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ABSTRACT. The aim of this paper is to introduce the analogues of
the restrictions of z2—z* keZ, zeC, to the unit circle, in the case of
the unit sphere 0B(0, 1) in R™* and to apply them to boundary wvalue
problems of left monogenic functions in R™*"\0B(0, 1).

Introduction

In [2], a theory of monogenic functions has been developed which
generalizes in a natural way the theory of holomorphic functions of one
complex variable to the (m-+1)-dimensional Euclidean space (m=1). In
this context the Cauchy kernel is determined by the function

1 U—7x

m-+1
o Ta—z™ u, x € R™ .
m

The aim of the first section is to give an expansion for the Cauchy
kernel into a series of homogeneous monogenic polynomials in . To
obtain these polynomials we use the development of 1/|u—z|™* into
Gegenbauer polynomials; this will also enable us to give estimates for
the kernel expansion. Other expansions have been introduced in [2] and
[12] and it is shown that all of them are equal.

In the second section we derive the Taylor and Laurent expansions
for monogenic functions in open balls and in annular domains of R™*.
Furthermore, when f admits a Laurent expansion in the annular domain
B, R)\B(0, R,), 0<R,<R,, say

F@=3 P@)+3 Q@) ,

an estimate for the terms P,(x) and Q,(x) is given.
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In the third section we introduce a transform which corresponds to
the transformation f(z)— f(1/Z)(1/z) in the case of holomorphic functions.
The method to obtain it is not analogous to the case of m=1 and holds
only for m=2. Using this transform we are able to define an inner
product on aB(0, 1) (§4) and this for analytic functions.

In the last section we study analytic functionals, distributions, test-
functions and L,-functions on 0B(0, 1), making use of a refined version
of the Laplace-Beltrami operator on 4B(0, 1), which corresponds to the
operator i(d/df) in the complex case. The inner product will then be
extended in a suitable way in order to express certain dualities on the
unit sphere.

Although the case of distributions on 6B(0, 1) may also be treated
by decomposing spherical harmonics into spherical monogenic functions
and by using the results for spherical harmonics as has been done by
Seeley in [13] and Morimoto in [9], we develop an independent theory.

In a forthcoming paper [16] we shall study wider classes of analytic
functionals on 0B(0, 1) which were also investigated by Hashizume-Kowata-

Minemura-Okamoto in [5], by Helgason in [7] and by Morimoto in [8], [9]
and [10].

PRELIMINARIES. Let me N, m=1, and let .97 be the Clifford algebra
constructed over a real quadratic n-dimensional vector space, n=m.
Then . is a 2"-dimensional real vector space with basis {e,; AC
{1’ -+, n}}, where es=6=1, €a=E€y ° " €y, A={a1; Tty al}: o, <a,<---<a;
€a;€a,= —€q€s; When j#k and e;,=—1, j=1,-..,n. By ordering the
subsets A of N={1, ---, n} in a certain way, each a=3,a e, may thus
be identified with the element (a,) .-y € R*". Moreover, the e,-component
a, of a € &7 will be called real. For a=3,a.e,€.% we put a=3,0a,¢,

where for A+Q, e,=¢,, --- €., with &,=—e¢,, i=1, ---, n, while for
A= D, €g=¢.

If 2=(z, @, -+, x,) € R™*" is identified with x=x,+x.e,+--- + X,
then R™*' may be considered as a subspace of .9 Note that in this case
T=To—%,6,—*++ —Tpe, corresponds to the point z=(x, —x,, ---, —x,) €
R™,

The norm in R* is denoted by || while the norm in .5 is defined
by |a|;=2"Re (@a)=2"|a|*. Furthermore the points of the unit ball aB(0, 1)
in R™*' are denoted by w.

The classical Cauchy-Riemann operator is generalized to D= Sr.elo/ox,)
and D=3",¢,0/dx,) denotes the conjugate of D. Remark that DD—
DD=A4,,,,, the (m+1)-dimensional Laplacian.

Let 2CR™** be open; then an .9-valued function f is called left
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(resp. right) monogenic in 2 if and only if f € C(2; %) and Df=0 (resp.
fD=0)in 2. The space of left (resp. right) monogenic functions in 2 is
denoted by M,(2; .%) (resp. M, " (R2; .&7)).

§1. The Kernel function.

In this section we give an expansion for the Cauchy kernel function
1@ )G —7)/|y—2|™**) for |y|>|x|. Itis well known that the function
1/|c—y|™, », ye R™*, may be developed, for |[y|>|x|, into the series

=]

1
iw__y [m—l =k2=0 Ck,m+1 W-Ik,m+1,y(x) ’

where
k+m—2
Ck,m+1= < 1: )
and
Lmssn@) =121 L s $22)
(See [11].)

As the above series converges, together with all its derivatives, absolutely
and uniformly in |y|>]|x|, we obtain that

(1) T = s e Kumina(@)
where

Koy (@) = —
m._.

1 Dka+1,m+1,y(w) e

Observe that the functions K, ., ,(x) are left and right monogenic homo-
geneous polynomials in x € R™" and that from the definition and [11] it
may easily be proved that for some constant C,>0

(2) | Kymt1,5(®) [0 S C(1+ K| |* .
On the other hand, it follows from [11] that for |y|>|x|

(3) _F=Z 5 (P g gy yg

Hence, identifying the homogeneous polynomials of order % in (1) and (3),
we get :
(=1)* Y
Tl {z, 7y i

1
=Ck+1,m+1W-Kk,m+l,y(x) ’
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which implies that the function A/ly|™**)K,, w1,y (x) is both left and right
monogenic for y € R™*'\{0}.

§2. A Taylor and a Laurent expansion.

Let R’>0 and let f be left monogenic in B(O R'). Then using Cauchy’s
formula (see [2]), for any 0<R<R' and meB(O R),

f(@)=

27T 5. fu
Wi Samo B |u—gx|™ S

Hence by the kernel expansion (1)

( 4 ) f(m): Z:" k+1 m+1

@D B™TE gaB(O,R)

Kk,m+1,u(x)d0uf(u) .

Note that this series converges absolutely and uniformly in E(O, R). The
expression (4) can also be brought into the form

R | 1\ k U
f@=3% - SEACEAR (P N OR

wmﬂ SaB(o.R)

which is a natural generalization of the expansion

0= 5 5 T

S 1 zoiiu)k Sfuw)du

aB(0,R) WU

in the case of holomorphic functions.
On the other hand, in view of [2], we have the expansion

(5) f(m)=§ o Z V11 z,,(x)azl o
where for each ke N and (I, ---, 1) e{1, ---, m}*,
— a ) a ]
all.“lk [auh au;kf(u) % =0 ?
1
Vll"'lk(x)zﬁ!— ,,(,1‘,?1‘.,;,,, Z,l coe zlk

with z,=x.,—2;, =1, e, my, and where the series converges as a
~ multiple power series in B(0,1” 2 'R). Hence, identifying the homogeneous
parts in (4) and (5), we obtain that for each ke N,

—_— Ck+1.m+l
(6) (ll.-g,lk) Vzl...t,‘(x)azl...zk-—w—w;ﬁm SGB(O,R) K,,,,,‘_,_l,“(w)da“f(u) .
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Using the estimate (2) it is easy to see that
(1) 1 5 Vi@ s SCC im0 ZD) sup 1))
et Ueeelg lgoeelp 0= k+1,m-+1 R 3800 ) 0
where the constant C>0 depends only on the dimension m.
We now construct a Laurent expansion. Suppose that f is left mono-
genic in co B(0, R'), R'>0, and that f —0 for « tending to infinity. Then
for R>R’ and x€co B(0, R) (See [2].)

S (@)=

S _E=h s o.f(u) .

@rr Jon0m) [o—w|"

Hence, using the kernel expansion (1), we obtain that

( 8) f(m = i:“ Ck+1 = SaB(O,R) —K-_kﬂ&dauf(u)

- || +*

Furthermore, in view of the estimate (4),

(9)

[, Buead®gs | <crari(Z)™ sup 1rwh,
3B(0,R) | 2] 0 || 3B(0,R)

C* depending only on the dimension m.
In [3] the following version of a Laurent expansion has been proved:

(10) f@x)= Z Z X,1 (@b,

where

1
b=y — SBB(O’R) Voo (00, £ (1)

and

PO L .

auzl L aulk ]w—ul’”“ u=
We now show that the expansions (8) and (10) are equal.

LEMMA 1. For any ke N,

Z le zk(x)bzl 4y = N O/ S Ky mi1,(%) do.fw) .

PROOF. In view of (10) the right hand side is of the form

.....
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If s>k then for any R>0,

;1...1. = 1 S V,l...;,(u)dO',,H(u)
@iy J3BOR)

N wiﬂ Samo,m Vq---l,(rS}')%H(%) .

Hence, letting R—0, we obtain that b;.., =0.
If s<k we get the same result by letting R tend to infinity. Con-
sequently

H(x): Zlk) X;l...zk(x)b;l...zk

(Lyseeey

and so

k=0 (5,7,
which yields that b,...,=b},..., for any ke N and (I, -+, L) e (L, - - -, m}*.

_ Suppose now that 0<R;<R,<R,<R; and let f be left monogenic in
B(0, R)\B(0, R)). Then by the representation theorem of Cauchy and the
kernel expansion

£ () ::,,2(‘, S/

Wy RHE SaB(O,Rl)

Kk.m+l.u(w)dauf(u)

+2 Ck+1,m+1 Mdauf(u) ’

= SaB(o.Rz) | o |m™t%

where both series converge absolutely and uniformly in any compact
subset of B(0, R)\B(0, R,).

REMARK. Let ScR™" be an open bounded neighbourhood of the
origin with C,-boundary. Then, in view of the Taylor and Laurent ex-
pansions and by using Cauchy’s Theorem (see [2]), we obtain the follow-
ing orthogonality relations on 4S: for all &, L€ N,

11 kym+t1,y 0, , = ZktlLimit Limtl,% da-“ k,mt1,y

b Tl i i P
:Ck+1,m+1§ Ky, mi1,(%) do K, mi1,0(2) .

Wpiy o5 |y Yl

§3. Adjoint monogenic functions.

In this section we construct an extension of the mapping
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@ —7(%):
z/z

which is defined for holomorphic functions in an open 2&C, to the case
of left monogenic functions in QC R™** (m=2). Let me N, m>1. Then,
for (u, y) € R***x R™*, we first consider the function

1 =[ ] -1
Huly—a/lu][" Lly—a|* d=wia |u|’

which may be expanded into the series

z C.. mHLk (K8, P/ ul|Y])
(ullghm+e

which converges absolutely and uniformly in any compact subset of the
region |y||u|>1 in R*"*Y, Note that for any ke N,

L (<5, 9)[(( ][ 91)
(ully )™+

is harmonic in R™*\{0} and so in each variable w and y separately.
Moreover it is equal to

[ Wl\ﬂj‘ L MH( |<::I Iy'y>] >:L=az/|u|2 ) ]u,il’"—l )

We now put

D, 1 D,
1—m July—a/lw|> 1—m

s(y, w)=

Then in the region |u||y|>1,

D, Ly w (K% /(% Y1) Ds
8(y, w)= Z Ciymix 1— Lk m+1< (w]ly )= ) 1—m

Furthermore, as for each k€ N,

D s (£% 9\ 1
Ck,m+1< 1_':m ) T [ Lk,m+1< | a’l | yl> Ck+1,m+1lylm+k Kymi1,(®)

we obtain the identity

c. Dy (Liwui, y)/(ully]))_Da
LA T m N |yt 1em

_ 1 ( @\, 1 _D,
—'Ck+1,m+1’—‘lylm+k Kk.m+1:v IuP) lulm—1 1—-m '




434 FRANSISCUS SOMMEN

Observe that all these functions are left monogenic in y € R***\{0} and
right monogenic in u € R™**\{0}.
Using the function s(y, u), we shall define the spherical transform of
a function which is left monogenic in respectively 1;’(0, R) and co B(0, R),
R>0. By this transform, a function f eMl(E’(O R); &) (resp. fe€
M,(co B(0, R); &) is transformed into a function s(f)e M, "(co B(0, 1/R);
&) (resp. M"(B(, 1/R; &)). We first consider feM, (B(O R); &7).
Then obviously f(%) e M. "’(B(O R); &) and for any xeB(O R—¢),

F(®)= 0] 7z

f(x)— Dy t1 SaB(O,R——e) f(y)da, Iy._ IM“H
=3 g‘;"_lﬂ.‘."_l_ S Kk m+1, y(w)
—kz=0 @,pyy  J3BOR—) (y)da |y |™+* :

The spherical transform s(f) of f is now defined by

7 Kimug(@flul) 1 \_D,
f(y)daﬂ( . ry'mug |ulm—1/ 1—m

s(F)w)=F, Crinmss |

m+1 dB(0,R—e¢)

=—L_{ Fwdo,s(y, w) .
Wpyy JOBOE—e)

Note that the above series is the Laurent expansion for s(f)(w); it con-
verges absolutely and uniformly in any compact subset of co B(0, 1/R) as
a series of right monogenic functions. We also have that

—{ f u \ 1 \ Du
s(f)(u)‘(f(lulzllulﬂ—ll L

We now introduce the spherical transform for left monogenic func-
tions in co (B(0, R)) which tend to zero if x— . To this end we consider
the following expansion in the region |u||y|<1:

1 _"Z k y, &)
- Ck,m+1 Lk,m+1 ! .
lylu|—a/|ul[*"" =0 (yll=h <Iyllul>

It is easy to check that in |u||y|<]1,

.1 \_D.
z=/lul? lul"‘“‘/ 1—m

—8(2/, u) []—‘,,T

_ B k41 k+1 <y9?’7’>\ ‘5“
=&, Cummu 2 0 T (l ) P

D,

k=0
= CoiimiiKomirine wl+
kz.__‘a E+1,m+ 188 b mt 1,5/ 2(y)| ul 1—m
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Now let f be left monogenic in co B(0, R) such that f tends to zero if
x—co. Then f(7) is right monogenic in co B (0, R) and

f( )= 2 Crismss S f(y)da' Ky mi1,0(Y) .

@pir Jon0m40 ||+

We now define the spherical transform s(f) of f by

s(Hw=3 Geermir | )10, Ky ) D

mii  JOB(O,R+e) 1—m

~ |, F@dosw,w
@iy JIBO,R+E)

=(f(|312)|u;1m-1)1?% '

Observe that s(f) is right monogenic B(O, 1/R). We so arrive at

DEFINITION 1. Let f be left monogenic in QS R™'. Then the spheri-
cal transform s(f) of f is given by

— (7~ 1 D,
s W= (M1t o= T

Note that s(f) is right monogenic in {x: z/|z|* € Q).

EXAMPLES. Let P, be a homogeneous monogenic polynomial of order
k, i.e.,

Pk(a’)— Z th z,,(x)atl A

for some a,,..,, €. Then

s(Pw) = ( Pl 2 )L )L

lul/|ul™/ 1—m

=(P,,(u) 1 \_D,

Iulzk+m—1/ 1—m

=P (b 72

_ u 2k+m—1
——P"( ) lu|2k+m+1. m—1 :

Let Q, be a left monogenic function of the form

Qk(x)"" Z th zk(w)bzl dg 3

.....
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then we have

8(Qy)(w)=Q(w)| w1 2 tm L
1—m

Observe that s(P,) may be written as 3, ..., bi,...;,. %o ..., () and that it
is a homogeneous right monogenic polynomial of order k.
Before defining the adjoint of a left monogenic function we state

the following
LEMMA 2. Let f e M(B(0, R)\B(0, R,)) have the Laurent expansion

F@=3, P@)+3 Q@) ,

with
Pk= Z Vll lk(m)all 243

and v
ka Z Xl1 zk(x)bzl Qe

.....

Then the series

d m—1
%WS(PI‘J(“)‘FZ m 8(Qu)(u)

converges to a right monogenic function in B(O, 1/R)\B(0, 1/R,).

PROOF. The lemma follows from the estimates (7) and (9) applied to
the Laurent expansion of the spherical transform s(f) of f.

DEFINITION 2. Let f be left monogenic in B(0, R)\B(0, R,), 0<R,<R,,
and let

F@)=3 P@)+3, Q@)
be its Laurent expansion. Then the adjoint function fF of f is defined by
OB 2=‘. —m_s(P k)(u)+Z 2—k:——— 3(Qu)(u) .
Note that it is right monogenic in B(0, 1/R)\B(0, 1/R,).

§4. The inner product on dB(0, 1).

In this section the inner product between analytic .%-valued func-
tions on the unit sphere 0B(0, 1) of R™** will be introduced. First of all
we give the definition of spherical monogenic functions.
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DEFINITION 3. Let k€ N. Then we call

(a) P,:0B(0,1)— . an inner spherical monogenic function of order
k if P, (w) is the restriction of a left monogenic function P,(x) in R™"
to 0B(0, 1) such that

Px)=|x|"Pyw) .

(b) Q,:0B(0,1)— .o is an outer spherical monogenic function of order
k if Q.(w) is the restriction of a left monogenic function Q,(x) in R™*\{0}
to 0B(0, 1) such that

Qur)=|z|" """ Quw) .

We first prove the theorem of Caucky-Kowalewski for analytic func-
tions on 6B(0, 1).

LEMMA 3. Let fbe harmonic in a ball E(a, r); then we have f=f,+f,
where Df,=0 and Df,=0 in B(a, 7).

PrROOF. It suffices to prove the statement for harmonic functions in
the unit ball. As Df=g is left monogenic in B(0, 1), then, in view of
[15], there exists h such that (8/0x,)h=¢g and Dh=0 in B(O, 1). Hence
D(h/2)=g=Df which implies that the problem is solved by taking f,=h/2
and f,=f—h/2.

In the following lemma, by an m-dimensional injective C. surface 3
in R™*', the range of a C.-injection from an open subset U of R™ in
R™** is meant.

LEMMA 4. Let 2CR™" be open and let X be an m-dimensional in-
jective C.-surface in 2 such that 2\3 18 open. Furthermore let f €
M(2\Y; )NC(R; ). Then feM(2;.97).

ProOOF. It is easy to show that for any closed m-dimensional interval
1€, S dof=0. Hence by Morera’s theorem (see [1]), f is left mono-
aI
genic in 2.

THEOREM 1 (Cauchy-Kowalewski). Let f be an -valued analytic
Sfunction on 9B(0,1). Then there exist 0<R,<1<R, and a unique left
momnogenic function f*) in B0, R)\B(0, R,) such that f*|:ze,n=1r-

PROOF. Choose PedB(0,1) and define a system of spherical coordi-
nates in a neighbourhood 2 of P in R™**. Then in 2, D may be written as
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D —a'"e(r)+lam ’
or r

where

% X

e(r)_z —ei’ 'r—|a:| 1]
&4 [
and
0,=>, — 1 - €(wy 9 ’
=1 sinw,_, - sin w, 0w,

(@, -, ®,) being the angle-coordinates and e,,=(1/|dw/dw;|)(dw/dw,).

It is easy to see that g(w)=—¢€,0.f(w), where &,=>",(x/|2|)e, is
analytic in dB(0, 1)N Q.

Furthermore g does not depend on the coordinate system chosen
on 0B(0,1) so that g is defined on 9B(0,1). By the Cauchy-Kowalewski
theorem for the Laplacian 4, there exist 0<R,<1<R, and a unique
7-valued harmonic function % in B(O R)\B(0, R,) such that

hlazon=Jf and —a—hlas(o,n': —&,0,f=— la wllopo, -
or r
We claim that & is the desired left monogenic extension f* of S

Let P and 2 be as before and choose >0 such that B(P, r)<
B(O R)\B@©, R,). Then by Lemma 3, h(x)=f(x) + f:(x), where Df,(z)=0
and Df,(x)=0 in B(P, ). Hence we have that

0
Dh(x)|5p,mn080,0= zgfz(x)bw,r) NaB(0,1)
0

and

Dh(m)lE(P,rmaB(o.n=e(r)( aa +l‘§(r)a )hliu’.rmas(o,n:o ’
which implies that v=2(3/0x,)f,(x) satisfies Dy=0 and v|5r,, 0550, 1,_()
Consequently, using the analogue of Lemma 4 for D, v=0 so that Df,=

in B(P, r). Hence we proved that Dh=0 in B(P, r) from which it follows
that » is left monogenic in B(O R)\B(0, R,). Moreover, by virtue of
Lemma 4, k is unique.

The extension f* of f obtained in Theorem 1 is called the Cauchy-
Kowalewski extension.

COROLLARY. Let f be analytic on dB(0,1). Then f admits a canonical
expansion into spherical monogenic functions:
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F@)=3, P(0)+3, Q@) .

Furthermore the series 3.5 Pu(x)+ 3.5, Q.(x) converges in a neighborhood
of 8B(0, 1) to the Cauchy-Kowalewski extension f* of f and there exist
1>¢>0 and C>0 such that

sup |Py@)],=C(1—e) .

€ dB(0,1)

and
sup |Qu(w)[,=C1—e)*.

w € 3d.B(0,1)

Conversely, if a sequence (P,(w), Q,(®))..x Satisfies the above estimates,
then

F@=3, Py@)+3] Qu@)

18 analytic on 0B(0, 1).

PROOF. Corollary follows immediately from the previous theorem and
the estimates (7) and (9).

We now come to

DEFINITION 4. The inner product of two analytic functions f and ¢
on 9B(0, 1) is defined by

1

wm+1

ho=—"—|  Fe)ogw).

REMARKS. Let f and g be analytic functions on 4B(0, 1) which may
be extended to left monogenic functions f* and g* in B(0, R)\B(0, R
and put

F@=3 Py@)+3, Qu@)
and
o@)=3, Pl(0)+3, %i@) .
(.1) If § is an open neighbourhood of the origin with C,-boundary
oS< B(0, R)\B(0, R"), then
1

m+1

(f, 9=—— | Fwdougtu) .
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(2) F@)=3, P@)+3; Qu@)
=% P +3 au)e.,
:f(w)e—(r) .
Hence, as do,=¢,dS, and ¢,.¢.,,=1,

1

m+1
Furthermore Re (f, f/)=0 and Re (f, f)=0 implies that f=0.
(3) From the orthogonality relations (11) it follows easily that
(P, P)=0, K=+l
(Qr, QN=0, k=l

(f; 9)=

Sml, F(@)g(w)dS, .

and, as S ﬁk(u)da,‘Q;(u)-»O when R— oo,
R)

aB(0,

(P,, Q)=0 for all k,leN.

Analogously, as S N Q.(w)do P/(u)—0 when R—0,

aB(0
(@, P)=0 for all k leN.

Hence we obtain that
(f, =3 (P PD+3, @ Q1) -

§ 5. Boundary values on 0B(0, 1).

5.1. Analytic functionals on 0B(0, 1).

Let M,(0B(0, 1); .&7) (resp. M (B(0, 1); .%7)) be the space of functions
which are left (resp. right) monogenic in a neighbourhood of 3B(0, 1).
Then in view of Lemma 2 and the uniqueness of the Cauchy-Kowalewski
extension, we may define the mappings

foF=fwe,)*", when feM@@B(0,1);. %)
and

f—F=@nfl@)*, when feM"@B(©,1);. %),



SPHERICAL MONOGENIC FUNCTIONS 441

where * and *” denote the left and right monogenic extensions. As for
any f € M,(B(0, 1); .%7) (vesp. f € M{"(3B(0, 1); ), f=f (resp. f=J), the
mapping f— f is an algebraic isomorphism between M,(3B(0, 1); %) and
M"(3B(0, 1); &) having as inverse the mapping f—f on M (8B(0, 1); .&7).
Furthermore the above isomorphisms are also topological when we define
a topology in the following way. Since for each 0<e<1, M1(3(1+s)\
Bl —e); &) and M (B(1+¢e)\B(1—¢) are Fréchet .o7~-modules (see [2]), it
is natural to introduce

DEFINITION 5. Call
M,(6B(0, 1); &) =1lim ind M(B1+e)\B1 —¢); &)
1>e>0
and

M (B(, 1); .&)=lim ind M (B +e)\B1—¢); &) .
1>e>0

By Theorem 1 we know that the set of .97-valued analytic functions on
0B(0, 1) coincides with the set of restrictions of functions belonging to
M,(6B(0, 1); &) (resp. M"(6B(0, 1); .57). Hence it is natural to idedtify
the module M,(6B(0, 1); .%7) (resp. M”(©B(0, 1); .57)) with the right (resp.
left) .%“module of analytic functions on 6B(0,1). As furthermore the
elements of the dual module of M (0B(0, 1); &) are left .>-linear funec-
tionals, this module will be called the module of left analytic functionals
on 0B(0, 1). :

Let T be a left analytic functional on 6B(0,1) and consider the
function

~ 1 xr—w

Tw)=—1 T, 222005

: (x> Wiy Ix__wlm+1
then 7'(x) is left monogenic in R™*\0B(0, 1) and tends to zero if z— oo.
Furthermoreé if ¢ € M (3B(0, 1); .%) then for ¢ sufficiently small (see [4])

To=\  e@ietfw-| — e@dol@.

aB(0,1+¢)
Conversely, if fe M(R""\oB(0, 1); .57) tends to zero when x-— oo, T,
defined by

Ty, =\

p@dof@—|  p@do.f@)

2B (0,1+¢) 4B(0,1

is a left analytic functional on 6B(0,1). We now give an expression of
T into spherical monogenic functions. To this end we consider the
Laurent expansion of 7':
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P@=—3 P@), in BO,1)
and

T(®=3 Q@) , in coBO,1),
which will be written as
P@) =3, Resz0.0@u®) — L0 Pa(@) ,

where X, is the characteristic function of ACR™*'. It follows directly
from the estimates (7) and (9) that for any >0 there exists a constant
C,>0 such that

sup (| Pr(@) o, | @i(@) ) =C,(L+6)* .

w€dB(0,1

Now take f e M,(0B(0,1); %). Then by the Corollary to Theorem 1, f
may developed into a series of spherical monogenic functions

f@)=3, (Pi@)+Qiw))

such that for some 1>6>0.and C>0,
sup (| Py®)lo, | Qu(@))=CA—0)* .

w€dB(0,1)

Hence, as the sequence (Pi(w), Q.(®)),ey Satisfies the same estimate, the
series

go [(Pi(®@), Pu(w))+(Qu(®), Qu(w))]

converges absolutely. Furthermore, as in M™ (B0, 1); &%), flw)=
2 (Pi(w) + Qi(w)),

(T, =3, (T, Pi@)+<T, Gi@))

= é (SaB(O,l+’7) Pl:(m)dazf‘(x) - SaB(O,l-—ﬂ) P,:(x)dazf'(w))
+ kzc:;:) (S?B(O.1+V) Q;c(w)do‘zf'(x) - SaB(O,l—?) Q;(x)dﬂsf(x))

A~ i [(Pi(w), Py(@))+(Quw), Qu(®))] .

Hence it is natural to extend the inner product on 0B(0, 1) as follows.
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Let T be a left analytic functional on 6B(0, 1) and let f € M (6 B(0, 1);
57); then we define

f, H=—2AT, 7> .
wm+1
Furt}ermore as any @€ M(6B(0, 1); %) may be written in the form
p=f, with fe M,(0B(0, 1); .5), we have that

(T, P) =W, (f, T)zwm+lg [(f, P+ (S, Qk)]'—‘:’g’[<Pk, P> +<Qx P>

or T=37,(P(w)+Q,(®)) in the weak topology on M (0B(0, 1); ).
Conversely, if a sequence (P, Q.)..y of spherical monogenic functions
satisfies the estimate
sup (| Pu@)|, |Qu(@)])=C.(1+2)*,
weadB(0,1)

then obviously T=37,(P(®w)+Q,(®)) is a left analytic functional on
0B(0, 1).

5.2. Distributions on 0B(0, 1).

We consider the left module &,(0B(0, 1); 57) of .%7-valued C.-func-
tions on 8B(0, 1) and its dual module &,(6B(0, 1); .7) of left linear .o~
valued distributions (called “distributions” for short) on 6B(0, 1).

DEFINITION 6. Let fe M, (R™*\0B(0, 1)). Then f has a distributional
boundary value on 6B(0, 1) if and only if

lim S
e—0+4 J3B(0,1+te)

p()do, f(x), ®e &w0B(,1); ¥),

define two distributions on 6B(0, 1), denoted by o*f and 0~ f respectively.
In this case the boundary value of f is denoted by BV f=od*f—o-f.
First of all we shall introduce a refined version of the Laplace-Beltrami
operator on 9B(0, 1). To this end we consider the operators D=(d/or)e,,, +
(1/r)o, and D=(d/or)e,+(1/r)d, in R»*\{0}. It is easy to see that 9, is
an operator in 0B(0,1) and that for any function @ e &,(0B(0, 1); )
and ke N, (€,,0.)*P(w) belongs to £,,0B(0, 1); .&).

DEFINITION 7. The operator I'=¢,0, is called the spherical Cauchy-
Riemann operator. The operator ['=d.¢,, is called the adjoint of I.
Observe that for m=1, I'=1(d/d6).

THEOREM 2. The only (real) eigenvalues of I' on the spaces of
-valued analytic functions in B0, 1) are —k and k+m, ke N. The
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corresponding eigenspaces are the spaces of immer and outer spherical
monogenic functions of order k.

ProOF. Let P, ®) be an inner spherical monogenic function having
P,(x) as a left monogenic extension. Then

9 px)+Lrp,@=0.
or r

However, as (3/6r)P,(x)=(k/r)P.(x) in R**\{0}, P, is an eigenvector of I
with eigenvalue —k. Analogously any outer spherical monogenic function
Q.(®) is an eigenvector of I' with eigenvalue %k+m. Obviously these
are the only (real) eigenvalues and eigenvectors of I.

Let us recall that on a Riemannian manifold S with metric tensor
g*, the Laplace-Beltrami operator, acting on C.-functions on S, is given by

1 0 0

4= —=— 2 Vgl g2 .
s=2 Tl 50" lglg o

We now want to express the Laplace-Beltrami operator 4, on the unit
sphere in terms of the spherical Cauchy-Riemann operator I" and its ad-
joint I’. Therefore we need the expression of the Laplacian in R™*! in
spherical coordinates: in R™*'\{0} (see [17])
2
0 Lm 0 1

4= +=4, .
ort r or 1 °

Unless it is specified explicitly, operators are supposed to act on C.-
functions.

THEOREM 3. The Laplace-Beltrami operator equals
de=T" =1 .

Furthermore for any inner and outer spherical monogenic function P,(®)
and Q. (@)

I~’.Z’,,=e(,,I~/’.,:?/m
FQ.=e.o. .
We also have the identity
r+r=mi.
ProOF. In R™*'\{0} we have that
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A= I_)D—-—'— De(,.)é-(,.)D

(Lt
=§%+%(F+f)%—+%;ff+%<%>F

+ i+ 2+ LF-nr.
r or 1
As on the other hand in R™**\{0}

0* m 0 1
4= _A H
61’2+ r a'r+1~2 s

we immediately obtain the identities

~

I'+I'=ml
and
A= -1 .

Let P, be an inner spherical monogenic function of order k; then P,5,=
(P.&,)3, and hence e,P.d,=¢e. (¢ 0.(¢,P))=1P,. Analogusly for any
outer spherical monogenic function Q,, e(,,Q,,aa,-:fQ,,.

Observe that for any inner and outer spherical monogenic function
P, and Q,, I'P,.=(k+m)P, and I'Q,=—kQ,. Note also that P, (w) and
Q._.(w) are eigenfunctions of the Laplace-Beltrami operator 4; with
eigenvalue —k(k+m—1). Hence P,(w) and Q,_,(w) are .%-valued spherical
harmonics of order k.

We now prove an expansion of .97-valued C.-functions on 0B(0, 1)
in spherical monogenic functions. We first define the operator I'" on the
space of left analytic functionals on 6B(0,1). Let T e M"(B(0, 1); &)
be a left analytic functional and let T@) =1/, {Ts, EF—d)/|c—@ |
admit the Laurent expansion

T(@)=3, eoson @@ —LionPa@) -
Then
9@)= 3} (6-+M)Leonon@u(®) — (— B 00 Pul@)) ,

which is completely determined by T, belongs to M (R™*\0B(0, 1); &)
and tends to zero at infinity. Hence g(x) determines an element T, of
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M" (@B, 1); &) and we define I'T=1T,. Observe that I is well defined
and s-bounded on the space M "(0B(0, 1); .o7)".

Furthermore, when T is an analytic function on 4B(0, 1), then we
may extend T to a left monogenic function f in a neighbourhood of
0B(0, 1) admitting a Laurent expantion

F@)=3, (Pi@) +Qia)) .

Consequently
Tdaf @)= 3, (—H)P@)+ (b +m)Q=)) ,

which implies that I'T, in the sense of C.-functions, equals I'T in the
sense of analytic functionals. : ,

We also have that for any left analytic functional 7' and any fe¢
M.(6B(0, 1); .o7)

(f, TT)= 3 [(— )P}, P+ (o+m)(@i, Q)]
=f,T).

Let now &,(0B(0, 1);.) be the right module of all .o-valued C..-

functions on 0B(0, 1) and let ¢ € &,,(0B(0, 1); .%). Then by the density

of M,(0B(0, 1); .%) in &,,(0B(0, 1); .%7) it is obvious that I'® in the sense

of analytic functionals equals I'¢ in the sense of C.-functions.
Furthermore the representing function

1 S T—w

Wpyy JoBON | X—@|™

Px)= do.P(®)

of the analytic functional determined by # admits a Laurent expansion
@(w)=kz=3 KeoB 0,0 Q@u(®) — X 30,1, Pi(2)) ,

where

Pwy=Cemn | g, (@)do.p(o)

mi1  JIBOD)

and

Q.(x)= Cisrmis S Ky mi1,s(®) do ., P(®) .

Onir Jimon  |z|mF

Consequently we obtain the estimate
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sup {| P(@)loy | Qu(@)|}=CC,.y, m+1(1+k2) SuP |p(@)]o .

wedB(o,

THEOREM 4. Let € &,,(0B(0, 1); &) and let
$@) =3 Xeos0.v@e®) X0 Pul®) -

Then for any s€ N there exists a constant C,>0 such that
wigg " {| P(w) ’0" | Q@) | }=C.(L+Fk)~° .

Conversely if a sequence (P, Q,,);e v satisfies the above estimate,
P(@)=3, [Pi(@) +Qu@)] & E(GBO, 1); ) ,
P@)= 3 Leono,n Q@) — L3 0.0 Po(@))

and lim,_ ., P(@w(1xe)) exists in the C.-topology.

PROOF. We know that @(w)=3> 7, (P, (®)+Q®)) in the sense of
analytic functionals. Hence

A—IYP(@)=3 (k+1)*Pu(@) +(—k—m+1)'Qu®)) .

- But as (1—I')’'p(w) in the sense of analytic functionals equals (1—1I")'®
in the sense of C.-functions, (1—I')’® is a C.-function and so

1+k)  Sup | P(@) [,=C,Chi1mi: A +E) ,
(k+m—1) f’agg 5 | Q@) [,=C,Cyiy,m+:A1+E) ,

where C;=C supscze,y | (1—1)P(@)]o.

As furthermore (Ciiy mii(1+5%))sen is a slowly growing sequence which
does not depend on s, the stated estimate is obvious.

Conversely consider a sequence (P, @.):.y Which satisfies the stated
estimate, then (P,)..~ and (Q,)..~ are sequences of spherical harmonics
satisfying the same estimate. Hence it follows from Seeley [13] that
Sise Py(@)+Q(w) converges in the sense of C. -functions to a function
®. When we provide the module of sequences (P, @)y satisfying
the stated estimates with the Fréchet topology determined by the
seminorms _

sup sup {(1+k) | Pu(@) ], (1+K)"| Qu(@) o} = 2,((Ps, Qy), SeN,

keN wedB(0,1
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it is easy to see that this module is topologically isomorphic to
& n(0B(0, 1); ).

Consider now &(%)=3.7"0 Xeos0.0@u(®) —X30,0Pu(2). Then @(w(l+¢))
corresponds to the sequence (0, (1+&)~*Q.(®))..y, Which converges to
0, Qu(@))ren for the p,-seminorms. Hence lim,.,. $(w(l+¢)) exists in
& »(0B(0, 1); A). Analogously lim,_,, $(@w(1—¢)) exists in &,,(3B(0, 1); .%7)
and

P(w) =}i!£ (P(0(1+¢)) —P(w(l—¢)) .

PROPOSITION 1. For m=2 the operator 1—1I', acting on M (3B(0, 1);
7), has an inverse.

PrROOF. Let T'e M (0B(0, 1); .57) admit the expansion T=32, (P, +
Qi). Then S=37, P./(k+1)+Q,/(1—(k+m)) belongs to M\"(3B(0, 1); .o7)'
and (1—-I)S=T. Furthermore (1—I")S=0 implies that S=0, so that
(1—I")" is defined. Obviously (1—I")"! is s-bounded.

The indicatrix (l—fFT of 1—7I)"'T may easily be found in the
following way. Let T(x)|30.,= — 2, Pi(x); then

1 S"' Tsw)ds= —S, P(w)-L S'”' s*ds
] Jo &),
— _< P(x)
2, E+1

T~
=(1'—F)—1T|§(0,1) .
If T@)eoson= 50 Qu(), then

-|—:7—| Sljo T(S@)ds:éoQb(w) -I—‘%—l- Si g (ktm g
L3 Qo)
B 1—(;0+m)

o~
= (1 ’—F)_ITlcoE(o.l) .

PROPOSITION 2. Let o€ M{"(0B(0,1); ). Then @ € &,,(0B(0,1); &)
if and only if (1—I')'P 18 a continuous function for all se N. Further-
more a system of seminorms on & ,(0B(0,1); &) may be given by

{ sup sup|(1—I)p(w)l:seN}.

@wedR(0,1) l=<s

ProOF. When @€ &,,(0B(0, 1); %), then (1—I')*® is continuous for



SPHERICAL MONOGENIC FUNCTIONS 449

all seN. When (1—I')® is continuous for all s, then, if @(w)=
St (Pr(@)+Q(w)), the sequence (P,(w), Q,(w)),.y satisfies the estimate
of Theorem 4, which implies that ¢ € &,,(6B(0, 1); .%7). Using this result
one sees immediately that {sup.cs;ze, Supi<, |1 —1I)'@(®)|,: 8 € N} induces a
Fréchet-topology on &,,(6B(0, 1); &) which is equivalent to the usual
topology.

We now consider distributions on 6B(0, 1). Let T ¢ &(,(0B(0, 1); .%);
then ‘

- 1 < T—@ >
Tw)=—"—Ts, ———
#) N le—w|m*

may be written in the form
T@) =( 3, Yoo, Q@ — L 0n Pi@)) ,
k=0 .
where

 Pyay=Semn(r, K, L)

m-+1
and

Q. ()= Cisimir/ T,, Kiemi1,5(®) .

]mlm+k

m+1

Note that T' may aect also ori & (0B, 1);%) as follows: Let o=
Sieeo (Pr+Qr) € £,,0B(0, 1); .&7); then we. put

1

m+1

(p, T)= T, %,

where
F(@)=3, (Pi@) +@i@) = F@p.,
establishes an isomorphism between ,(0B(0, 1); .57) and &,,(0B(0, 1); ).

As Te &(,(0B(0, 1); .) may be considered as a left analytic functional,
I'T is defined and, for any functiqn @ e M,(0B(0, 1); .57),

(p, I'T)=T'p, T) .

As pe &,,(0B(0, 1); o) is the limit of a sequence @, € M,(6B(0, 1); %) in
the C.-topology, for any @€ &,,(0B(0, 1); .%)

(@, I'T)=Tp, T) .
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In the following lemma we make use of the fact that a constant %,
only depending on m, may be found such that for any continuous funec-
tion ¢ on 90B(0, 1), 1—I")"*T is continuous on 6B(0, 1) whenever s=k,,.

LEMMA 6. Let Te &(,(0B(0,1); .57). Then there exists s€ N such
that 1—I")"T is a Radon measure on oB(0, 1).

PrROOF. For the functional z: ¢ — (@, T) on #,(0B(0, 1); &), which
is R-linear, we have that z(p)=1/®..,){T, #> and that for all ce.%7
7(pc)=cr(®). Moreover it is continuous on &,(0B(0, 1); .%”). Hence
there exists s e N such that

(@, T),=C Sup sup )I(I—F)‘svlo ,

S we€dB(0,1

which implies that for any ¢ € &,,(0B(0, 1); .&)
|[(p, A—T)""*+*»'T)|,<C sup sup I(l—F)“‘+""’¢lo+Cm§agg , | P@) lo -

—85ls50 wedB(0,1)
By a classical density argument T is a Radon measure.

We now prove the characterizing theorem for distributions on the
unit sphere.

THEOREM 5. Let fe M, (R™"\6B(@0, 1); .&7), m=2. Then are equiva-
lent: '

(1) f=T for some Te £@B(0, 1); );

(2) f 18 of slow growth in R™"\6B(0,1) and it tends to zero if
T —> 0] .

(3) f=27}°=0 (xco’é(o,x)Qk(x)_‘xiz(o.l)Pk(x)) and fO’I’ some s€ N and C>0
esagg,”{lpk(w) loy | Qu(@)0}=CA+Fk)* .

@

PROOF. (1)=(3). Suppose that f=7 for some T ¢ &,(0B(0, 1); .&7).
Then for some s’e N, (1—I")"* is a Radon measure. The Laurent expan-

-
sion of (1—I")""T(x) equals
=D T@) =5 (A~ k=1 Ler0.0@u@ — o+ D L 00 Pa@)

where T=3.¢, Pi(@w)+Qu(w). As 1—I)"*T is a Radon measure

|(B+1)" Py(@) |0=CCpi1,m+: (1 +K) .
|A—k—m) " Qu®)|,=CCps m+:(1+K)

and hence (3) holds.
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Conversely if f satisfies (3) and @e€ &,,(0B(0, 1); &%) with @=
2= (Pr(@) + Qi(w)),

(T, Py =@, T) =3 [(Pi, Py)+ (@4 Q)]
defines a  distribution T=3.70 (Puw)+Qu®@)) in & .,,(0B(0, 1); 7)) =
&, (0B, 1); ) and f=T. Note that by the same argument 9*f and
0~ f exist in &,(0B(0, 1); &), 4. ,
(2)=(3). Suppose that f satisfies (8). Then in B(0, 1)

f@ =3 | Pu@la)bsC S o 1+k)

,s_C'(l_]L‘x‘)'.

Analogously in co B(0, 1)

o))

and f—0 when x— oo,
Conversely, if f satisfies (2), then f is of the form

go (xcoi(o,an(‘v) — X500 L)) .
As for any xe B(0, 1) and wedB(0, 1)

| Py() [,=CCy 1 1,m+:(1+K7)

1 l
K I"( —le) ’
we obtain for |z|=1—1/(k+1), k>0, that

| Pu(@) b= OO0 smus(+16)(11) o+ 1)
=CeCyi1ymi:(1+E)"* . ,
Hence (P,,(a))) satisfies (2). Analogously (Q.(®))..x satisfies (2).

5.3. L-functlons on 0B(0, 1).
Let fand g be .57~valued L,-functions on 8B(0, 1) (f, g € Lz(aB(O 1); ));
then it is obvious to define an inner product and a norm by

(f, 9=

SBB(O,U' f—(w)g(w)dsw ,

m+1



452 FRANSISCUS SOMMEN

lfIr=Re (1| Fo)f@us.)

m+1

- 1 SOB(O.I) Re (f(w)f(a)))dsm )

wm+1

THEOREM 6. Let f and g belong to L,(0B(0, 1); ). Then f and
g may be expressed in spherical monogenic functions:

F@)=3 U@+ Q@) ,  g@)=3 (Pi(o)+Qq(®)) .

Furthermore

£ 1= 25 (L Py l+ 11 Q4 1)

and

(f, =3[Py, PD+ (@, Q0] -

PrROOF. We consider the operators

T f@)— G | K, (2)do.f(@)=P)

mi1  JIBO.D)

and

Iyt (@) — Cetrmns | Kamirl®) 45 1(0)= (2

1 3B(0,1) |a: I”‘“‘

and there restrictions to the unit sphere

11, f(w) — P w)
II_ Gy f(@) — Quw) .

Then I1,, s€ Z, is bounded from L, to L,, and II*=1I,. Moreover

s, 0=——\ Pl@gwus.

+

S S CIH—I m+1f(a)')d0' Kk m+1,0 (a))g((l))ds
aB(0,1) JaB(0,1)

m+1 m+1

Faneonen(]  5w)e,do.Kyunw(@)dS.)

m-+41

aB(0,1)

A& Piw)dS, =(f, I,9) .

3B (0,1)

=)
()3 Samo 1 f(w’)e(r)dsa'm
o)
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Analogous results hold for I7_,,. Furthermore /7,lI, =0 whenever
s#8. Hence the operators II,, scZ, form an othogonal set of projec-
tions and so, by Bessel’s inequality (see [2]),

S AP+ QDS -
Consequently >, (P,+Q,) converges in L,(@B(0, 1); %) and, as f=
>, (P.+Q,) in the sense of distributions, the limit of 3>, (P,+@,) in

L,(0B(0, 1); &) equals f.
This implies that

17 IP=2 (L Py [+ Q)

and
(f, =3 [(Po PD+ (@ Q] -

REMARKS. (1) In the proof of the previous theorem we used the
equalities

C — N =
—ktlmtl ()€, d0 K, pi1,0/(@)= Pr(w)€,,
Wiy J9BOD ) ,

=1Ige, .
In this expression g is considered as a distribution with the expansion
g=>7%-0 (Pr+Q)). Hence
§(@)2,=3, @+P)
and

C _ _ o~ —
—ktlmil g(w)e(r)deKk,mﬂ,w'(w)=Pl:(a)’):Pk'(a)’)e(r) .
1) Y aB(0,1)

Furthermore Pi(w')=1I ,,(gL)(w:).
(2) When we put f=f(w)é,, then

1

m+1

f, 9=

SaB(o,n Fflw)do.g(®) ,

which may be considered as an extension of the inner product between
analytic functions.
(3) Let f=X¢,(P,+@Q,) belong to L,(B(0, 1); .%); then
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fl@)=

1 S T—ua
@pyy J9BOY) mdauf(u)

=é (xcof(o.an(x) —X3 0.0 Pu(X)) .

Furthermore by a direct calculation one easily sees that

fllzlw) e LGB, 1); &), |z|#1,
}irox}rf(w(lie)) exists in L,(3B(0, 1); )

and that the operators I7, and I7_ defined by

lim fo(l+e)=3 Qu@)=( 5 1.)f=15

~lim flo—e)=(3, 11.)r=1_f
are projections satisfying
o0 =1_1m,=0 and 1=, +1IT_
Hence
L,(@B(0, 1); .o7)= 11, L,(3B(0, 1); .%")P, IT1_L,(3B(0, 1); .57) .

(4) Let S, be an .%-valued spherical harmonic function of order
k. As S, is analytic, S, admits an expansion

Sy @)=3} (PA@) + Q@) .

But from the equality
=(—1)=(m—1—-T,
we obtain that

4dsPy=—-l(l+m—1)P, ,
4Q,_,= —ll+m-1)Q,_, .

Consequently as 4,S,= —k(k+m—1)S,, all terms P, and Q, , for which
l+k vanish. So we obtain that

Si(w) =P (0)+Q,_,(w) ,

where
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Pk<w>=%u§ Km0 (@000 Sy@)

—— dB(0,1)

m+1

Q@)= | K, (000w Sy@)

This implies that
sup |Py(@)]e=CCy1,m:(1+K) sup | Se(@) o »

wedB{0,1) wedB(0,1
wf;ggl)le (@) [p=CCmi(L+F) sup [Sk(@) o -

Hence several spaces of analytic functions and functionals, expressed in
terms of sequences of spherical harmonics provided with well defined
estimates, admit a represention in terms of sequences of spherical mono-
genic functions.

Observe furthermore that the decomposition S,=P,+@Q,_, is consistent
with the dimension of the space of .o7-valued spherical harmonics of order
.. In fact this dimension equals 2"N(m+1, k) where 2" is the dimension
of .o and N(m+1, k)=M(m, k)+ M(m, k—1), M(m, k) being the number
of coefficients in a homogeneous polynomial of degree k in m variables
(see [11]). Indeed, by the theorem of Cauchy-Kowalewski for analytic
functions in R™ we obtain the dimension of the space of inner spherical
monogenics of order k equals 2"M(m, k), whereas the dimension of the
space of outer spherical monogenics of order (k—1) equals 2"M(m, k—1).
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