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Introduction

In the previous paper [8], we gave a differential geometrical expression
of Fourier-integral operators on a closed riemannian manifold $N$ without
using local coordinate pathches, which is expressed in the following re-
latively concrete form: (Cf. (19) for the precise meaning of the notations.)

(1) $(Fu)(x)$

$=\sum_{\alpha}\int\int\lambda_{\alpha}a(x;\xi, X)e^{-i\langle\varphi_{2}tx:\epsilon)|X\rangle-i|\xi|A_{\alpha}(X)}(\nu u)(\varphi_{1}(x;\xi);X)dXd\xi$

$+(K\circ u)(x)$ ,

where $\varphi=(\varphi_{1};\varphi_{2})$ is a symplectic transformation of order 1 on $T^{*}N-\{0\}$ .
Although our operators such as (1) form much narrower class than what
was defined by H\"ormander [3] or Guillemin -Sternberg [2], our expression
contains less ambiguities, and hence one can give a sort of coordinate
system on a “vicinity” of the identity operator of the Fourier-integral
operators of order $0$ (cf. Theorem 5.8 [8]). Moreover, the above expres-
sion seems to be convenient for concrete computation of the fundamental
solution of the equation

(2) $\frac{d}{dt}u=\sqrt{-1}$ Pu

for a pseudo-differential operator $P$ of order 1 with a real principal
symbol. We shall state the reason in what follows.

Let $G_{L}\mathscr{F}^{0}$ be the group generated by the invertible Fourier-integral
operators of order $0$ , written in the form (1). We regard $G\mathscr{F}^{0}$ as if it
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were a locally connected topological group. Then, the identity component
$GF_{0}^{0}$ is generated by any neighborhood of the identity. In this paper,
we shall prove the following:

Theorem A. There is a vicinity $\mathfrak{R}$ of the identity in the space of
Fourier-integral operators written in the form (1) such that every ele-
ment in $\mathfrak{R}$ is invertible and the inverse is written in the form (1).

Theorem B. Let $G\mathscr{F}_{0^{0}}^{\prime}$ be the group generated by $\mathfrak{R}$ . Then every
element in $G\mathscr{J}_{0}^{0}$ can be written in the form (1).

Remark that the fundamental solution $e^{\sqrt{-1}}tP$ of (2) is contained in
$GF_{0}^{0}$ , and hence it is written in the form (1). However, the concrete
computation must contain the same difficulties as in the case $N=R^{n}$ .
The advantage of our expression seems to be in the reduction of the
difficulties in computing the fundamental solution to the same level as
in the case $N=R$“, even if $N$ is a closed manifold.

For the proof of above theorems, we must establish the formulae
of compositions, and inversions of Fourier-integral operators of order $0$ .
It is in fact the first step of proving that $G_{\backslash }\Psi_{0}^{0}$ is a regular Fr\’echet-
Lie group. Although the differentiability of the group operations will
be proved in forthcoming papers, it is not hard by the above formulae
to see that $G\mathscr{G}_{0^{0}}^{\prime}$ is a locally connected topological group.

Now, we would like to recall our situation, and several notations
used in the previous paper. Let $S^{*}N$ be the unit cosphere bundle over
$N$ imbedded naturally in the cotangent bundle $T^{*}N$, and $\mathcal{D}_{\omega}(S^{*}N)$ the
group of all contact transformations on $S^{*}N$. By Lemma 1.6 in [8],
$\mathcal{D}_{\omega}(S^{*}N)$ is naturally isomorphic to the group $\mathcal{D}_{\Omega}^{(1)}$ of all symplectic
transformations of order 1 on $T^{*}N-\{0\}$ , where a symplectic transforma-
tion $\varphi:T^{*}N-\{0\}\rightarrow T^{*}N-\{0\}$ is called to be order 1, if $\varphi(x;\xi)=(\varphi_{1}(x;\xi)$ ;
$\varphi_{2}(x;\xi))$ satisfies

(3) $\varphi_{1}(x;r\xi)=\varphi_{1}(x;\xi)$ , $\varphi_{2}(x;r\xi)=r\varphi_{2}(x;\xi)$ ,

for every $r>0$ , where $(y;\eta)$ means a point in $T^{*}N$ such that $y\in N,$ $\eta eT_{l}^{*}$

(the fibre of $T^{*}N$ at $y$). Since $\mathcal{D}_{\omega}(S^{*}N)$ is a topological group under the
$C^{\infty}$-topology, so is $\mathcal{D}_{\Omega}^{(1)}$ through the identification mentioned above.

By $\sum_{C}^{0}$ we denote the totality of all C-valued $C^{\infty}$ functions on $T^{*}N$

with the following asymptotic expansions:

(4) $ a(x;\xi)\sim a_{0}(x;\hat{\xi})+a_{-1}(x;\hat{\xi})r^{-1}+\cdots+a_{-j}(x;\hat{\xi})r^{-j}+\cdots$ ,

where $r=|\xi|,$ $\xi=r^{-1}\xi$ and $a_{-j}’ s$ are $C^{\infty}$ functions on $S^{*}N$. There is a
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natural linear mapping $\alpha$ of $\sum_{c}^{0}$ into the space $C^{\infty}(S^{*}N)^{\infty}$ of all series of
$C^{\infty}$ functions on $S^{*}N$ indexed by non-positive integers. It is not hard
to see that $\sum_{c}^{0}$ is naturally isomorphic to the space of all $C^{\infty}$ functions
on the unit closed disk bundle $\overline{D}^{*}N$ (cf. (11) of [8]), and the above
asymptotic expansion (4) corresponds to Taylor’s expansion in the radial
direction at $r=1$ .

There exists a mapping $\beta:C^{\infty}(S^{*}N)^{\infty}\rightarrow\sum_{c}^{0}$ such that $\alpha\beta=identity$ by
a slight modification of the proof in [4] p. 35. However, it seems for
us impossible to choose $\beta$ to be linear, (and this causes some troubles in
making $G_{L}\mathscr{F}_{0}^{0}$ a Fr\’echet-Lie group). Remark that for every $a(x;\xi)\in\sum_{c}^{0}$ ,
$\beta\alpha(a)-a$ is rapidly decreasing in $\xi$ .

Let $C^{\infty}(N\times N)$ be the space of all C-valued $C^{\infty}$ functions on $N\times N$.
For each $K(x, y)\in C^{\infty}(N\times N)$ , we defined a smoothing operator $ K\circ$ by

(5) $(K\circ u)(x)=\int_{N}K(x, y)u(y)dy$ ,

where $dy$ is the volume element of $N$ defined by the riemannian metric.
A $C^{\infty}$ function $\nu(x, y)$ on $N\times N$ will be called a cut off function if

(a) $0\leqq\nu(x, y)\leqq 1,$ $\nu(x, y)=\nu(y, x)$ .
(b) There is a sufficiently small number $\epsilon>0$ , called the $b\gamma eadth$ of

$v$ such that $\nu(x, y)=1$ if the distance $\rho(x, y)\leqq\epsilon/3$ .
(c) $\nu(x, y)=0$ if $\rho(x, y)>2\epsilon/3$ .
Now, if our Fourier-integral operator $F$ written in the form (1) is

in a vicinity $\mathfrak{R}$ of the identity, then $F$ can be rewritten in the form:

(6) $(Fu)(x)=\int_{\tau_{x}^{*}}a(x;\xi)^{\sim}\nu u(\varphi(x;\xi))d\xi+(K\circ u)(x)$

where $\varphi\in \mathcal{D}_{o^{t1)}},$ $a\in\sum_{c}^{0},$ $K\in C^{\infty}(N\times N)$ and $\nu u\sim$ is a sort of Fourier trans-
form of $u\in C^{\infty}(N)$ defined by

(7) $\nu u(y;\eta)=\sim\int_{N}e^{-i(\eta|Y)}\nu(y, z)u(z)dz$ , $yY=z$ (i.e., $Exp,$ $Y=z$).

As a matter of course, the expression (6) still contains some ambiguities,
but $\varphi$ and $\alpha(a)$ are uniquely determined by $F$ (cf. Proposition 5.3 in [8]).
Hence if we replace $a$ by $\beta\alpha(a)$ , then the smoothing term $K$ is uniquely
determined also. Therefore one may regard $(\varphi, \alpha(a),$ $K$ ) as a sort of a
local coordinate system of $F$.

As it was mentioned above, one of the main purpose of this paper
is to give the formulae of compositions and inversions of Fourier-integral
operators. Let $F=F(\psi, a, K)$ be the operator given by (6). Although
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$(\psi, a, K)$ is not exactly a local coordinate of $F$, it is convenient to use
this as if it were a local coordinate of $F$. The reason of such a
sophisticated manner is based on that $\beta:C^{\infty}(S^{*}N)^{\infty}\rightarrow\sum_{c}^{0}$ is neither linear
nor differentiable. If $\beta$ is differentiable, then one can replace $\beta$ by its
derivative $(d\beta)_{0}$ to get a linear splitting. Let $G=F(\psi^{\prime}, b, L)$ be another
operator contained in $\mathfrak{R}$ . Then, we shall obtain in this paper formulae
such as

(8) $\left\{\begin{array}{l}F(\psi, a, K)F(\psi’, b, L)=F(\psi^{\prime}\psi, c, K’)\\F(\psi, a, K)^{-}=F(\psi^{-1}, a^{\prime}, L’)\end{array}\right.$

where $c$ is given as a function of $\psi,$ $\psi,$ $a,$
$b$ , which will be denoted by

$c=(\psi, \psi^{\prime}, a, b)$ . Similarly, $K’=K^{\prime}(\psi, \psi^{\prime}, a, b, K, L),$ $a^{\prime}=a’(\psi, a)$ and $L’=$

$L^{\prime}(\psi, a, K)$ . In near future, we shall prove that the above functions
are smooth in some sense. However, the continuity in the $C^{\infty}$-topology
of these functions is not difficult to prove. Thus, one can get that
$G_{L}\mathscr{F}_{0}^{0}$ is a locally connected topological group.

For the proof of Theorem $B$ , the above composition rules (8) are not
enough. We have to get a composition rule where $\psi$ is not assumed to
be close to the identity. Indeed, we need to compute $FG$ , where $ G\in$ En
and $F$ is a Fourier-integral operator written in the form (1). The
essence of the proof of Theorem $B$ is seen in the following:

Proposition A. Let $\varphi_{0}$ be an element of $\mathcal{D}_{sJ}^{(1)}$ . Then, there are a
neighborhood $\mathfrak{B}_{\varphi_{0}}$ of $\varphi_{0}$ and a neighborhood $\mathfrak{U}$ of the identity in $\mathcal{D}_{\rho}^{(1)}$

under the $C^{1}$ uniform topology such that if $F$ is an operator given by
(1) with $\varphi\in \mathfrak{B}_{\varphi_{0}}$ , and if $G$ is an operator given by (6) with $\psi eU$, then
$FG$ is an operator written in the same shape as in (1) replacing $\varphi$ by
$\psi\varphi$ .

Remark. It is an open question for us whether a composition of
two Fourier-integral operators in the form (1) is again expressed by the
same form.

\S 1. Notations, remarks and the summary of the previous paper.

In general, we use the same notations used in [8], but since some
of them are not familiar, we repeat these notations here.

$N$ is a compact n-dimensional $C^{\infty}$ riemannian manifold without
boundary. Let $g_{ij}$ be the riemannian metric tensor with respect to a
normal chart $(X^{1}, \cdots, X^{n})$ around $x\in N$ and let $g(x)=\det(g_{ij}(x))$ . We
use
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$dX=\frac{V\overline{g(x)}}{\sqrt{2\pi}n}dX^{1}\wedge\cdots\wedge dX^{n}$ , $d\xi=\frac{1}{\sqrt{2\pi}n}\frac{1}{\sqrt{g(x)}}d\xi_{1}\wedge\cdots\wedge d\xi_{n}$

as volume forms on $T_{x},$ $T_{x}^{*}$ respectively, where $T_{x}$ (resp. $T_{x}^{*}$ ) is the
tangent (resp. cotangent) space of $N$ at $x$ . We use also the notation
$dx=(1/\sqrt{2\pi}^{n})dx$ , where $dx$ is the volume element on $N$.

Since we use normal charts very often, we have to use exponential
mappings $Exp_{x}$ in the expressions of Fourier-integral operators. Thus,
for simplicity of the notations, we use . $xX,$ $*.y$ instead of Exp $xX$,
$Exp_{x}^{-1}y$ . Moreover, we denote $(y;Y)=x(X, Z),$ $(y;\eta)=x(X, \zeta)$ , if $(y;Y)=$
$(Exp_{x}X;(dExp_{x})_{X}Z)$ , $(y;\eta)=(Exp_{x}X:(dExp_{x}^{-1})_{X}^{*}\zeta)$ respectively. (X, $Z$ )
and (X, $\zeta$) will be called normal coordinate expressions of $(y;Y)\in TN$,
$(y;\eta)\in T^{*}N$ respectively.

Coordinate transformations between two normal charts will be denoted
by $Y=S(x;X,\overline{X})$ . Namely, if $y=x\overline{X}$, then

(9) $yS(x;X,\overline{X})=\cdot Xx$ .
Since $S(x;\overline{X},\overline{X})\equiv 0,$ $S$ can be written in the form (cf. (4), (5) in [8])

(10) $S(x;X,\overline{X})=S_{1}(x;X,\overline{X})(X-\overline{X})$ .
Obviously $S(x;X,\overline{X})\in T_{x^{\overline{X}}}$ . Hence $(\partial S/\partial X)(x;X,\overline{X})$ has an invariant
meaning as a linear mapping of $T_{x}$ into $T_{x^{\overline{X}}}$ . However, if we fix $X$ and
vary $\overline{X}$, then we get a vector field. Note that $S(x;X,\overline{X})$ is defined for
$X,\overline{X}$ such that $|X|+|\overline{X}|<r_{0}$ , where $r_{0}$ is the injectivity radius of $N$.
For an arbitrarily fixed $\overline{X}$, we define $\tilde{S}(x;X,\hat{X})$ by

(11) $(.\hat{X};S(x;X,\hat{X}))=\cdot.(Y,\tilde{S}(x;X,\hat{X}))$ .
$\tilde{S}(x;X,\hat{X})$ is a normal coordinate expression of $S(x;X,\hat{X})$ around $x\overline{X}$ .
We define

(12) $\frac{\nabla^{r}S}{\partial\overline{X}^{r}}(x;X,\overline{X})=\frac{\partial^{r}}{\partial\hat{X}^{r}}\tilde{S}(x;X,\hat{X})|_{\hat{X}=\overline{X}}$ , $r\geqq 0$ .

Thus, $(\nabla^{r}S/\partial\overline{X}^{r})(x;X,\overline{X})$ is well-defined as a symmetric r-linear mapping
of $T_{x}\times\cdots\times T_{x}$ into $T_{x^{\overline{X}}}$ (cf. (7) $\sim(8)$ in [8]). If $r=1$ , then $\nabla S/\partial\overline{X}$ is in
fact the covariant derivative of $S$ . However $\nabla^{f}S/\partial\overline{X}^{r}$ for $r\geqq 2$ is not
the r-times covariant derivative.

LEMMA 1.1. In a normal chart $(X^{1}, \cdots, X^{n})a\gamma oundx,\tilde{S}^{i}$ can be
$w\gamma itten$ as
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(13) $\tilde{S}^{i}=X^{i}-\overline{X}^{i}+\frac{1}{2}\left\{\begin{array}{l}i\\jk\end{array}\right\}(X^{\dot{f}}-\overline{X}^{j})(X^{k}-\overline{X}^{k})+\cdots$ .

Moreover, let $L_{sym}^{r}(T_{x})$ be the space of all symmetric r-linear mappings
of $T_{x}\times\cdots\times T_{x}$ into $T_{\iota}$ . Then

$\frac{\nabla S}{\partial\overline{X}}(x;X, O)=-I+Q(x;X)(X)$ ,

$\nabla^{a}S$

$\overline{\partial\overline{X}^{2}}(x;X, O)=R(x;X)(X)$ ,

where $I=identity$ and $Q(x;X)$ (resp. $R(x;X)$) is a $L_{8Y^{m}}^{1}(T_{x})-(resp. L_{8ym}^{2}(Tae))$

valued quadratic (resp. linear) form.
PROOF. Recalling the proof of Lemma 1.5 in [8], we obtain the

equation (13). Also, remark that $\left\{\begin{array}{l}i\\jk\end{array}\right\}=0$ , and we get the desired
result.

REMARK. Obviously,

$\frac{\partial^{2}\tilde{S}^{i}}{\partial\overline{X}^{l}\partial\overline{X}^{*}}|_{\overline{x}=0}=-(\frac{\partial}{\partial\overline{X}^{l}}\left\{\begin{array}{l}i\\mk\end{array}\right\})_{\overline{x}=0}X^{k}+\cdots$ .

It is known that (cf. [7] p. 291)

$(\frac{\partial}{\partial\overline{X}^{l}}\left\{\begin{array}{l}i\\mk\end{array}\right\})_{\overline{x}=0}=-\frac{1}{3}(R\dot{l}_{*kl},+R_{kn\cdot l}^{t})$ ,

where $R_{nkl}^{l}$ is the curvature tensor on $N$ expressed by the above normal
chart.

For $\varphi(x;\xi)=(\varphi_{1}(x;\xi);\varphi_{2}(x;\xi)),$ $(\partial\varphi_{1}/\partial\xi)(x;\xi)$ has an invariant meaning as
a linear mapping of $T$“ into $T_{\varphi_{1}(x:\text{\’{e}})}$ . Now, we want to define other
derivatives and higher order derivatives:

Let $(\tilde{\varphi}_{1}(.x(X,\tilde{\xi})),\tilde{\varphi}_{2}(.x(X,\tilde{\xi})))$ be the normal coordinate expression of
$\varphi$ around $\varphi_{1}(x;\xi)$ . Namely, we set

(14) $\varphi_{1}(x:\text{\’{e}})(\tilde{\varphi}_{1}(.x(X,\tilde{\xi})),\tilde{\varphi}_{2}(.x(X,\tilde{\xi})))=(\varphi_{1}(.x(X,\tilde{\xi}));\varphi_{2}(.x(X,\tilde{\xi})))$ .
Obviously, we have

$\frac{\partial\varphi_{1}}{\partial\xi}(x;\xi)=\frac{\partial}{\partial\tilde{\xi}}\tilde{\varphi}_{1}(.\approx(0,\tilde{\xi}))_{1\xi=\text{\’{e}}}\sim$ .

We define as follows:
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(15) $\left\{\begin{array}{ll}\frac{1}{}(x,.\xi)=\tilde{\varphi}_{1}(.l(0,\tilde{\xi}))|_{\text{\’{e}}=\xi}^{\wedge}\frac{\nabla\partial\varphi\nabla^{r}\varphi_{l}\partial\xi^{2}}{\frac\nabla^{r}\varphi,\partial x^{r}\partial\xi^{\prime}}(x,\xi)=\tilde{\varphi}_{2}(.x(0,\tilde{\xi}))|_{\epsilon=\text{\’{e}}}(x;\xi)=\frac{\frac\frac\partial\tilde{\xi}^{g}\partial\tilde{\xi}^{f}\partial^{r}\partial^{2}\partial^{r}}{\partial X^{r}}\tilde{\varphi}_{i}(.l(X,\xi))|_{X=0}\sim, & r=1,2r=1,2, i=1,2\\\frac{\nabla^{2}\varphi_{i}}{\partial\xi\partial x}(x;\xi)=\frac{\partial^{2}}{\partial\xi\partial X}\tilde{\varphi}(.\#(X,\tilde{\xi}))|X=0\sim & i=1,2.\end{array}\right.$

Remark that $\nabla\partial\varphi_{1}/\partial\xi^{2},$ $\nabla\varphi_{2}/\partial\xi$ are covariant derivatives but others are
not covariant derivatives.

LEMMA 1.2. $\langle\xi|X\rangle=\langle\varphi_{2}(x;\xi)|(\nabla\varphi_{1}/\partial X)(x;\xi)X\rangle$

$\langle\varphi_{2}(x;\xi)|\frac{\partial\varphi_{1}}{\partial\xi}(x;\xi)(\eta-\xi)\rangle=0$ .
Proof is given by (25) in [8].

Now, we denote by $\Sigma_{c}^{\sim_{0}}$ the space of all C-valued $C^{\infty}$ functions on
$T_{N}^{*}\oplus\overline{D}_{N}$ having the following asymptotic expansions (cf. (11) in [8]):

(16) $ a(x;\xi, X)\sim a_{0}(x;\hat{\xi}, X)+\cdots+a_{-\dot{g}}(x;\hat{\xi}, X)r^{-j}+\cdots$ ,

where $ r=|\xi|,\hat{\xi}=(1/r)\xi$ and $\overline{D}_{N}$ is the unit disk bundle in $T_{N}$ . Let $\mu(r)$

be a $C^{\infty}$ non-decreasing function on $[0, \infty$ ) such that $\mu(\iota\cdot)\equiv 1$ on $[0,1]$

and $\mu(r)\equiv r$ on $[2, \infty$ ). For any real $\beta$ , we set $\Sigma_{c}^{\sim_{\beta}}=\Sigma_{c}^{\sim_{0}}\cdot\mu(\gamma)^{\beta}$ .
Let $\varphi=(\varphi_{1};\varphi_{2})$ be an element of $\mathcal{D}_{Q}^{(1)}$ . For a function $b(x;\xi, Y)\in\Sigma_{c}^{\sim_{\beta}}$ ,

we set (cf. (13) in [8])

(17) $a(x;\xi, Y)=b(\varphi_{1}(x;\xi);\varphi_{2}(x;\xi), Y)$ ,

$a(x;\xi, Y)$ is a $C^{\infty}$ function on the pull-back bundle of $T_{N}$ by the mapping
$\varphi_{1}:T_{N}^{*}-\{O\}\rightarrow N$. We denote by $\Sigma_{\varphi}^{\beta}\sim$ the space of all such functions. For
a cut off function $\nu$ and $u\in C^{\infty}(N)$ , we set
(18) $(\nu u)(y;Y)=\nu(y, yY)u(.\nu Y)$ .

Our Fourier-integral operators given in the previous paper [8] are
written in the following form (cf. (15) in [8]):

(19) $(F(a, \varphi, \nu)u)(x)$

$=\sum_{\alpha}\int_{\tau_{x}^{*}}\int_{\tau_{\varphi_{1}(ae:\xi\}}}tx;\text{\’{e}})X\cdot$

$+(K\circ u)(x)$ ,
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where $\varphi\in \mathcal{D}_{\rho}^{(1)},$ $a\in\Sigma_{\varphi}^{\sim_{\beta}},$ $\{\lambda_{\alpha}(x;\xi)\}$ is a suitable partition of unity on $T_{N}^{*}-\{0\}$

by positively homogeneous functions of order $0,$ $A_{\alpha}(X)s$ are suitable
quadratic forms in $X$ depending on $\varphi$ , and $ K\circ$ is a smoothing operator
with a smooth kernel $K(x, y)\in C^{\infty}(N\times N)$ .

REMARK. Although the amplitude function $a$ is restricted in $\Sigma_{\varphi}^{\beta}\sim$ in
[8], it is easy to see the above operator (19) is still well-defined for
$a\in\tilde{S}_{1,0,\varphi}^{\beta}$ where $\tilde{S}_{1,0,\varphi}^{\beta}$ is the space defined by the same manner as in (17)
from the space $\tilde{S}_{1.0}^{\beta}$ of H\"ormander [3]. The whole arguments in [8] except
Theorem 5.8 are valid for this class.

Now, note that the group $\mathcal{D}(N)$ of all $C^{\infty}$ diffeomorphism of $N$ can
be imbedded naturally in $\mathcal{D}_{\rho}^{(1)}$ . The imbedded image $\tilde{\psi}$ of $\psi\in \mathcal{D}(N)$ is
given by

(20) $\tilde{\psi}(x;\xi)=(\psi(x);(d\psi^{-1})_{x}^{*}\xi)$ .
If $\varphi$ in (19) is sufficiently close to the subgroup $\mathcal{D}(N)$ , then one can
choose $A_{\alpha}\equiv 0$ . (Cf. (33) in [8]. See also between (17) and (18) in [8].)
Therefore in this case, (19) can be rewritten in the form

(21) $(F(a, \varphi, \nu)u)(x)$

$=\int_{\tau_{x}^{*}}\int_{N}a^{\prime}(x;\xi, X)e^{-i(x:\epsilon)|\varphi(x:^{\epsilon})}\langle\varphi 21\cdot\cdot z\rangle\nu(\varphi_{1}(x;\xi), z)u(z)dzd\xi$

$+(K\circ u)(x)$ , $z=_{\varphi_{1}(x;\xi)}X$ ,

where $a^{\prime}=a(dX/dz)$ .
If moreover, $\varphi$ is sufficiently close to the identity, then one can

eliminate the variables $X$ in $a^{\prime}(x;\xi, X)$ in the expression (21) by replacing
$a$

’ by some other $a(x;\xi)\in\sum_{c}^{\beta}$ (cf. \S 5 in [8]), where $\sum_{c}^{\beta}=\sum_{c}^{0}\mu(\gamma)^{\beta}$ . There-
fore, one can rewrite (21) by the same form as in (6):

(22) $(Fu)(x)=\int_{\tau_{x}^{*}}a(x;\xi)(\nu u)(\varphi(x;\xi))d\xi+(K\circ u)(x)\sim$ ,

where $(\nu u)(y;\eta)\sim$ is given by (7).
By using the above expression, we can give a unique expression

which is stated in the introduction.

\S 2. Compositions of Fourier-integral operators, I.

In this section, we consider two Fourier-integral operators

$(Fv)(x)$

$=\sum_{\alpha}\int_{\tau_{l}^{*}}\int_{\tau_{\varphi_{1}(x:\xi)}}\langle\cdot\rangle,$
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$(Gu)(y)=\int_{\tau_{y}^{*}}b(y;\eta)(\nu^{\sim_{u)(\psi(y;\eta))d\eta}}$ ,

where $\varphi,$ $\psi\in \mathcal{D}_{\rho}^{(1)}$ , and $\psi$ is assumed to be sufficiently close to the
identity. At first, let us fix its precise meaning. Recall that $\mathcal{D}_{\omega}(S_{N}^{*})$

is a strong ILH-Lie group (cf. [6], [7]). Hence for any $k\geqq 2\dim N+5$

the completion $\mathcal{D}_{\omega}^{k}(S_{N}^{*})$ under the $H^{k}$-topology is a topological group and
a $C^{\infty}$-Hilbert manifold. Remark that there is an isomorphism $\wedge of\mathcal{D}_{JJ}^{(1)}$

onto $\mathcal{D}_{\omega}(S_{N}^{*})$ (cf. Lemma 1.6 [8]). Therefore, $\mathcal{D}_{\rho}^{(1)}$ has the same properties
as $\mathcal{D}_{\omega}(S_{N}^{*})$ through the above isomorphism. Thus, that $\psi$ is sufficiently
close to the identity means, unless otherwise stated, that $\psi$ is contained
in a small neighborhood $\mathfrak{U}$ of the identity $H^{2n+7}$-topology, where $n=\dim N$.
In this series of papers, we shall often use the fact that $\mathcal{D}_{\omega}^{k}(S_{N}^{*})$ ,
$k\geqq 2n+5$ , is a $C^{\infty}$-Hilbert manifold and a topological group.

Let $\hat{\psi}\in \mathcal{D}_{\omega}(S_{N}^{*})$ . We define $f\in C^{\infty}(S_{N}^{*})$ by $\hat{\psi}^{*}\omega=f\omega$ , where $\omega$ is the
naturally defined contact form on $S_{N}^{*}$ . From $\hat{\psi},$ $\psi\in \mathcal{D}_{1J}^{(1)}$ is defined as
follows:

(23) $(\psi_{1}(y;\eta);\psi_{2}(y;\eta))=(\hat{\psi}_{1}(y;\frac{\eta}{|\eta|});|\eta|f^{-1}(y;\frac{\eta}{|\eta|})\hat{\psi}_{2}(y;\frac{\eta}{|\eta|}))$ .

Remark that $H^{2n+7}$-topology is stronger than the $C^{3}$-topology by Sobolev’s
lemma. Thus, if $\hat{\psi}$ is sufficiently close to the identity, then $|f-1|$ , I $ df\Vert$

and $||d^{2}f||$ are sufficiently close to $0$ . Hence, for an arbitrarily fixed
compact subset $K$ in $T_{N}^{*}-\{0\}$ , the second jet of $\psi$ is sufficiently close to
that of the identity mapping on $K$.

Now, recall how $A_{\alpha}(X)s$ are defined. There are finite number of
points $\{(\overline{x}_{\alpha};\overline{\xi}_{\alpha})\}$ in $S_{N}^{*}$ . Set $(\overline{y}_{\alpha};\overline{\eta}_{a})=\varphi(\overline{x}_{\alpha};\overline{\xi}_{\alpha})$ . Then the quadratic form
$A_{\alpha}(X)=A_{\alpha}(\varphi_{1}(x;\xi);X)$ is defined so that the function $\phi_{\alpha}(x;\xi|Y_{1})$ defined
by

(24) $\left\{\begin{array}{ll}\phi_{\alpha}(x;\xi|Y_{1})=\langle\varphi_{2}(x;\xi)|X\rangle+ & |\xi|A_{\alpha}(\varphi_{1}(x;\xi);X)\\X=S(\overline{y}_{a};Y_{1},\overline{Y}_{0}(x;\xi)), & \overline{\nu}_{a}\overline{Y}_{0}(x;\xi)=\varphi_{1}(x;\xi)\end{array}\right.$

is non-degenerate phase function (cf. Definition 2.2 [8]) on $U_{\alpha}^{\prime}\times V_{\alpha}$ , where
$U_{a}^{\prime}$ is a conic neighborhood of $(\overline{x}_{\alpha};\overline{\xi}_{a})$ in $T_{N}^{*}-\{0\}$ and $V_{\alpha}^{\prime}$ is a neighborhood
of $0$ in $T_{\overline{\nu}_{a}}$ satisfying certain properties stated in the first part of \S 3
in [8].

Let $\varphi_{0}$ be an arbitrarily fixed element in $\mathcal{D}_{1J}^{(1)}$ . Then, it is easy to
see that there are a neighborhood $\mathfrak{V}_{\varphi_{0}}$ of $\varphi_{0}$ and a neighborhood $\mathfrak{U}$ of
the identity in the $C^{1}$-uniform topology such that for every $\varphi\in \mathfrak{V}_{\varphi_{0}}$ ,
$\psi e\mathfrak{U}$,
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(25) $\left\{\begin{array}{ll}\phi_{\alpha}(x;\xi|Y_{1})=\langle\psi_{2}(\varphi(x;\xi))|Z & +|\xi|A_{a}(\psi_{1}(\varphi(x;\xi));Z)\\Z=S(\overline{y}_{a};Y_{1},\overline{Y}_{0}(x;\xi)), & \overline{u}_{a}\overline{Y}_{0}(x;\xi)=\psi_{1}(\varphi(x;\xi))\end{array}\right.$

is a non-degenerate phase function on $U_{\alpha}^{\prime}\times V_{\alpha}^{\prime}$ for each $\alpha$ , where $U_{\alpha}^{\prime},$ $V_{\alpha}^{\prime}$

are same neighborhoods as in (24) replaced $\varphi$ by $\varphi_{0}$ .
Now, the purpose of \S \S 2-3 is to compute $(FGu)(x)$ . So, we 8et

$v=Gu,$ $y=_{\varphi_{1}(oe:\text{\’{e}})}X$. Note that

$(\nu Gu)(\varphi_{1}(x;\xi);X)=\nu(\varphi_{1}(x;\xi), y)(Gu)(y)$ ,

and

(26) $(Gu)(y)$

$=\int_{Tt}\int_{N}b(y;\eta)e^{-i\langle\psi_{2}(\gamma:\eta)|Y\rangle}\nu(\psi_{1}(y;\eta), z)u(z)dzd\eta$ , $(z=\cdot\phi_{1}t:\eta)Y)$

$=\int_{r_{l}^{*}}\int_{\tau\psi_{1}(’:\eta)}\oint_{1}(’:\eta)$ .
Thus, we get

(27) $(FGu)(x)$

$=\sum_{a}\int_{\tau_{x}^{*}}\int_{r_{\varphi_{1}(x;\xi)}}\int_{\tau_{\nu}^{*}}\int_{T}\nu^{c_{\alpha}e^{-i\phi_{\alpha}}u(.Y)dYd\eta dXd\xi}\iota^{t\nu:\eta)}\psi_{1^{(}\cdot\varphi,(x:6)}x:n)$ ,

where

(28)
$\left\{\begin{array}{l}y=_{\varphi_{1}(r:\epsilon)}X\\\phi_{a}=\langle\varphi_{2}(x;\xi)|X\rangle+|\xi|A_{a}(X)+\langle\psi_{2}(y;\eta)|Y\rangle\\ c_{\alpha}=(\lambda_{\alpha}a)(x;\xi, X)\nu(\varphi_{1}(x;\xi), .\varphi_{1}(x;\epsilon)X)b(y;\eta)\frac{dz}{dY}\nu(\psi_{1}(y;\eta), \nu_{1^{(’:\eta)}}Y)\end{array}\right.$

Remark that the operators considered here are defined precisely by
using osillatory integrals (cf. [8]). Therefore, one can change the order
of integrations by using standard Fubini’s theorem.

Let $\epsilon$ be the breadth of the cut off function $\nu$ . Then, in (28) one
may assume that $|X|,$ $|Y|$ are less then $2\epsilon/3$ because otherwise $c_{\alpha}=0$ .
Therefore, one may regard $\phi_{a}$ as a globally defined function by multiplying
a suitable cut off function. In what follows we treat $A_{\alpha}=A_{\alpha}(\varphi_{1}(x;\xi);X)$

also as a globally defined quadratic form such that $A_{a}\equiv 0$ if $(x;\xi)\not\in U_{\alpha}^{\prime}$ .
Now, recall the definition of $\delta_{0}$ (cf. (27) in [8]). This was a positive
number related to the Lebesgue number of $\{U_{\alpha}^{\prime}\}$ . It is not hard to see
that if $\varphi_{0}$ is sufficiently close to the identity, then $\delta_{0}$ can be chosen to
be sufficiently close to the half of the injectivity radius $r_{0}$ of $N$.
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Suppose $\epsilon<r_{0}/12$ . Since $\psi$ is sufficiently close to the identity, we
may suppose

(29) $ p(\psi_{1}(\varphi(x;\xi)), \psi_{1}(.\varphi_{1}(x:\text{\’{e}})X;\eta))<3\epsilon$

for every $(x;\xi)\in T_{N}^{*}-\{0\},$ $X$ such that $|X|<2\epsilon/3$ and $\eta\in T_{y}^{*}-\{0\}$ , where
$\rho$ is the distance function. Hence, we set

(30) $\psi_{1}(.\varphi_{1}tx:\epsilon)X;\eta)=\cdot\psi_{1}(\varphi(x:\epsilon))Z_{1}$ , $|Z_{1}|<3\epsilon$ .
$Z_{1}$ is a $C^{\infty}$ function of $(x;\xi)$ and $X,$ $\eta$ such that $Z_{1}=0$ if $X=0$ and
$\eta=\varphi_{2}(x;\xi)$ . Obviously, if $\psi=id$ , then $Z_{1}=X$.

Using these notations, we have

(31) $\psi_{1}Y=.$ Y.

Thus, putting $\psi_{1^{(\varphi tx;\xi))}}z_{1}\psi_{1}(\varphi(x:\epsilon))$ ’ we get $|Z|<11\epsilon/3$ and

(32) $Y=S(\psi_{1}(\varphi(x;\xi));Z, Z_{1})$ .
If $\psi=id$ , then $Y=S(\varphi_{1}(x;\xi);Z, X)$ .

Therefore, (27) is rewritten in the form

(33) $(FGu)(x)=\sum_{a}\int\int\int\int c_{\alpha}^{\prime}e^{-i\phi_{\alpha}}u(.\psi_{\iota^{(\varphi(x;\text{\’{e}}))}}Z)dZd\eta dXd\xi$ ,

where

(34) $\phi_{\alpha}=\phi_{a}(x;\xi|Z, \eta, X)$

$=\langle\varphi_{2}(x;\xi)|X\rangle+|\xi|A_{\alpha}(\varphi_{1}(x;\xi);X)$

$+\langle\psi_{2}(.\varphi_{1^{(x;\xi)}}X;\eta)|S(\psi_{1}(\varphi(x;\xi));Z, Z_{1})\rangle$ .
If $\psi=id$ , then $\phi_{a}=\langle\varphi_{2}(x;\xi)|X\rangle+|\xi|A_{\alpha}(\varphi_{1}(x;\xi);X)+\langle\eta|S(\varphi_{1}(x;\xi);Z, X)\rangle$ .
In this section, we are mainly concerned with critical points of the above
function $\phi_{\alpha}$ for each fixed $(x;\xi|Z)$ . Note that

(35) $\phi_{\alpha}(x;r\xi|Z, r\eta, X)=r\phi_{\alpha}(x;\xi|Z, \eta, X)$ , $r>0$ .
Hence, if $X=\tau_{1}(x;\xi|Z),$ $\eta=\tau_{2}(x;\xi|Z)$ is a critical point of $\phi_{\alpha}(x;\xi|Z, **)$ ,
then

$X=\tau_{1}(x;\xi|Z)$ , $\eta=r\tau_{2}(x;\xi|Z)$ , $r>0$ ,

is a critical point of $\phi_{\alpha}(x;r\xi|Z, **)$ .
REMARK. In the next section, we shall prove that the critical point

$(\tau_{1}(x;\xi|Z);\tau_{2}(x;\xi|Z))$ is unique for every $(x;\xi|Z)$ . In this section, we
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shall only show the existence of a critical point and a property of a
critical value.

Now, we use the following normal coordinate expressions

$\left\{\begin{array}{l}\varphi_{1}(x:\epsilon)(X,\tilde{\eta})=(.\varphi_{1}(x:\text{\’{e}})X;\eta)\\\varphi_{1}tx:6)(X,\tilde{S})=(.\varphi_{1}tr:\xi)X;S)\end{array}\right.$

LEMMA 2.1. If $\psi=id$ , then $\tau_{1}(x;\xi|Z)=Z$, $\tau_{2}(x;\xi|Z)=\varphi_{2}(x;\xi)+$

$2|\xi|A_{\alpha}^{\prime}(Z)$ , where $A_{a}^{\prime}(Z)$ is the derivative $(\partial/\partial Z)A_{\alpha}(\varphi_{1}(x;\xi);Z)$ . Moreover,

$\phi_{\alpha}=\langle\varphi_{2}(x;\xi)|Z\rangle+|\xi|A_{\alpha}(Z)$

$+\langle\tilde{\eta}-\varphi_{2}(x;\xi)-2|\xi|A_{\alpha}(Z)|\tilde{S}(\varphi_{1}(x;\xi);Z, X)\rangle$

$+|\xi|A_{\alpha}(X-Z)+\langle\varphi_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(Z)|q(x;\xi|Z, X-Z)\rangle$ ,

where $q(x;\xi|Z, X-Z)=O(|X-Z|^{2})$ , whenever $|Z|<11\epsilon/3,$ $|X|<2\epsilon/3$ .
PROOF. By (34) and the remark there, we see

$\frac{\partial\phi_{a}}{\partial X}=\langle\varphi_{2}(x;\xi)|*\rangle+2|\xi|A_{\alpha}^{\prime}(X)(*)+\langle\eta|\frac{\nabla S}{\partial Z_{1}}(\varphi_{1}(x;\xi);Z, X)(*)\rangle$

$\frac{\partial\phi_{a}}{\partial\eta}=\langle*|S(\varphi_{1}(x;\xi);Z, X)\rangle$ .

Hence, solving $\partial\phi_{\alpha}/\partial\eta=0$ , we get $X=Z$. Substitute this to the first
equality. Since $(\nabla S/\partial Z_{1})(\varphi_{1}(x;\xi);Z, Z)=-I$ (cf. Lemma 2.4 and (5) in [8]),‘
$\partial\phi_{a}/\partial X=0$ implies $\eta-\varphi_{2}(x;\xi)=2|\xi|A_{\alpha}^{\prime}(Z)$ . To get the second assertion,
remark that

$\langle\varphi_{2}(x;\xi)|X\rangle=\langle\varphi_{2}(x;\xi)|Z\rangle+\langle\varphi_{2}(x;\xi)|X-Z\rangle$ .
$A_{\alpha}(X)=A_{\alpha}(Z)+2A_{\alpha}^{\prime}(Z)(X-Z)+A_{a}(X-Z)$ .

Setting

(36) $\tilde{S}(\varphi_{1}(x;\xi);Z, X)=Z-X+q(x;\xi|Z, X-Z)$

by using (13), we get the desired result.

Since $S(\varphi_{1}(x;\xi);Z, Z)\equiv 0$ , we may set (cf. (4) in [8])

$\tilde{S}(\varphi_{1}(x;\xi);Z, X)=\tilde{S}_{1}(\varphi_{1}(x;\xi);Z, X)(Z-X)$ (cf. (10)).

Moreover, one can set

(37) $\left\{\begin{array}{l}A_{a}(X-Z)=\frac{1}{2}A_{\alpha}(X-Z)(X-Z)\\q(x;\xi|Z, X-Z)=q_{1}(x;\xi|Z, X-Z)(X-Z)\end{array}\right.$
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Hence, $\phi_{\alpha}$ in the above lemma can be rewritten as

(38) $\phi_{\alpha}=\langle\varphi_{2}(x;\xi)|Z\rangle+|\xi|A_{\alpha}(Z)-\langle\eta^{\prime\prime}|X-Z\rangle$ ,

where

(39) $\eta^{\prime\prime}=(\tilde{\eta}-\varphi_{2}(x;\xi)-2|\xi|A_{a}^{\prime}(Z))\tilde{S}_{1}(\varphi_{1}(x;\xi);Z, X)$

$-\frac{1}{2}|\xi|A_{\alpha}^{\prime}(X-Z)-(\varphi_{2}(x;\xi)+2|\xi|A_{\alpha}^{\prime}(Z))q_{1}(x;\xi|Z, X-Z)$ .

Now, we shall relax the condition $\psi=id$ , and we want to get a
critical value of $\phi_{\alpha}$ . For this purpose, Taylor’s expansion at (X, $\eta$) $=$

$(Z, \varphi_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(Z))$ will be discussed at the first stage. However,
strictly speaking, $\varphi_{2}(x;\xi)+2|\xi|A_{\alpha}^{\prime}(Z)$ does not make sense, because the
base points of $Z$ and $\varphi_{2}(x;\xi)$ are different, if $\psi\neq id$ . Thus, we have to
consider a normal coordinate expression of $\phi_{\alpha}$ around $z=\varphi_{1}(x;\xi)$ .
Set as follows:

(40) $\left\{\begin{array}{l}z(\tilde{\psi}_{1}(.z(X,\tilde{\eta})),\tilde{\psi}_{2}(.z(X,\tilde{\eta})))=(\psi_{1}(.z(X,\tilde{\eta}));\psi_{2}(.z(X,\tilde{\eta})))\\z(\tilde{\psi}_{1}(\varphi(x;\xi)),\tilde{Z})=(\psi_{1}(\varphi(x;\xi));Z)\\x(\tilde{\psi}_{1}(\varphi(x;\xi)),\tilde{Z}_{1})=(\psi_{1}(\varphi(x;\xi));Z_{1})\\z(\tilde{W}(y;Y),\tilde{S}(y;Z, Y))=(., Y;S(y;Z, Y))\end{array}\right.$

where. $z(X,\tilde{\eta})=(_{f}X;\eta)$ .
Remark that (34) can be written as

(41) $\phi_{\alpha}=\phi_{a}(x;\xi|\tilde{Z},\tilde{\eta}, X)$

$=\langle\varphi_{2}(x;\xi)|X\rangle+|\xi|A_{\alpha}(X)$

$+\langle\tilde{\psi}_{2}(.\varphi_{1}(x:\epsilon)(X,\tilde{\eta}))|\tilde{S}(\psi_{1}(\varphi(x;\xi));Z, Z_{1})\rangle$ .
Now, set

(42) $\phi_{\alpha}=g_{0}(x;\xi|\tilde{Z})+g_{1}(x;\xi|\tilde{Z})X’+h_{1}(x;\xi|\tilde{Z})\tilde{\eta}’+\rho(x;\xi|Z,\tilde{\eta}^{\prime}, X^{\prime})$ ,

where $X’=X-\tilde{Z}$. $\tilde{\eta}’=\tilde{\eta}-\varphi_{2}(x;\xi)-2|\xi|A_{a}^{\prime}(\tilde{Z})$ and $\rho$ is the remainder
term.

LEMMA 2.2. $\tilde{Z}_{1}=\tilde{Z}_{1}(x;\xi|\tilde{\eta}, X)=\tilde{S}(z;\tilde{\psi}_{1}(.i(X,\tilde{\eta})),\tilde{\psi}_{1}(\varphi(x;\xi)))$ , where $z=$

$\varphi_{1}(x;\xi)$ . If we set $\tilde{\lambda}_{0}=\tilde{Z}_{1}(x;\xi|\varphi_{2}(x;\xi)+2|\xi|A_{\alpha}(\tilde{Z}),\tilde{Z})$ , then there is a
matrix $M=M(x;\xi)$ such that $\tilde{\lambda}_{0}(x;\xi|Z)=M\tilde{Z}+O(|\tilde{Z}|^{2})$ , whenever $|Z|<$

$11\epsilon/3$ , and that $M(x;\xi)$ is sufficiently close to the identity matrix, provid-
ed that $\psi$ is sufficiently close to the identity.

PROOF. By definition, $\psi_{\iota^{(\varphi(x:\xi))}}Z_{1}=z\tilde{\psi}_{1}(.z(X,\tilde{\eta}))$ . Remark that
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$\psi_{1}(\varphi(x;\xi))=_{\epsilon}\tilde{\psi}_{1}(\varphi(x;\xi))$ . Hence

$z1^{(\varphi(ae:\epsilon))}*$

Therefore

(43) $Z_{1}=S(\varphi_{1}(x;\xi);\tilde{\psi}_{1}(.\varphi_{1}(x:\epsilon)(X,\tilde{\eta})),\tilde{\psi}_{1}(\varphi(x;\xi)))$ .
Thus, taking the ‘normal coordinate expression at $z$ , we get the first
equality for $Z_{1}$ .

Remark that $\tilde{\lambda}_{0}=\tilde{S}(z;\tilde{\psi}_{1}(.*(\tilde{Z}, \varphi_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(\tilde{Z}))),\tilde{\psi}_{1}(\varphi(x;\xi)))$ . Since
$*(\tilde{Z}, \varphi_{2}(x;\xi)+2|\xi|A_{\alpha}(\tilde{Z}))=\varphi(x;\xi)$ if $\tilde{Z}=0$ , we have $\tilde{\lambda}_{0}|_{z=0}\sim=0$ . Moreover,
it is not hard to see that

(44) $\frac{\partial\tilde{\lambda}_{0}}{\partial\tilde{Z}}|_{z=0}\sim=\frac{\partial\tilde{\psi}_{1}}{\partial X}(\varphi(x;\xi))+\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{\eta}}(\varphi(x;\xi))(2|\xi|A_{\alpha}^{\prime}(*))$

by using Lemma 1.1. Since $\psi$ is sufficiently close to the identity, we
see that

$\Vert\frac{\partial\tilde{\psi}_{1}}{\partial X}-I\Vert$ , $|\xi|\Vert\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{\eta}}\Vert$

are sufficiently close to $0$ uniformly on $T_{N}^{*}-\{0\}$ . Thus, we get the second
assertion.

LEMMA 2.3. Notations being as above, $g_{0}(x;\xi|\tilde{Z})$ is given as follows:
$g_{0}(x;\xi|\tilde{Z})=\langle\psi_{2}(\varphi(x;\xi))|Z\rangle+|\xi|A_{\alpha}(\psi_{1}(\varphi(x;\xi));Z)+a_{0}^{\prime}(x;\xi|Z)Z^{2}$ ,

where $a_{0}(x;\xi|Z)$ is a quadratic form satisfying the following: For any
$\delta>0$ there is a neighborhood $U$ of the identity in $\mathcal{D}_{\omega}(S_{N}^{*})$ such that if
$\hat{\psi}e\mathfrak{U}$, then I $a_{0}^{\prime}(x;\xi|Z)||<\delta|\xi|$ for every $(x;\xi)\in T_{N}^{*}-\{0\}$ and $Z$ such that
$|Z|<11\epsilon/3$ , provided that $\epsilon$ is sufficiently small.

PROOF. By (41), we have
$g_{0}(x;\xi|\tilde{Z})=\langle\varphi_{2}(x;\xi)|\tilde{Z}\rangle+|\xi|A_{\alpha}(\tilde{Z})$

$+\langle\tilde{\psi}_{2}(.\varphi_{\iota^{(x:\xi)}}(\tilde{Z,}\tilde{\varphi}_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(\tilde{Z})))|\tilde{S}(\psi_{1}(\varphi(x;\xi));Z, \lambda_{0})\rangle$

where $\lambda_{0}=Z_{1}(x;\xi|\varphi_{2}(x;\xi)+2|\xi|A_{\alpha}^{\prime}(\tilde{Z}),\tilde{Z})$ . Note that

(45) $\tilde{\psi}_{2}(.\varphi_{\iota^{(\theta}}:\epsilon)(\tilde{Z},\tilde{\varphi}_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(\tilde{Z})))$

$=\tilde{\psi}_{2}(\varphi(x;\xi))+c(x;\xi|\tilde{Z})\tilde{Z}$ ,

where $c(x;\xi|\tilde{Z})$ is a linear form such that $|\xi|^{-1}||c(x;\xi|\tilde{Z})\Vert$ is bounded, if
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$|Z|<11\epsilon/3$ . By (13), one may set
(46) $\tilde{S}(\psi_{1}(\varphi(x;\xi));Z, \lambda_{0})$

$=\tilde{Z}-\tilde{\lambda}_{0}+\tilde{Q}(x;\xi|\tilde{Z}, \tilde{\lambda}_{0})(\tilde{Z}-\tilde{\lambda}_{0})^{2}$ ,

where $\tilde{Q}$ is a quadratic form such that I $\tilde{Q}(x;\xi|\tilde{Z}, \tilde{x}_{0})\Vert$ is bounded if
$|Z|<11\epsilon/3$ . On the other hand, by Lemma 2.2

(47) $\tilde{\lambda}_{0}=\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{Z}}(\varphi(x;\xi))\tilde{Z}+\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{\eta}}(\varphi(x;\xi))2|\xi|A_{a}^{\prime}(\tilde{Z})+b(x;\xi|\tilde{Z})\tilde{Z}^{2}$

where $b(x;\xi|\tilde{Z})$ is a quadratic form, satisfying that for any $\delta>0$ , there
is a neighborhood $\mathfrak{U}$ of the identity such that if $\hat{\psi}\in \mathfrak{U}$, then $\Vert b(x;\xi|\tilde{Z})||<\delta$ .
Moreover, one may assume $||M(x;\xi)-I||<\delta$ (cf. Lemma 2.2).

By Lemma 1.2, we see that

(48) $\langle\psi_{2}(\varphi(x;\xi))|\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{Z}}(\varphi(x;\xi))\tilde{Z}+\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{\eta}}(\varphi(x;\xi))2|\xi|A_{\alpha}(\tilde{Z})\rangle=\langle\varphi_{2}(x;\xi)|\tilde{Z}\rangle$ .

Hence

$ g_{0}(x;\xi|\tilde{Z})=\langle\tilde{\psi}_{2}(\varphi(x;\xi))|\tilde{Z}\rangle+|\xi|A_{\alpha}(\tilde{Z})-\langle\tilde{\psi}_{2}(\varphi(x;\xi))|b(x;\xi|\tilde{Z})\tilde{Z}^{2}\rangle$

$+\langle\tilde{\psi}_{2}(\varphi(x;\xi))|\tilde{Q}(x;\xi|\tilde{Z})(\tilde{Z}-\tilde{\lambda}_{0})^{2}\rangle$

$+\langle c(x;\xi|\tilde{Z})\tilde{Z}|\tilde{Z}-\tilde{\lambda}_{0}+\tilde{Q}(x;\xi|\tilde{Z})(\tilde{Z}-\tilde{\lambda}_{0}(\tilde{Z}))^{2}\rangle$ .
Remark that $\langle\tilde{\psi}_{2}(\varphi(x;\xi))|\tilde{Z}\rangle=\langle\psi_{2}(\varphi(x;\xi))|Z\rangle$ , and

$|A_{\alpha}(\varphi_{1}(x;\xi);\tilde{Z})-A_{\alpha}(\psi_{1}(\varphi(x;\xi));Z)|$

is sufficiently close to $0$ if $|Z|<11\epsilon/3$ as quadratic forms. Therefore by
the estimates in (45), (46), (47), we get desired result.

LEMMA 2.4. Notations being as in (42), we have
$g_{1}(x;r\xi|\tilde{Z})=rg_{1}(x;\xi|\tilde{Z})$ , $h_{1}(x;r\xi|\tilde{Z})=h_{1}(x;\xi|\tilde{Z})$ , $r>0$ ,

and $g_{1}(x;\xi|0)=0,$ $h_{1}(x;\xi|0)=0$ . Moreovr, for any $\delta$ there is a neighbor-
hood $\mathfrak{U}$ of the identity such that if $\hat{\psi}e\mathfrak{U}$ then

$\Vert g_{1}(x;\xi|\tilde{Z})\Vert<(\delta+2\Vert A_{\alpha}^{\prime}\Vert)|\xi||\tilde{Z}|$ , $||h_{1}(x;\xi|\hat{Z})\Vert<\delta|Z|$ ,

whenever $|Z|<11\epsilon/3$ , provided that $\epsilon$ is sufficiently small.

PROOF. Remark that $\tilde{S}(\psi_{1}(\varphi(x;\xi));Z, \lambda_{0})$ can be regarded also as a
function of $\tilde{Z},$ $\tilde{\lambda}_{0}$ instead of $Z,$ $\lambda_{0}$ . We denote this by $\tilde{S}(\psi_{1}(\varphi(x;\xi));\tilde{Z}, \tilde{\lambda}_{0})$ .
By using (41), we see, by putting $*=\varphi_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(\tilde{Z})$ that
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(49) $g_{1}(x;\xi|\tilde{Z})X’=\langle\varphi_{2}(x;\xi)|X’\rangle+2|\xi|A_{\alpha}^{\prime}(\tilde{Z})(X$ ‘ $)$

$+\langle\frac{\partial\tilde{\psi}_{2}}{\partial X}(.\varphi_{1}(x;\text{\’{e}})(\tilde{Z,}*))X’|\tilde{S}(\psi_{1}(\varphi(x;\xi));\tilde{Z}, \tilde{\lambda}_{0})\rangle$

$+\langle\tilde{\psi}_{2}(.\varphi_{1}(x:\text{\’{e}})(\tilde{Z}, *))|\frac{\partial\tilde{S}}{\partial\tilde{Z}_{1}}(\psi_{1}(\varphi(x;\xi));\tilde{Z}, \tilde{\lambda}_{0})\frac{\partial\tilde{Z}_{1}}{\partial X}(x;\xi|*,\tilde{Z})X^{\prime}\rangle$ .

Recall Lemma 2.2, and we see

(50) $\frac{\partial\tilde{Z}_{1}}{\partial X}=\frac{\partial\tilde{S}}{\partial Z}(z;\tilde{\psi}_{1}(.f(\tilde{Z,}*)),\tilde{\psi}_{1}(\varphi(x;\xi)))\frac{\partial\tilde{\psi}_{1}}{\partial X}(.z(\tilde{Z}, *))$ , $z=\varphi_{1}(x;\xi)$ .

Recall again $*=\varphi_{2}(x;\xi)+2|\xi|A_{a}^{\prime}(\tilde{Z})$ . Therefore

(51) $\frac{\partial\tilde{Z}_{1}}{\partial X}|_{z=0}\sim=\frac{\partial\tilde{\psi}_{1}}{\partial X}(\varphi(x;\xi))$ .

Remark that

(52) $\frac{\partial\tilde{S}}{\partial\tilde{Z}_{1}}(\psi_{1}(\varphi(x;\xi));\tilde{Z}, \tilde{\lambda}_{0})=-I+O(|\tilde{Z}-\tilde{\lambda}_{0}|)$ .

Therefore, using (45), (51) and Lemma 1.2, we see that the term
$\langle\varphi_{2}(x;\xi)|X’\rangle$ is cancelled out, and hence we get $g_{1}(x;\xi|0)=0$ . We get
the first inequality by a direct estimation.

On the other hand, we have

(53) $h_{1}(x;\xi|\tilde{Z})\tilde{\eta}^{\prime}$

$=\langle\frac{\partial\tilde{\psi}_{2}}{\partial\tilde{\eta}}(.\varphi_{1}(x:\xi)(\tilde{Z}, *))\tilde{\eta}^{\prime}|\tilde{S}(\psi_{1}(\varphi(x;\xi));\tilde{Z}, \tilde{\lambda}_{0})$

$+\langle\psi_{2}(.\varphi_{1}(x:\epsilon)(\tilde{Z}, *))|\frac{\partial\tilde{S}}{\partial\tilde{Z}_{1}}(\psi_{1}(\varphi(x;\xi));\tilde{Z}, \tilde{\lambda}_{0})\frac{\partial\tilde{Z}_{1}}{\partial\tilde{\eta}}(x;\xi|*,\tilde{Z})\tilde{\eta}’\rangle$ .

Remark that

(54) $\frac{\partial\tilde{Z}_{1}}{\partial\tilde{\eta}}|_{z=0}\sim=\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{\eta}}(\varphi(x;\xi))$ .

Then by (52), (45) and Lemma 1.2, the constant term in $\tilde{Z}$ in the second
term of (53) vanishes. Thus, using (46), (47) we get the desired estimate.
The first assertion is easy to prove.

Now, we consider the equations
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(55) $\left\{\begin{array}{l}\frac{\partial\phi_{\alpha}}{\partial X^{\prime}}=g_{1}(x;\xi|\tilde{Z})+\frac{\partial p}{\partial X’}(x;\xi|\tilde{Z},\tilde{\eta}’, X’)=0\\\frac{\partial\phi_{\alpha}}{\partial\tilde{\eta}’}=h_{1}(x;\xi|\tilde{Z})+\frac{\partial\rho}{\partial\tilde{\eta}’}(x;\xi|\tilde{Z,}\tilde{\eta}^{\prime}, X^{\prime})=0\end{array}\right.$ (cf. (42)).

LEMMA 2.5. There is a neighborhood lt of the identity in $\mathcal{D}_{\omega}(S_{N}^{*})$

such that if $\hat{\psi}\in \mathcal{D}_{\omega}(S_{N}^{*})$ , then the Jacobian

$\frac{\partial(\partial p/\partial X’,\partial p/\partial\tilde{\eta}^{\prime})}{\partial(X,\tilde{\eta}’)}(x;\xi|\tilde{Z,}0,0)$

does not vanish for every $(x;\xi)\in T_{N}^{*}-\{0\}$ and $Z\in T_{\psi_{1}t\varphi(x:\xi))}$ such that
$|Z|<11\epsilon/3$ .

PROOF. Set

(56) $ p=\rho_{11}(x;\xi|\tilde{Z})\tilde{\eta}^{2}+2\rho_{12}(x;\xi|\tilde{Z})\tilde{r_{/}}^{\prime}X’+p_{22}(x;\xi|\tilde{Z})X^{2}+\cdots$

Then, the above Jacobian is given by

$J=\det\left(\begin{array}{ll}\rho_{11} & p_{12}\\\rho_{12} & p_{22}\end{array}\right)$ ,

and it is positively homogeneous of order $0$ with respect to $\xi$ . Hence
we may assume that $(x;\xi)$ is contained in the compact subset $S_{N}^{*}$ .
Remark that $\rho_{ij}$ depends continuously on $\hat{\psi}$ in the $C^{3}$-topology. If $\hat{\psi}=id$ ,
then by Lemma 2.1 we see that $\rho_{11}=0,$ $\rho_{12}=-I$ and

$\rho_{22}=2|\xi|A_{\alpha}^{\prime}+\langle\tau_{2}|\{_{**}*\}_{\tilde{Z}}\rangle$ (cf. (13)).

Therefore, $J=(-1)^{\dim N}$ if $\psi=id$ , and hence we get the desired result.

Remark that $g_{1}(x;\xi|0)=0,$ $h_{1}(x;\xi|0)=0$ by Lemma 2.4. Therefore,
if $\tilde{Z}=0$ , then (X’, $\eta^{\prime}$) $=(0,0)$ is a solution of (55). Thus, by using the
implicit function theorem, we obtain the following:

LEMMA 2.6. There is a critical point $(\tau_{1}(x;\xi|Z), \tau_{2}^{\prime}(x;\xi|Z))$ of $\phi_{\alpha}$

such that $\tau_{i}^{\prime}(x;\xi|0)=0,$ $i=1,2$ . Moreover, for every $\delta>0$ , there is a
neighborhood $\mathfrak{U}$ of the identity such that if $\hat{\psi}\in$ IZ then

$|\tau_{1}^{\prime}(x;\xi|\tilde{Z})|<\delta|Z|$ , $|\tau_{2}^{\prime}(x;\xi|\tilde{Z})|<\delta|\xi||Z|$ ,

for $|Z|<11\epsilon/3$ , provided that $\epsilon$ is sufficiently small.

PROOF. For each fixed $(x;\xi)\in S_{N}^{*}$ , there is a neighborhood $V$ of $0$
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in $T_{\psi_{1}(\varphi(x;\xi))}$ such that for every $Z\in V$ there is a solution $(\tau_{1}^{\prime}, \tau_{2}^{\prime})$ of (55)
by using the implicit function theorem. If $Z=0$ , then $(\tau_{1}^{\prime}, \tau_{2}^{\prime})$ must be
$(0,0)$ by the above argument. Remark that $S_{N}^{*}$ is compact. Then, we
obtain the first assertion by using (35).

To obtain the inequalities, remark that $\tau_{1}^{\prime}\equiv 0,$ $\tau_{2}^{\prime}\equiv 0$ if $\psi=id$ . Since
$\partial\rho/\partial X^{\prime},$ $\partial\rho/\partial\tilde{\eta}^{\prime}$ and their derivatives depend continuously on $\hat{\psi}$ in the
$C^{3}$-topology, we see that $\partial\tau_{i}^{\prime}/\partial\tilde{Z}$ depends continuously on $\tilde{Z}$ and $\hat{\psi}$ Hence
we get the desired inequality.

COROLLARY 2.7. The critical value of $\phi_{\alpha}$ at $(\tau_{1}^{\prime}, \tau_{2}^{\prime})$ can be written
in the form:

$\phi_{a}(x;\xi|\tilde{Z}, \tau_{2}^{\prime}, \tau_{1}^{\prime})=\langle\psi_{2}(\varphi(x;\xi))|Z\rangle+|\xi|A_{\alpha}(\psi_{1}(\varphi(x;\xi));Z)$

$+a_{0}(x;\xi|Z)Z^{2}$ ,

where $a_{0}(x;\xi;Z)$ is a quadratic form satisfying the following: For any
$\delta>0$ , there is a neighborhood of the identity $\mathfrak{U}$ in $\mathcal{D}_{\omega}(S_{N}^{*})$ such that if
$\hat{\psi}\in \mathfrak{U}$ , then 1 $a_{0}(x;\xi;Z)\Vert<\delta|\xi|$ for every $(x;\xi)\in T_{N}^{*}-\{0\}$ and $Z$ such that
$|Z|<11\epsilon/3$ , provided that $\epsilon$ is sufficiently small.

PROOF. Recall that $\phi_{\alpha}=g_{0}+g_{1}X’+h_{1}\eta’+p$ . Hence the critical value
of $\phi_{\alpha}$ is given by

$g_{0}(x;\xi|\tilde{Z})+g_{1}(x;\xi|\tilde{Z})\tau_{1}^{\prime}(x;\xi|\tilde{Z})+h_{1}(x;\xi|\tilde{Z})\tau_{2}^{\prime}(x;\xi|\tilde{Z})$

$+\rho(x;\xi|\tilde{Z}, \tau_{2}^{\prime}, \tau_{1}^{\prime})$ .
Thus, by Lemmas 2.3-4 and Lemma 2.6 we get the desired estimate.

\S 3. Compositions of Fourier-integral operators, II.

In the previous section, we have chosen a critical point $(\tau_{1}^{\prime}, \tau_{2}^{\prime})$ of
$\phi_{\alpha}$ . Using Corollary 2.7, $\phi_{\alpha}$ can be written in the form

(57) $\phi_{a}=\langle\psi_{2}(\varphi(x;\xi))|Z\rangle+|\xi|A_{\alpha}(\psi_{1}(\varphi(x;\xi));Z)+a_{0}(x;\xi|Z)Z^{2}$

$+\tilde{h}(x;\xi|\tilde{Z,}\tilde{\eta}^{\prime}-\tau_{2}^{\prime}, X’-\tau_{1}^{\prime})(\tilde{\eta}’-\tau_{2}^{\prime}, X’-\tau_{1}^{\prime})$

where $\tilde{h}$ is a quadratic form. Set $\tilde{\eta}^{\prime\prime}=\tilde{\eta}’-\tau_{2}^{\prime},$ $X^{\prime}=X‘-\tau_{1}^{\prime}$ , and rewrite
(57) as follows:

(58) $\phi_{\alpha}=\tilde{\phi}_{\alpha}+\tilde{h}(x;\xi|\tilde{Z},\tilde{\eta}^{\prime}, X’)(\tilde{\eta}^{\prime\prime}, X‘‘)$ ,

where

(59) $\tilde{\phi}_{\alpha}=\langle\psi_{2}(\varphi(x;\xi))|Z\rangle+|\xi|A_{\alpha}(\psi_{1}(\varphi(x;\xi));Z)+a_{0}(x;\xi|Z)Z^{2}$
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Then, (33) can be rewritten as

(60) $(FGu)(x)=\sum_{a}\int\int c_{\alpha}^{\prime\prime}e^{-i\phi_{\alpha}}u(.\psi_{1^{(\varphi(x:\epsilon))}}Z)dZd\xi\sim$ ,

where

(61) $ c_{\alpha}^{\prime\prime}=\int\int c_{\alpha}^{\prime}e^{-ih}dX^{\prime}’ d\tilde{\eta}^{\prime}\sim$

The main purpose of this section is to show the following:

PROPOSITION 3.1. By a suitable change of coordinate system

$\tilde{\eta}^{\prime}=\tilde{\eta}^{\prime}(\overline{\eta},\overline{X})$ , $X’=X^{\prime\prime}(\overline{\eta},\overline{X})$ ,
$\tilde{h}$ can be changed into $-\langle\overline{\eta}|\overline{X}\rangle$ . Especially, $\phi_{\alpha}(x;\xi;Z|\tilde{\eta}’, X‘)$ has only
one critical point $(\tau_{1}, \tau_{2})$ for every $(x;\xi;Z)$ .

The above proposition will be proved in several lemmas below.
By Taylor’s theorem for the variables $X^{\prime\prime},\tilde{h}$ in (58) can be written

as follows:

(62) $\tilde{h}=\tilde{h}|_{X^{\prime\prime}=0}+\frac{\partial\tilde{h}}{\partial X’}|_{x^{\prime\prime}=0}X^{\prime\prime}+R(x;\xi|\tilde{Z,}\tilde{\eta}^{\prime\prime}, X^{\prime\prime})X^{\prime\prime 2}$ .

If we set
$\tilde{\tau}_{1}=\tilde{Z}+\tau_{1}$ , $\tilde{\tau}_{2}=\varphi_{2}(x;\xi)+2|\xi|A_{\alpha}^{\prime}(\tilde{Z})+\tau_{2}^{\prime}$ ,

then obviously $X^{\prime\prime}=X-\tilde{\tau}_{1}$ and $\tilde{\eta}^{\prime}=\tilde{\eta}-\tau_{2}\sim$ (cf. (42)). For the simplicity
of notations, we denote

(63) $\tilde{h}|_{x^{\prime\prime}=0}=P(x;\xi|\tilde{Z},\tilde{\eta})$ , $\frac{\partial\tilde{h}}{\partial X’}|_{x^{\prime\prime}=0}=Q(x;\xi|\tilde{Z},\tilde{\eta})$ .

Remark that $P$ and $Q$ are positively homogeneous of degree 1 (cf. (41)),
and these are not differentiable at $\tilde{\eta}=0$ in general.

LEMMA 3.2. Let $f(\tilde{\eta})$ be a $C^{\infty}$-function defined on $R^{n}-\{0\}$ . Suppose
$fi8$ positively homogeneous of degree 1. Then for any $\tilde{\tau}_{2}\in R^{n}-\{0\}$ ,

$f(\tilde{\eta})=f(\tilde{\tau}_{2})+\int_{0}^{1}\frac{\partial f}{\partial\tilde{\eta}}(\tilde{\tau}_{2}+t(\tilde{\eta}-\tilde{\tau}_{2}))dt(\tilde{\eta}-\tilde{\tau}_{2})$

for every $\tilde{\eta}\in R^{n}-\{0\}$ .
PROOF. The above fact is well-known Taylor’s theorem, if $f$ is C’
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on the whole space. However, the above expansion does not valid if

$\tilde{\eta}=x_{T_{2}}^{\sim}$ , $\lambda<0$ .
Even if this is the case, the right hand side of the above expression
makes sense because $\partial f/\partial\tilde{\eta}$ is of positively homogeneous of degree $0$ .
Therefore applying Taylor’s theorem for $\tilde{\eta}+\epsilon$ and $\tau_{2}+\epsilon\sim$ and take $\lim_{\epsilon\rightarrow 0}$ ,
we get the desired result.

By the above lemma, we can set

(64) $\tilde{h}=\int_{0}^{1}\frac{\partial P}{\partial\tilde{\eta}}(x;\xi|\tilde{Z},\tilde{\tau}_{2}+t\tilde{\eta}^{\prime})dt\tilde{\eta}^{\prime}+\int_{0}^{1}\frac{\partial Q}{\partial\tilde{\eta}}(x;\xi|\tilde{Z},\tilde{\tau}_{2}+t\tilde{\eta}’)dt\tilde{\eta}^{\prime\prime}X^{\prime\prime}$

$+R(x;\xi|\tilde{Z},\tilde{\eta}’, X^{\prime}’)X^{\prime\prime 2}$ .
LEMMA 3.3. Notations and assumption8 being as above, given $\delta>0$

and $K>0$ , there is a neighborhood $\mathfrak{U}$ of the identity in $\mathcal{D}_{\omega}(S_{N}^{*})$ such
that if $\hat{\psi}\in \mathfrak{U}$ , then

$|\int_{0}^{1}\frac{\partial P}{\partial\tilde{\eta}}(x;\xi|\tilde{Z},\tilde{\tau}_{2}+t\tilde{\eta}^{\prime\prime})dt\tilde{\eta}^{\prime}’|<\delta|\tilde{\eta}’|$ ,

$|\int_{0}^{1}\frac{\partial Q}{\partial\tilde{\eta}}(x;\xi|\tilde{Z},\tilde{\tau}_{2}+t\tilde{\eta}^{\prime})dt\tilde{\eta}^{\prime}X’+\langle\tilde{\eta}’|X^{\prime}\rangle|<\delta|\tilde{\eta}’||X^{\prime}$ ,

$|R(x;\xi|\tilde{Z},\tilde{\eta}^{\prime}’, X’)X’ 2|<K(|\xi|+|\eta|)|X’|^{2}$ .
PROOF. Recall (41). Since $\tilde{S}(*;Z, Z_{1})$ is also a function of $\tilde{Z},\tilde{Z}_{1}$ , we

have only to compute

$\langle\tilde{\psi}_{2}(.\varphi_{\iota^{(x:\xi)}}(X,\tilde{\eta}))|\tilde{S}(\psi_{1}(\varphi(x;\xi));\tilde{Z},\tilde{S}(\varphi_{1}(x;\xi);\tilde{\psi}_{1}(.\varphi_{1}(x;\xi)(X,\tilde{\eta})),\tilde{\psi}_{1}(\varphi(x;\xi))))\rangle$ .
If we set $X=\tilde{\tau}_{1}$ , then we get $P$. By Lemma 2.2 and Lemma 2.6, we
see

$\tilde{S}(\varphi_{1}(x;\xi);\tilde{\psi}_{1}(.\varphi_{1}(x;\epsilon)(\tau_{1}\sim,\tilde{\eta})),\tilde{\psi}_{1}(\varphi(x;\xi)))$

is sufficiently close to $\tilde{Z}$ whenever $\epsilon$ and hence $|\tilde{Z}|$ is sufficiently small.
By Lemma 2.2, $\tilde{S}(\psi_{1}(\varphi(x;\xi));\tilde{Z},\tilde{Z}_{1})$ is sufficiently close to $0$ . Now, since

$\frac{\partial P}{\partial\tilde{\eta}}=\langle\frac{\partial\tilde{\psi}_{2}}{\partial\tilde{\eta}}|\tilde{S}(\psi_{1}(\varphi(x;\xi));\tilde{Z},\tilde{Z}_{1})\rangle+\langle\tilde{\psi}_{2}|\frac{\partial\tilde{S}}{\partial\tilde{Z}_{1}}\cdot\frac{\partial\tilde{S}}{\partial Z}\frac{\partial\tilde{\psi}_{1}}{\partial\tilde{\eta}}\rangle$

and $\Vert\partial\tilde{\psi}_{1}/\partial\tilde{\eta}\Vert$ is sufficiently close to $0$ , we get the first inequality by
remarking that $\Vert\tilde{\psi}_{2}(.\varphi_{1}(x;\text{\’{e}})(X,\tilde{\eta}))||\cdot\Vert(\partial\tilde{\psi}_{1}/\partial\tilde{\eta})(.\varphi_{i}(x:\xi)(X,\tilde{\eta}))||$ is positively
homogeneous of degree $0$ with respect to $\tilde{\eta}$ .
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To get the second inequality, we remark I $\partial\tilde{\psi}_{2}/\partial X\Vert\cdot\Vert\partial\tilde{\psi}_{1}/\partial\tilde{\eta}\Vert$ and
$||\partial\tilde{\psi}_{1}/\partial X-I\Vert$ , I $\tilde{\psi}_{2}\Vert\cdot\Vert\partial^{2}\tilde{\psi}_{1}/\partial\tilde{\eta}\partial X\Vert,$ $\Vert\partial^{2}\tilde{\psi}_{2}/\partial\tilde{\eta}\partial X\Vert$ are sufficiently close to $0$

uniformly. Hence we have only to estimate

$\langle\frac{\partial\tilde{\psi}_{2}}{\partial\tilde{\eta}}(.\varphi_{1}(x:\xi)(X,\tilde{\eta}))|\frac{\partial\tilde{S}}{\partial\tilde{Z}_{1}}(\psi_{1}(\varphi(x;\xi));\tilde{Z},\tilde{Z}_{1})\frac{\partial\tilde{Z}_{1}}{\partial X}\rangle$ .

Since $\partial\tilde{S}/\partial\tilde{Z}_{1},$ $\partial\tilde{S}/\partial\tilde{Z}$ are sufficiently close to -I, $I$ respectively, whenever
$|Z|$ is sufficiently close to $0$ , we obtain easily the second inequality.

Recall that $R$ is given by

$R=\int_{0}^{1}(1-t)\frac{\partial^{2}h}{\partial X^{2}}(x;\xi|\tilde{Z},\tilde{\eta},\tilde{\tau}_{1}+tX^{\prime\prime})dt$ .

Hence remarking (35) and the fact that $h$ is positively homogeneous of
degree 1 with respect to $(\xi,\tilde{\eta})$ , we see that $\partial^{2}h/\partial X^{2}$ inside of the integra-
tion sign is of positively homogeneous of degree 1 in $(\xi,\tilde{\eta})$ . Thus, we
get the third inequality.

By the similar reasoning, we also see that

$|1-\Vert<\delta$ , I-ll $<\delta|\tilde{\eta}|^{-1}$

LEMMA 3.4. Let $f(\tilde{\eta})$ be a $C^{\infty}$-function on $R^{n}-\{0\}$ , positively homo-
geneous of degree 1. Suppose 1 $\partial f/\partial\tilde{\eta}\Vert<\delta,$ $\Vert\partial^{2}f/\partial\tilde{\eta}^{2}\Vert<\delta|\tilde{\eta}|^{-1}$ . Then, there
is $K>0$ such that for every $\theta=(\theta_{1}, \cdots, \theta_{n})\in R^{n}-\{0\}$ ,

$f(\tilde{\eta})=f(\theta)+\frac{\partial f}{\partial\tilde{\eta}_{i}}(\theta)(\tilde{\eta}_{i}-\theta_{l})+g^{ij}(\tilde{\eta}, \theta)(\tilde{\eta}_{i}-\theta_{i})(\tilde{\eta}_{j}-\theta_{j})$ ,

where $|g^{ij}(\tilde{\eta}, \theta)|<K\delta(|\tilde{\eta}|+|\theta|)^{-1}$ and $|$ $|$ is the norm given by an arbi-
trarily fixed riemannian inner product on $R^{n}$ .

PROOF. By a suitable choice of an orthonormal coordinate system,
we may assume that $\theta=(\theta_{1},0, \cdots, 0),$ $\theta_{1}>0$ .

(i) At first, we consider on the domain $D_{0}=\{\tilde{\eta}\in R^{n};0<\tilde{\eta}_{1}, |\tilde{\eta}|<3\theta_{1}\}$ .
By Taylor’s theorem, we can set

(65) $g^{ij}(\tilde{\eta}, \theta)=\int_{0}^{1}(1-t)\frac{\partial^{2}f}{\partial\tilde{\eta}_{i}\partial\tilde{\eta}_{j}}(\theta+t(\tilde{\eta}-\theta))dt$ .

Hence

(66) $|g^{ij}(\eta, \theta)|<\delta\int_{0}^{1}\frac{(1-t)dt}{|\theta+t(\tilde{\eta}-\theta)|}$ .
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Set $\tilde{\eta}=a\theta+\omega,$ $\langle\omega|\theta\rangle=0$ , and we have by using $0<a<3$ that

(67) $\frac{|\theta+t(\tilde{\eta}-\theta)|}{1-t}\geqq|\theta|>\frac{1}{15}(|\theta|+|\tilde{\eta}|)$ .

Hence

(68) $|g^{j}(\tilde{\eta}, \theta)|<15\delta\frac{1}{|\theta|+|\tilde{\eta}|}$ .
(ii) Next, we consider on the domain

$ D_{1}=\{\tilde{\eta}\in R^{n}-\{0\};|\omega|<\sqrt{n+1}|\tilde{\eta}_{1}|\}\cap$ { $\tilde{\eta}eR^{n}-\{0\};\tilde{\eta}_{1}>2\theta_{1}$ or $\tilde{\eta}_{1}<0$}.

By Lemma 3.2, we can set

(69) $f(\tilde{\eta})=f(\theta)+\frac{\partial f}{\partial\tilde{\eta}}(\tilde{\eta}-\theta)+\int_{0}^{1}(\frac{\partial f}{\partial\tilde{\eta}}(\theta+t(\tilde{\eta}-\theta))-\frac{\partial f}{\partial\tilde{\eta}}(\theta))dt(\tilde{\eta}-\theta)$ .

Denoting the last term by $r^{j}(\tilde{\eta}, \theta)(\tilde{\eta}_{j}-\theta_{j})$ , we see that

$|r^{j}(\tilde{\eta}, \theta)|<2\delta$ .
Set $g^{ij}(\tilde{\eta}, \theta)=0$ for $i\geqq 2$ and set

$g^{1j}(\tilde{\eta}, \theta)=r^{j}(\tilde{\eta}, \theta)/(\tilde{\eta}_{1}-\theta_{1})$ .
On the domain $D_{1}$ , we have easily $|\tilde{\eta}_{1}|+|\theta_{1}|\leqq 3|\tilde{\eta}_{1}-\theta_{1}|$ , and hence

$|g^{1j}(\eta, \theta)|<6\delta\frac{|\tilde{\eta}|+|\theta|}{|\tilde{\eta}_{1}|+|\theta_{1}|}\frac{1}{|\tilde{\eta}|+|\theta|}\leqq\frac{12\sqrt{n+1}\delta}{|\tilde{\eta}|+|\theta|}$ .

(iii) Let $\tilde{\eta}=a\theta+\omega,$ $\langle\tilde{\eta}|\omega\rangle=0$ . Consider the domain

$D_{1}^{\prime}=\{\tilde{\eta};|a|<3, |\tilde{\eta}_{1}|<|\omega|<3\sqrt{n}|\theta|\}$ .
In this domain, we use again (65) and by (66), we get

(70)
$|g^{ij}|<\sqrt{2}\delta\int_{0}^{1}\frac{dt}{|1-\frac{t}{1-t}|a|||\theta|+\frac{t}{1-t}|\omega|}$

$<\sqrt{2}\delta\int_{0}^{1}\frac{dt}{|1-\frac{t}{1-t}|a||+\frac{t}{1-t}|a|}\cdot\frac{1}{|\theta|}\leqq\sqrt{2}\delta\frac{1}{|\theta|}$
.

Using $|a|<3$ and $|\omega|<3\sqrt{n}|\theta|$ , we get easily that $|\theta|\geqq$

$(3\sqrt{n+1}+1)^{-1}(|\theta|+|\tilde{\eta}|)$ , and hence on $D_{1}^{\prime}$
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(71) $|g^{i\dot{g}}(\tilde{\eta}, \theta)|<(3\sqrt{n+1}+1)\sqrt{2}\frac{\delta}{|\tilde{\eta}|+|\theta|}$ .

(iv) Remark that $D_{0}\cup D_{1}\cup D_{1}^{\prime}$ covers a neighborhood of $0$ . For
every $i,$ $2\leqq i\leqq n$ , we set

$D_{i}=\{\tilde{\eta};|\theta|<|\tilde{\eta}|<\sqrt{n}|\tilde{\eta}_{i}|\}$ .
On this domain we use (69). So, set $g^{aj}=0$ for $a\neq i$ , and

$g^{ij}(\tilde{\eta}, \theta)=r^{j}(\tilde{\eta}, \theta)/\tilde{\eta}_{i}$ .
Since $(|\theta|+|\tilde{\eta}|)/|\tilde{\eta}_{l}|<2\sqrt{n}$, we have

$|g^{lj}(\tilde{\eta}, \theta)|<4\sqrt{n}\delta\frac{1}{|\theta|+|\tilde{\eta}|}$ .

(v) Remark that $D_{0}\cup D_{1}\cup D_{1}^{\prime}\cup(\bigcup_{i\geqq 2}D_{i})=R^{n}-\{0\}$ . Hence we get
the desired result by using an appropriate partition of unity.

Recall $\tilde{\eta}’=\tilde{\eta}-\tilde{\tau}_{2}=\tilde{\eta}-\varphi_{2}(x;\xi)-2|\xi|A_{\alpha}^{\prime}(\tilde{Z})-\tau_{2}^{\prime}(x;\xi|\tilde{Z})$ . Applying the
above result to our function $P(x;\xi|\tilde{Z},\tilde{\eta})$ at $\theta=\tilde{\tau}_{2}(x;\xi|\tilde{Z})$ . Then by using
Lemma 2.6 and Lemma 3.3, we obtain the following:

COROLLARY 3.5. For any $\delta>0$ , there is a neighborhood $\mathfrak{U}$ of the
identity of $\mathcal{D}_{\omega}(S_{N}^{*})$ such that if $\hat{\psi}\in \mathfrak{U}$ , and $|Z|<11\epsilon/3$ , then $\tilde{h}$ in (58)
can be written as

$\tilde{h}=\overline{P}(x;\xi|Z,\tilde{\eta}^{\prime\prime})\tilde{\eta}’ 2+Q(x;\xi|\tilde{Z},\tilde{\eta}^{\prime\prime})\tilde{\eta}^{\prime\prime}X’+R(x;\xi|\tilde{Z},\tilde{\eta}^{\prime\prime}\cdot X^{\prime}’)X^{\prime\prime 2}$ ,

where $||\overline{P}||<\delta/(|\xi|+|\tilde{\eta}|),$ $||Q+\langle*|*\rangle||<\delta$ , provided that $\epsilon$ is sufficiently small.
Moreover, there is a positive constant $K$ such that $||R||<K(|\xi|+|\tilde{\eta}|)$ .

PROOF OF PROPOSITION 3.1. Now, write $\tilde{h}$ in the above corollary as
follows:

$\tilde{h}=\overline{P}^{ij}\tilde{\eta}_{i}^{\prime\prime}\tilde{\eta}_{j}^{\prime\prime}+\overline{Q}_{k}^{i}\tilde{\eta}_{i}^{\prime\prime}X^{\prime’ k}+R_{kl}X^{\prime\prime k}X^{\prime\prime t}$

Set $Y^{i}=\overline{Q}_{k}^{i}X^{\prime\prime k}$ . Since $(\overline{Q}_{k}^{i})$ is sufficiently close to $(-\delta_{k}^{i})$ and hence an
invertible matrix, one may rewrite $\tilde{h}$ as follows:

(72) $\tilde{h}=\overline{P}^{ij}\tilde{\eta}_{i}^{\prime\prime}\tilde{\eta}_{j}^{\prime\prime}+\tilde{\eta}_{i}^{\prime}’ Y^{i}+\overline{R}_{kl}Y^{k}Y^{l}$

Now, we want to find out functions $f_{k}^{i}(x;\xi|\tilde{Z},\tilde{\eta}^{\prime}, Y),$ $a_{ij}(x;\xi|\tilde{Z},\tilde{\eta}’, Y)$

such that

(73) $\tilde{h}=-(\tilde{\eta}_{i}^{\prime\prime}+a_{ij}Y^{j})(f_{k}^{i}Y^{k}-\overline{P}^{il}\tilde{\eta}_{l}^{\prime\prime})$

$=\overline{P}^{il}\tilde{\eta}_{i}^{\prime\prime}\tilde{\eta}|^{\prime}+(-f_{j}^{l}+\overline{P}^{il}a_{ij})\tilde{\eta}_{l}^{\prime\prime}Y^{j}-f_{k}^{i}a_{lj}Y^{j}Y^{k}$
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Therefore, $f_{\dot{f}}^{i},$

$a_{lj}$ must satisfy

(74) $\left\{\begin{array}{l}-f_{\dot{f}}^{\iota}+\overline{P}^{li}a_{ij}=+\delta_{j}^{\iota}\\f_{k}^{i}a_{ij}=-\overline{R}_{kj}\end{array}\right.$

Assume for a while that $(f_{k}^{i})$ is invertible. Then $a_{ij}=-(f^{-1})_{i}^{k}\overline{R}_{kj}$ . There-
fore, we have only to solve

$f_{\dot{f}}^{l}+\overline{P}^{li}(f^{-1})_{i}^{k}\overline{R}_{kj}=-\delta_{j}^{l}$

within the invertible matrices. Remark that $\overline{P}^{li}\overline{R}_{kj}$ is sufficiently close
to $0$ uniformly because of Corollary 3.5. Hence by the implicit function
theorem, we can find $(f_{\dot{f}}^{l})$ which is uniformly close to the identity
matrix.

Now, set $\overline{\eta}_{i}=\tilde{\eta}_{i}^{\prime\prime}+a_{ij}Y^{j},$ $X^{i}=f_{k}^{i}Y^{k}-\overline{P}^{il}\tilde{\eta}_{l}^{\prime\prime}$ and we get the desired
result.

Recall how $c_{a}$ was defined in (27). $c_{a}$ was a $C^{\infty}$ function of
$(x;\xi, X, \eta, Y)$ . By (31), $Y$ is given as a function of $(x;\xi, Z|X)$ . Hence
rewriting $c_{\alpha}$ as a function of $(x;\xi|Z, \eta, X),$ $c_{\alpha}^{\prime}$ is given by

$c_{\alpha}^{\prime}=c_{\alpha^{\frac{dY}{dZ}}}$ .

For each fixed $(x;\xi|Z),$ $c_{\alpha}^{\prime}$ can be regarded as a function of $\tilde{\eta},$ $X$ by
taking a normal coordinate expression. Hence, it is not hard to see
that $c_{\alpha}^{\prime\prime}$ given in (61) is well-defined and $c_{a}^{\prime\prime}\in\sum_{\psi\varphi}^{0}$ . By the above argu-
ment, we can conclude that $FG$ is given by (60).

Now, recall (59) and (25). By Corollary 2.7, one may assume that
$\tilde{\phi}_{\alpha}^{\prime\prime}(x;\xi|Y_{1})=\langle\psi_{2}(\varphi(x;\xi))|Z\rangle+|\xi|A_{\alpha}(\psi_{1}(\varphi(x;\xi));Z)+a_{0}(x;\xi|Z)Z^{2}$ ,

$Z=S(\overline{y}_{\alpha};Y_{1},\overline{Y}_{0}(x;\xi))$ , $\overline{y}_{2}\overline{Y}_{0}(x;\xi)=\psi_{1}(\varphi(x;\xi))$ ,

is still a non-degenerate phase function on $U_{\alpha}^{\prime}\times V_{a}^{\prime}$ for each $\alpha$ . By the
same method as used in [3] pp. 139-140, Lemma 3.5 [8] and [9], we obtain
the following:

LEMMA 3.6. There is a $C^{\infty}$ fiber preserving d,iffeomorphism $\Phi$ such
that $\tilde{\phi}_{\alpha}^{\prime\prime}(x;\Phi_{2}(x;\xi)|Y_{1})=\phi_{\alpha}^{\prime}(x;\xi|Y_{1})$ , where $\Phi(x;Y_{1}, \xi)=(x;\Phi_{2}(x;Y_{1}, \xi))$ and $\phi_{a}^{\prime}$

is given by (25). Moreover, $\Phi$ depends continuously on $\varphi,$ $\psi$ under the
$C^{\infty}$ topology.

PROOF. Remark that $\partial\phi_{\alpha}^{\prime}/\partial\xi=0$ implies $Y_{1}=\overline{Y}_{0}(x;\xi)$ and that $\partial^{2}\phi_{\alpha}^{\prime}/\partial Y_{1}\partial\xi$

is non-singular on $U_{\alpha}^{\prime}\times V_{\alpha}^{\prime}$ (cf. (24), (25)). Note that the above fact holds
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also for $\tilde{\phi}_{\alpha}^{\prime\prime}$ . Hence by the same manner as in [3] pp. 139-140, we get
the desired result. The continuity can be obtained easily, for $\Phi$ is
obtained by using an implicit function theorem.

Recall the definition of $c$ in (27), and $Z,$ $Z_{1}$ in (29) and (31). Then,
we see that $c_{a}^{\prime}$ in (33) vanishes identically if $|Z|>11\epsilon/3$ . Recall also the
definition $c_{\alpha}^{\prime\prime}$ in (61). By the argument between (28) and (29) in [8], we
see that (60) can be written by

$(FGu)(x)=\sum_{a}\int\int c_{\alpha}^{\prime\prime}(x;\xi|Z)e^{-i\phi_{\alpha}^{\prime}(\Phi^{-1}(x:Y_{1},\xi)|Y_{1})}u(.\overline{\nu}_{\alpha}Y_{1})\frac{dZ}{dY_{1}}dY_{1}d\xi$ ,

where $Z=S(\overline{y}_{\alpha};Y_{1},\overline{Y}_{0}(x;\xi))$ , $\overline{\nu}_{\alpha}\overline{Y}_{0}(x;\xi)=\psi_{1}(\varphi(x;\xi))$ . Thus, by changing
variables, we see
(75) $(FGu)(x)$

$=\sum_{a}\int\int\overline{c}_{\alpha}(x;\xi|Z)e^{-l\langle\psi_{2^{(\varphi(x;\xi))|Z}}\rangle-i|\xi|A_{a}(\psi_{1^{(}}\varphi(x:\epsilon));z)}$

$\times(\nu_{1}u)(\psi_{1}(\varphi(x;\xi));Z)dZd\xi$ ,
where

$\overline{c}_{a}=c_{a}^{\prime\prime}(\Phi(x;Y_{1}, \xi)|Z)\frac{dZ}{dY_{1}}(\Phi(x;Y_{1}, \xi)|Z)\frac{dY_{1}}{dZ}(x;\xi|Z)\frac{d\Phi_{2}}{d\xi}(x;Y_{1}, \xi)$ ,

and $\nu_{1}$ is a cut off function of the breadth $11\epsilon(<\delta_{0})$ . It is not hard to
see that $\overline{c}_{\alpha}\in\Sigma_{\psi\varphi}^{\sim_{0}}$ . Thu8, by replacing the cut off function $\nu_{1}$ by $\nu$ , we
obtain the following by using Lemma 3.3 in [8]:

(76) $(FGu)(x)$

$=\sum_{\alpha}\int[\overline{c}_{\alpha}e^{-i\langle\psi_{2^{(\varphi(x;\xi))|Z}}\rangle-l|\xi|A_{\alpha}t\psi_{1}(\varphi^{(x;\xi)):Z)}}$

$\times(\nu u)(\psi_{1}(\varphi(x;\xi));Z)dZd\xi+(K\circ u)(x)$ ,

where $K$ is a smoothing operator. The above equality is the desired
composition rule. (Proposition A in the introduction is thereby proved.)

Now, suppose furthermore that $\varphi$ and $\psi$ are sufficiently close to
the identity. Then, we can set $A_{\alpha}\equiv 0$ , and hence we can eliminate the
suffix $\alpha$ and $\sum_{a}$ in the all computations in \S \S 2-3. Moreover, one may
assume that $(Fv)(x)$ in the first part of \S 2 can be written in the form

(77) $(Fv)(x)=\int a(x;\xi)(\nu v)(\varphi(x;\xi))d\xi\sim$ ,

where $a\in\sum_{C}^{0}$ . Recall that $\sum_{C}^{0}$ is a locally convex Fr\’echet space through
the identification with $C^{\infty}(\overline{D}_{N}^{*})$ (cf. between (10) and (11) in [8]).
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Now, recalling how the amplitude function $\overline{c}$ of $FG$ was computed
in (28), (33), (61). Then, we obtain that $\overline{c}=c(x;\xi;Z)$ depends continu-
ously on $a,$ $b,$ $\varphi$ and $\psi$ Since one may assume that $\psi\varphi$ is still sufficient-
ly close to the identity. $FG$ can be rewritten in the form

(78) $(FGu)(x)=\int c(x;\xi)(\nu u)(\psi\varphi(x;\xi))d\xi+(K\circ u)(x)\sim$ ,

by using Proposition 4.1 in [8] (cf. see also [9]). Recall the argument
in \S 4 in [8], and we obtain the following:

LEMMA 3.7. Notations and assumptions being as above, $c(x;\xi)$ and
$K(x, y)$ depend continuously on $a,$ $b,$ $\varphi$ and $\psi$

PROOF. By the above argument, we see that FGu can be written
in the form

$(FGu)(x)=\int c(x;\xi)(\nu_{1}u)(\psi\varphi(x;\xi))d\xi\sim$ ,

and $c\in\sum_{c}^{0}$ depends continuously on $a,$ $b\in\sum_{c}^{0}$ and $\varphi,$ $\psi\in \mathcal{D}_{\Omega}^{(1)}$ . Thus, we
have only to check that

(79) $\int c(x;\xi)((\nu_{1}-\nu)u)(\psi\varphi(x;\xi))d\xi\sim$

can be written by using a smooth kernel $K(x, y)\in C^{\infty}(N\times N)$ , which
depends continuously on $a,$ $b\in\sum_{C}^{0}$ and $\varphi,$ $\psi\in \mathcal{D}_{\Omega}^{(1)}$ . Now, as $\psi,$ $\varphi$ are
sufficiently close to the identity, one may assume that $p(x, \psi_{1}(\varphi(x;\xi)))<$

$\epsilon/6$ . Recall that the breadth of $\nu_{1},$ $\nu$ are $11\epsilon,$ $\epsilon$ respectively. Hence
$(\nu_{1}-\nu)(\psi_{1}(\varphi(x;\xi)), z)\equiv 0$ if $\rho(x, z)<\epsilon/6$ or $\rho(x, z)>67\epsilon/6$ . Let $\nu_{2}(x, z)$ be a
$C^{\infty}$ function such that $\nu_{2}(x, z)\equiv 1$ on $\epsilon/6\leqq p(x, z)\leqq 67\epsilon/6$ and $\nu_{2}(x, z)\equiv 0$ on
$\rho(x, z)<\epsilon/12$ and $\rho(x, z)>68\epsilon/6$ . We rewrite (79) as follows:

$\int\int^{\sim}z_{1}-i\# Z_{1})u(.Z)dZ_{1}d\eta$ ,

by the same method in \S 3 [8], where $c\sim\in\sum_{C}^{0}$ and $\phi\in C_{R}^{\infty}(S_{N}^{*})r$ , the space
of all R-valued $C^{\infty}$ functions on $T_{N}^{*}-\{0\}$ of positively homogeneous of
degree 1. We give a topology on $C_{R}^{\infty}(S_{N}^{*})r$ by using the $C^{\infty}$ topology on
$C_{R}^{\infty}(S_{N}^{*})$ .

It is not hard to see that $ c\sim$ depends continuously on $a,$ $b,$ $\varphi,$ $\psi$ , and
$\phi$ depends continuously on $\varphi,$ $\psi\in \mathfrak{R}$ . Set

$ K_{1}(x;Z_{1})=\int c\sim(x;\eta, Z_{1})\nu_{2}(x, xZ1)e^{-i\prime(x:\eta)}e^{-\langle\eta|Z_{1\rangle}}d\eta$ .
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Set

$ K_{1}(x;Z_{1})=\int\frac{c\sim(x;\eta,Z_{1})}{(1+|\eta|)^{n+2}}\nu_{2}(x_{1}, xZ1)e^{-i\phi(x;\eta)}(1+|\eta|)^{n+2}e^{-\langle\eta|Z_{1\rangle}}d\eta$ ,

and note that $c\sim(x;\eta, Z_{1})$ and its derivatives by $Z_{1}$ up to the order $n+2$

are continuous with respect to $a,$ $b,$ $\varphi,$ $\psi$ Thus, by integration by
parts, we see that $K_{1}(x;Z_{1})$ depends continuously on $a,$ $b,$ $\varphi,$ $\psi$

\S 4. Inverse.

In this section, we deal with Fourier-integral operators $F(a, \varphi, \nu)$

(cf. (77)) such that $\varphi$ is sufficiently close to the identity and $a$ is
sufficiently close to 1 in the Fr\’echet-space topology on $\sum_{c}^{0}$ . The purpose
of this section is to show the following:

PROPOSITION 4.1. Notations and assumptions being as above, $F(a, \varphi, \nu)$

is invertible. (The inverse is also a Fourier-integral operator.) More-
over, if we write $ F(a, \varphi, \nu)^{-1}=F(b, \varphi^{-1}, \nu)+K\circ$ , then $b\in\sum_{C}^{0},$ $K\in C^{\infty}(N\times N)$

are continuous with respet to $a,$ $\varphi$ .

For convenience’ sake, we set $F=F(a, \varphi, \nu),$ $G=F(1, \varphi^{-1}, \nu)$ . Then,
by the composition rule, $FG$ is a pseudo-differential operator of order
$0$ , which can be written in the form

(80) $(FGu)(x)=\int_{\tau_{x}^{*}}c(x;\xi)^{\approx}\nu u(x;\xi)d\xi+(K\circ u)(x)$ .

By Lemma 3.7, one may assume that $c(x;\xi)$ and $K(x, z)$ are sufficiently
close to 1 and $0$ respectively. Therefore for the proof of Proposition
4.1, we have only to show that the right hand side of (80) is invertible.

For the above purpose we have to fix at first the composition rule
of pseudo-differential operators, which is much simpler than that of
Fourier-integral operators.

Let $A(x;\xi),$ $B(x;\xi)\in\sum_{C}^{0}$ , and let

(81) $\left\{\begin{array}{ll}(Fv)(x)=\int_{\tau_{x}^{*}}\int_{\tau_{x}}\epsilon|x & xX)v(.xX)dXd\xi,\\(Gu)(y)=\int_{\tau_{y}^{*}}\int_{\tau_{y}}\langle\eta|Y\rangle & yY)u(.yY)dY_{Q}\eta, (cf. (26)).\end{array}\right.$

Then, we get

(82) $(FGu)(x)=\int\int\int\int Ce^{-i\phi}u(..x^{X}Y)dYd\eta dXd\xi$ ,
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where

(83) $\left\{\begin{array}{l}\phi=\langle\xi|X\rangle+\langle\eta|Y\rangle\\ C=A(x;\xi)\frac{dz}{dX}(x;X)(B\frac{dz}{dY})(.xX;\eta, Y)\nu(x, .xX)\nu(.xX, .x^{X}Y)\end{array}\right.$

(cf. (28)).

Set. $xZ=..Yx^{X}$ Then, $Y=S(x;Z, X)$ (cf. (31)). By (10), we set

$Y=S_{1}(x;Z, X)(Z-X)$ ,

$\eta^{\prime}=\eta S_{1}(x;Z, X)$ .
If the breadth $\epsilon$ of cut off function $\nu$ is sufficiently small, then one may
assume that $S_{1}(x;Z, X)$ is invertible. Hence, we see

(84) $\left\{\begin{array}{l}\phi=\langle\xi|Z\rangle-\langle\eta’-\xi|X-Z\rangle\\ C=A(x;\xi)B’(x;X, Z, \eta^{\prime})\end{array}\right.$

where $B’=(dz/dX)B(dz/dY)(d\eta/d\eta^{\prime})\nu(x, xX)\nu(.xX, xZ)(dY/dZ)$ . Thus, putt-
ing $\eta^{\prime}=\eta^{\prime}-\xi,$ $X^{\prime}=X-Z$, we get

(85) $\left\{\begin{array}{ll}(FGu)(x & =\int\int\langle\rangle x’\\B’ & =\int\int\langle\eta^{\prime\prime}|X^{\prime}\rangle\end{array}\right.$

This is the desired composition rule.

REMARK. By the different way of the change of variables, we get
the other expression of the composition rule as follows:

$(FGu)(x)=\int\int\langle\rangle x$ ,

where

$C(x;\eta’, Z)=\int\int’\epsilon^{\prime\prime}|x$ ’

In what follows, we can apply the same method as in [5] pp. 155-157
to obtain the inverse modulo smoothing operators. Especially, we have
the following:

LEMMA 4.2. Notations being as above, if $B(x;\xi)$ is sufficiently close
to 1 in the uniform topology on $T_{N}^{*}-\{0\}$ , then putting $A(x;\xi)=B(x;\xi)^{-1}$

in (85), we have $A(x;\xi)B’(x;\xi, Z)=1+C^{\prime}(x, \xi, Z),$ $C’(x;\xi, Z)\in\tilde{\sum}_{\overline{c}^{1}}$ .
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Now, let $\{E, E^{k}, k\geqq 0\}$ be the Sobolev chain of C-valued functions on
$N$ parametrized by the non-negative integers in such a way that $E^{0}=$

$L_{2}(N)$ and $E=\cap E^{k}=C^{\infty}(N)$ . We denote by $L(E)$ the totality of con-
tinuous linear mappings of $E$ into itself, and by $L,,(E)$ the totality of
$L\in L(E)$ such that $L$ can be extended to a bounded operator of $E^{k}$ into
itself for every $k\geqq 0$ , and that $L$ satisfies the inequality

(86) $\Vert Lu\Vert_{k}\leqq C\Vert u\Vert_{k}+D_{k-1}\Vert u\Vert_{k-1}$ $(k\geqq 1)$ .
The following has been known in 11.1.2 Theorem in [6], or [7] pp. 11-14:

LEMMA 4.3. Suppose we have $L\in L_{00}(E)$ such that $C$ in (86) is less
than 1/2 and that the operator norm of $L:E^{0}\rightarrow E^{0}$ is less than 1. Then
the operator $1-L\in L_{oo}(E)$ is invertible as an element of $L_{oo}(E)$ .

Now, we back to our situation. Choosing $A=B(x;\xi)^{-1}$ , Lemma 4.2
shows that $FG=I-L$ and $L$ is a pseudo-differential operator of order
$-1$ . Hence, obviously $L\in L_{oa}(E)$ such that the constant $C$ in (86) is $0$ .

LEMMA 4.4. If $B(x;\xi)$ is sufficiently close to 1, then the operator
norm of $L:E^{0}\rightarrow E^{0}$ is less than 1.

PROOF. It is a straightforward application of Theorem 8 in [5].

By Lemmas 4.2-4, we see that $I-L$ is invertible in $L_{oo}(E)$ . Namely,
the sequence $\sum_{\epsilon=0}^{\infty}L^{\epsilon}$ converges as an element in $L_{oo}(E)$ (cf. [6] pp. 141-
142). Thus, to complete the proof of Proposition 4.1, we have only to
show that $\sum_{\epsilon=0}^{\infty}L^{\epsilon}$ is a pseudo-differential operator.

Let $\sigma:R^{n}\rightarrow R$ is a $C^{\infty}$ non-negative function such that $\sigma(X)\equiv 0$ if
$|X|\geqq r_{0}/2$ , where $r_{0}$ is the injectivity radius of $N$, and such that $\sigma(X)\equiv 1$

if $|X|\leqq r_{0}/4$ . For each fixed $(x;\eta)\in T_{N}^{*}-\{0\}$ , we define a $C^{\infty}$ function
$u_{(x;\eta)}(y)$ by

(87) $u_{(x;\eta)}(y)=\left\{\begin{array}{ll}\sigma(x\cdot y)e^{i\langle\eta|x_{y\rangle}}J, & if \rho(x, y)<r_{0}\\0 , & if \rho(x, y)\geqq\gamma_{0}\end{array}\right.$

by identifying $R^{n}$ with $T_{x}$ , where $x\cdot y=Exp_{x}^{-1}y$ , and $J$ is its Jacobian.
The following lemma is well-known (cf. [5] p. 156):

LEMMA 4.5. Let $P_{a}$ be a pseudo-differential operator with a symbol
$a(x;\xi)\in\sum_{C}^{0}$ . Then $a(x;\eta)-(P_{a}u_{(x;\eta)})(x)$ is rapidly decreasing with respect
to $\eta$ .

PROOF OF PROPOSITION 4.1. Since $L(\sum_{\epsilon=0}^{\infty}L^{*})=\sum_{\epsilon=1}^{\infty}L^{l}eL_{oo}(E)$ ,
$c(x;\eta)=(\sum_{\epsilon=1}^{\infty}L^{s}u_{(x:\eta)})(x)$ is a $C^{\infty}$ function on $T_{N}^{*}-\{0\}$ . Recall that $L$ is
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a pseudo-differential operator of order $-s$ . Therefore it is easy to see
that $c(x;\xi)\in\sum_{\overline{c}^{1}}$ . Let $P_{0}$ be the pseudo-differential operator with a
symbol $c$ . Then, it is not hard to see that $\sum_{=1}^{\infty}L-P_{0}$ is an operator
of order $-\infty$ , and hence it is a pseudo-differential operator. Thus,
we get that $\sum_{=0}^{\infty}L$ is a pseudo-differential operator. This completes
the proof of Proposition 4.1, because continuity follows immediately
from the above computations.

To complete the rules of compositions and inversions of Fourier-
integral operators, we have to compute compositions $F(a, \varphi, \nu)\circ K$ and
$K\circ F(a, \varphi, \nu)$ , where $K$ is a smoothing operator and $F(a, \varphi, \nu)$ is given
by (77). Both of them are obviously smoothing operators, and it is easy
to compute the composition $F(a, \varphi, \nu)\circ K$. Thus, in the last part of this
section we shall compute $K\circ F(a, \varphi, \nu)$ .

$F=F(a, \varphi, \nu)$ can be written in the form;

(88) $(Fu)(y)$

$=\int_{\tau_{l}^{*}}\int_{N}\varphi|\varphi tu:\epsilon\}$
.

Hence $((K\circ F)u)(x)$ is given by

(89) $((K\circ F)u)(x)$

$=\int\int\int K(x, y)a(y;\xi)\nu(\varphi_{1}(y;\xi), z)e^{-l\langle 1z\rangle}\varphi_{2}(\nu:\xi)|\varphi(y:\text{\’{e}}).u(z)dyd\xi dz$ .

Now, let $Y=\varphi_{1}(u:\text{\’{e}})\cdot z(i.e., \varphi_{1}(’:\epsilon)Y=z)$ . If we set $Z=-(dExp_{\varphi_{1}tr:6)})_{Y}Y$, then
$zZ=\varphi_{1}(y;\xi)$ , and $Y=-(dExp_{*})_{Z}Z$. Define $\zeta=(dExp_{l})_{Z}^{*}\varphi_{2}(y;\xi)$ , and it is
clear that $\langle\varphi_{2}(y;\xi)|^{\varphi_{1}(y;\xi)}z\rangle=\langle\varphi_{2}(y;\xi)|Y\rangle=-\langle\zeta|Z\rangle$ . Remark that $\varphi$ is
sufficiently close to the identity, and hence by the implicit function
theorem, $y$ and $\xi$ are $C^{\infty}$ functions of $(z;Z, \zeta)$ . Hence (89) can be re-
written as follows:

(90) $((K\circ F)u)(x)=\int_{N}K’(x, z)u(z)dz$ ,

$K’(x, z)$

$=\int\int z\langle\rangle$

$K’(x, z)$ is a smooth function on $N\times N$, because the integrand is of com-
pact support with respect to $Z$. It is not hard to see that $K^{\prime}$ depends
continuously on $K,$ $a,$ $\varphi$ in the $C^{\infty}$ topology.
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\S 5. Groups of invertible Fourier-integral operators.

In this section, Fourier-integral operators of order $0$ are understood
as operators written in the form (19). By $G\mathscr{F}^{0}$ we denote the group
generated by all invertible Fourier-integral operators of order $0$ . Let
$G\ovalbox{\tt\small REJECT}^{0}$ be the group of all invertible pseudo-differential operators of order
$0$ . Then, obviously $G\mathscr{J}^{0}\supset G\ovalbox{\tt\small REJECT}^{0}$ .

LEMMA 5.1. $G\ovalbox{\tt\small REJECT}^{0}$ is a normal subgroup of $G\mathscr{G}^{-0}$ .
PROOF. Let $A\in G\mathscr{F}^{0}$ . Although it is not clear whether $A$ can be

expressed in the form (19) or not, $A$ is a Fourier-integral operator in
the sense of [2] or [3]. Moreover, it is known that $APA^{-1}$ is a pseudo-
differential operator of order $0$ , if so is $P$ . If $P\in G\mathscr{G}^{-0}$ , then obviously
$APA^{-1}$ is invertible.

Let $\ovalbox{\tt\small REJECT}-m$ be the space of all pseudo-differential operators of order
$-m$ , and let $\ovalbox{\tt\small REJECT}^{-\infty}=\cap\ovalbox{\tt\small REJECT}^{-m}$ . For each $m,$ $ 0\leqq m\leqq\infty$ , we define $G\ovalbox{\tt\small REJECT}^{-m}$

as follows:
$G\ovalbox{\tt\small REJECT}^{-m}=\{1+PeG\ovalbox{\tt\small REJECT}^{0};P\in\ovalbox{\tt\small REJECT}^{-m}\}$ .

LEMMA 5.2. $G\ovalbox{\tt\small REJECT}^{-m}(m\geqq 0)$ is a normal subgroup of $G\mathscr{G}^{-0}$ . Moreover,
$G\ovalbox{\tt\small REJECT}^{-m}/G\ovalbox{\tt\small REJECT}^{-(m+1)}$ is abelian.

PROOF. Since $\ovalbox{\tt\small REJECT}^{-n*}\ovalbox{\tt\small REJECT}^{-\epsilon}\subset\ovalbox{\tt\small REJECT}^{-(m+\cdot)}$ , it is obvious that $ G\ovalbox{\tt\small REJECT}^{-m}\cdot G\ovalbox{\tt\small REJECT}^{-m}\subset$

$G\ovalbox{\tt\small REJECT}^{-m}$ . Let $1+PeG\ovalbox{\tt\small REJECT}^{-m}$ . Then $(1+P)^{-1}=1-(1+P)^{-1}P$ and $(1+P)^{-1}P\in$

$\ovalbox{\tt\small REJECT}^{-m}$ . Hence $G\ovalbox{\tt\small REJECT}^{-n}$. is a group. By the same argument as in the above
lemma, we see that $G\ovalbox{\tt\small REJECT}^{-m}$ is a normal subgroup of $G\mathscr{F}^{-0}$ . Note that
$[\ovalbox{\tt\small REJECT}^{-}\cdot, \ovalbox{\tt\small REJECT}^{-m}]\subset\ovalbox{\tt\small REJECT}^{-(\epsilon+m+1)}$ , and we see easily that $G\ovalbox{\tt\small REJECT}^{-m}/G\ovalbox{\tt\small REJECT}^{-(m+1)}$ is an
abelian group.

COROLLARY 5.3. If $m\geqq 1$ , then $G\ovalbox{\tt\small REJECT}^{-m}/G\ovalbox{\tt\small REJECT}^{-(m+I)}$ is isomorphic to the
additive group of $C^{\infty}(S_{N}^{*})$ . Moreover $G\ovalbox{\tt\small REJECT}^{0}/G\ovalbox{\tt\small REJECT}^{-1}$ is isomorphic to the
multiplicative group of non-vanishing $C^{\infty}$ functions on $S_{N}^{*}$ .

PROOF. Let $f,$ $g\in C^{\infty}(S_{N}^{*})$ , and set $a=fr^{-m},$ $b=gr^{-\epsilon}$ . Denoting by
$P_{a},$ $P_{b}$ pseudo-differential operators with symbols $a,$

$b$ respectively, the
symbol of $P_{a}P_{b}$ is given by

$fgr^{-(m+\cdot)}+lower$ order terms , (cf. (85), and [5]).

Hence, we obtain the desired results.

Now, let $V_{1},$ $\mathfrak{U},$ $U_{0}$ be respectively a neighborhood of 1 in $\sum_{c}^{0}$ as a
Fr\’echet space identified with $C^{\infty}(\overline{D}_{N}^{*})$ , a neighborhood of the identity in
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$\mathcal{D}_{\rho}^{(1)}$ , and a neighborhood of $0$ in $C^{\infty}(N\times N)$ . We denote by $\mathfrak{R}(V_{1}, \mathfrak{U}, U_{0})$

the set of of all Fourier-integral operators $ F(a, \varphi, \nu)+K\circ$ such that
$a\in V_{1},$ $\varphi\in \mathfrak{U},$ $K\in U_{0}$ . By the argument in \S 4, we see easily that

(91) $\mathfrak{R}(V_{1}, \mathfrak{U}, U_{0})\subset G\mathscr{G}^{-0}$ ,

if $V_{1},$ $\mathfrak{U},$ $U_{0}$ are sufficiently small. Note that this proves Theorem A in
the introduction.

In what follows we always assume that $V_{1},$ $\mathfrak{U},$ $U_{0}$ are sufficiently
small, and hence one may assume without loss of generality that these
are arcwise connected. Let $G_{\backslash }\mathscr{F}_{0}^{0}$ be the group generated by $\mathfrak{R}(V_{1}, \mathfrak{U}, U_{0})$ .
Then by the rules of compositions (\S \S 2-3) and inversions (\S 4), we can
conclude the following, which proves Theorem $B$ in the introduction:

THEOREM 5.4. Every element of $G\swarrow_{0^{0}}^{\varpi}$ can be expressed in the form
(19). Moreover, $G.\mathscr{F}_{0}^{0}$ is a topological group.

PROOF. Let $\{V_{1}^{\prime}\}$ , $\{\mathfrak{U}’\}$ , $\{U_{0}^{\prime}\}$ be a basis of neighborhoods of 1,
identity, $0$ respectively in $\sum_{c}^{0},$ $\mathcal{D}_{\rho}^{(1)},$ $C^{\infty}(N\times N)$ . Remark that the argu-
ment in \S 4 shows also that the inversion $(F(a, \varphi, \nu)+K\circ)^{-1}$ is also con-
tinuous in $a,$ $\varphi,$ $K$ in the $C^{\infty}$ topology. Hence by Lemma 3.7, we see
that $\{\mathfrak{R}(V_{1}^{\prime}, \mathfrak{U}’, U_{0}^{\prime})\}$ defines a topology on $G\mathscr{G}_{0^{0}}^{\sim}$ under which $Gy_{0}\approx 0$ is a
topological group. $\{\mathfrak{R}(V_{1}, \mathfrak{U}^{\prime}, U_{0}^{\prime})\}$ is a basis of neighborhoods of the
identity in $G\mathscr{G}_{0^{0}}^{\rightarrow}$ . To prove the first statement, we denote by $S$ the
totality of elements in $G\mathscr{G}_{0^{0}}^{-}$ which can be written in the form (19).
By (91) and the composition rules in \S \S 2-3, it is not hard to see that $S$

is open and closed in $G\mathscr{G}_{0^{0}}^{\rightarrow}$ . Since $\mathfrak{R}(V_{1}^{\prime}, \mathfrak{U}^{\prime}, U_{0}^{\prime})$ is assumed to be arcwise
connected and hence $G_{\backslash }\mathscr{F}_{0}^{0}$ is arcwise connected, we get $S=G\mathscr{G}_{0}^{-0}$ .

Let $ F=F(a, \varphi, \nu)+K\circ$ be an element of $G\mathscr{F}_{0^{0}}^{-}$ . Then, $\varphi$ is contained
in the identity component $\mathcal{D}_{9,0}^{(1)}$ of $\mathcal{D}_{\Omega}^{\{1)}$ as a topological group identified
with $\mathcal{D}_{\omega}(S_{N}^{*})$ . We define a mapping

$\pi:G_{L}\mathscr{F}_{0}^{0}\rightarrow \mathcal{D}_{\rho,0}^{(1)}$

by $\pi(F(a, \varphi, \nu)+K\circ)=\varphi^{-1}$ .
THEOREM 5.5. $\pi$ is an well-defined homomorphism of $G\mathscr{G}_{0}^{-0}$ onto $\mathcal{D}_{\Omega,0}^{(1)}$ .

The kernel $\pi^{-1}(1)$ is given by $\ovalbox{\tt\small REJECT}^{0}\cap G\mathscr{G}_{0^{0}}^{\rightarrow}$ .
PROOF. It is enough to show that $\pi$ is well-defined. For that, we

assume for a while that $ F(a, \varphi, \nu)+K\circ=F(b, \psi, \nu)+K^{\prime}\circ$ . Then,
$(F(b, \psi, \nu)+K’\circ)^{-1}$ can be expressed in the form $ F(e, \psi^{-1}, \nu)+K^{\prime\prime}\circ$ . Hence
by the composition rule we get
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$I=F(*, \varphi\psi^{-1}, \nu)+K^{(3)}$

Remark that the wave front set of the distribution $u|\rightarrow(Iu)(x)$ is given
by $T_{x}^{*}-\{0\}$ . However, by Lemma 3.2 [8] the wave front set of $ u|\rightarrow$

$(F(*, \varphi\psi^{-1}, \nu)u)(x)$ is contained in $\varphi\psi^{-1}(T_{x}^{*}-\{0\})$ . Thus, $T_{x}^{*}-\{0\}=$

$\varphi\psi^{-1}(T_{x}^{*}-\{0\})$ , and by Lemma 5.6 [8] we get $\varphi=\psi$ Therefore, $\pi$ is well-
defined. Since $\mathcal{D}_{\Omega,0}^{(1)}$ is generated by $\mathfrak{U}$ , we get the surjectivity of $\pi$ .
Obviously, the kernel Ker $\pi$ is contained in $\ovalbox{\tt\small REJECT}^{0}$ , and hence Ker $\pi=$

$\ovalbox{\tt\small REJECT}^{0}\cap GF_{0}^{0}$ .
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