is satisfied, and (2.1) holds true. Thus (I)
is a direct consequence of Theorem 1.3. We now prove (II). By our
assumption there exists an a € (0, ¢) such that ||BS(a)r||=p(a)|lz|| for all
x € D(A) and p(a)< . Moreover,

K(v=sup {| e I|BS(®)sl|dt; = € D(A), | <1}

ésa’e_n¢(t)dt_§0 as A— oo
0

hence K()=0. Therefore (II) follows from (I). Q.E.D.
REMARK. Theorem 3.2 in [4] is a corollary of Corollary 2.2 (II).

COROLLARY 2.3. Let {C(t);te R} be a cosine family on X, with the
infinitesimal gemerator A and the associated sine family {S(f);te R}.
Assume that B is a closed linear operator in X satisfying S(t)Xc D(B)
for all teR.
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(I') If BS(-)xeL'(0, a); X) for every x<c X, where a is some POo8i-
tive number, then K(oo) defined in Corollary 2.2 (I) is finite, and for
each € with |e| <K(co)™, A+eB 18 the infinitesimal generator of a cosine
Jamily on X.

') If BS(-)x e L*((0, a); X) with p>1 for every xec X, where a is
some positive number, then for every complex number e, A+eB is the
infinitesimal generator of a cosine family on X.

ProOF. (I') We first show that (2.2) and (2.3) are satisfied. By the
closed graph theorem, BS(t)e B(X) for every te R and hence (2.2) is
satisfied. To see that (2.3) is satisfied, define an operator T from X into

the Banach space L'((0, a); X) with norm HIuleSaHu(t)Hdt as follows:
[}

(2.5) Tx=BS(-)x for zeX.

Clearly T is linear. To see that T is closed, let |z,—z||—0 and
SaHBS(t)x,,——u(t)I]dt:H]Tx,—ulll—>0 as m—co. Then there exists a sub-
0

sequence {n;} such that lim,_.. ||[BS(t)x,, —u()||=0 for a.e. te (0, a). Since
lim, ... ||S()x,,—S(t)x||=0 for all te R, it follows from the closedness of
B that u(t)=BS(t)x for a.e. te(0,a), i.e., u=Tx. Thus T is closed,
and then T is bounded by the closed graph theorem. Consequently

SGIIBS(t)xIIdtzllllTx]ll_S_]ITHIIxH for all xe€ X and (2.3) is satisfied.
' We next prove that (b,) in Corollary 2.1 is satisfied. Since

(2.6) S(t+38)=St)C(s)+S(8)C(t) for ¢ scR

and BS(t) e B(X) for te R, BS(t)x=BS(t—mna)C(na)x+BS(na)C(t—na)x is
Bochner integrable on (na, (2+1)a) for each 2=0,1,2, --- and z¢c X.
This shows that for each x € X, BS(t)r is Bochner integrable on every
finite interval of [0, ). Using BS(t+s)=BS(t)C(s)+ BS(s)C(¢) instead of
(1.23), the same argument as in the proof of Lemma 1.4 implies that
|BS(na)l|=n||BS(a)|| K(Ke**)* for mn=1,2,-.-- and then e *BS(t)x is
Bochner integrable on (0, ) for every ze¢ X if A>w+a'log K. More-
over e **S(t)x is Bochner integrable on (0, «) if A> w. ;I‘herefore, by the

closedness of B, we have that if A>w-+a ' log K, then S e *S(t)xdt € D(B)
[}

for all x€X. Combining this with (1.8), we obtain D(A)=R(\}; A)XcC
D(B) and then BR(\*; A)e B(X) for every n>w by the closed graph
theorem. Thus (b,) is satisfied and the conclusion follows from Corollary
2.2 (I). :

(IT') Define an operator T from X into the Banach space L*((0, a); X)
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by (2.5). Then we see that T is closed and then T is bounded. Hence

[ e 11BS@allde < gy (| 11BS@alr dt) " <@wnay | T
for all xe X, and K(c)=lim;.., K(\)<lim,.., (1/7xg)"?||T||=0. The conclu-
sion follows from (I’). Q.E.D.

REMARK. The main result in [6] is included in Corollary 2.3 (II').

References

[1] H. O. Farrorini, Ordinary differential equations in linear topological spaces, I, J.
Differential Equations, 5 (1968), 72-105. ,

[2]1 I. MiYaDERA, On perturbation of semi-groups of operators, Sci. Res., School of Educa-
tion, Waseda Univ., 21 (1972), 21-24 (Japanese).

[8] M. Sova, Cosine operator functions, Rozprawy Matematyczne, 49 (1966), 3-47.

[4] T. TARENAKA and N. Okazawa, A Phillips-Miyadera type perturbation theorem}for
cosine functions of operators, Téhoku Math. J., 30 (1978), 107-115.

[6] C. Travis and G. WEBB, Cosine families and abstract nonlinear second order differential
equations, to appear.

[6] C. Travis and G. WEBB, Perturbation of strongly continuous cosine family generators,
to appear.

[71 J. VoiaeT, On the perturbation theory for strongly continuous semi-groups, Math. Ann.,
229 (1977), 163-171.

Present Address:

DEPARTMENT OF MATHEMATICS

SCHOOL OF SCIENCE AND ENGINEERING
WASEDA UNIVERSITY

NISHIOKUBO, SHINJUKU-KU, Tokyo 160
AND

DEPARTMENT OF MATHEMATICS

SCHOOL OF EDUCATION

‘WASEDA UNIVERSITY

NISHIWASEDA, SHINJUKU-KU, TOoKYO 160



