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Let A(n) be the Liouville function defined as Mn)=(—1)*, where v is
the number of prime factors of a positive integer m, multiple factors
being counted according to their multiplicity. Thus M1)=1, AM2)=—1,
AB)=—1L M4)=1, AB)=—1, M6)=1, A (T)= —1L M8)=—1, M9 =1, v(10)=
1,---.

We put

Liz)= gx(n) .

In this paper we assume x to be a positive integer. Thus L(1)=1, L(2)=
0, L(3)=—1, L(4)=0, L(5)=—1, L(6)=0, L(T)=—1, L(8)=—2, L(9)=—1,
L(10)=0, - --.

The object of this note is to report some numerical results obtained
by the author on L(x), x<10°, especially on how L(x) changes its sign as
« increases from 1 to 10°.

For convenience we divide the integers 1—10° into subregions each
consisting of 10000 consecutive integers.

1—10000. In this region, L(x)=0 only for x=2, 4, 6, 10, 16, 26, 40, 96,
586; L(x)>0 only for z=1.

10001 —906150000. Always L(z)<0.

906150001 —906160000. L(x)=0 for 54 values of x, the first of which
is 906150256; L(x)>0 for 1529 values of x, the first of which is 906150257.

906160001 —906180000. Always L(x)<0 ~

906180001 —906190000. L(x)=0 for 16 values of ; L(z)>0 for 9612
values of «.

906190001 —906200000. L(x)=0 for 75 values of x; L(x)>0 for 7784
values of . :

906200001 —906210000. L(x)=0 for 22 values of x; L(x)>0 for 9643
values of z.
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906210001 —906470000. Always L(x)>0.

906470001 —906480000. L(x)=0 for 15 values of x; L(x)>0 for 9882
values of =z.

906480001 —906490000. L(x)=0 for 61 values of z; the last of which
is 906488080; L(x)>0 for 6976 values of z; the last of which is 906488079.

Thus L(x)<0 from x=587 to x=906150255, and from x=906488081
to x=10°.

L(x) takes sometimes negative values, and sometimes equals zero
from =2 to x=586. L(x) takes sometimes positive, sometimes negative
values, and sometimes equals zero from x=906150256 to x=906488080.

This time we divide the integers 1—10° into subregions each con-
sisting of 10° consecutive integers. We give a short list of minimum
and maximum values of L(x) for each of the subregions.

min= —10443 max=1 (x=10°% L(10°%) = — 3884
min=—17847 max=—1497 (10°<x=2-10%) L(2-10°=—11126
min=—19647 max=—2262 (2-10°<x=<3-10°) L(3-10%= —16648
min=—19496 max=—2016 (3-10°<x=<4-10°) L(4-10°)=—11200
min= —285631 max=-—9240 (4-10°<x=<5-10° L(5-10%)= —18804
min=—19836 max=—2842 (5-10°<x=<6-10°) L(6-10%)= —15350
min= —28731 max=—12250 (6-10°<x<7-10% L(7-10%)=—25384
min=—29736 max=—12701 (7-10°<x=<8-10°) L(8-10%= —19292
min= —20870 max=—3158 (8-10°<x<9-10°) L(9-10°) = —4630
min= —27756 max=2829 (9-10°<x=10°) L(10°) = — 25216

Comments on literature. Lehman [2] found that L(906180359)=—1,
but he could not ascertain whether x=906180359 is the integral value
of z next to 1 for which L(x)>0 or not.

Comments on theoretical results. Tanaka [3] contains a proof that
L(x)— BV x changes its sign infinitely often as z tends to infinity, where
B=1/{(1/2)= —0.68477. But it is an open problem until the present
whether L(x) itself changes its sign infinitely often or not. In connection
with this problem, see Ingham [1].

The author would like to thank the staff of the Computer Center
of Gakushuin University for their assistance given to him during the
work for the paper.
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