A Note on Hasse's Theorem Concerning the Class Number Formula of Real Quadratic Fields

Noriaki KIMURA

Nihon University
(Communicated by T. Kakita)

Let p be a prime with $p \equiv 1 \pmod{4}$ and h the class number of the real quadratic field $Q(\sqrt{p})$. Let $\varepsilon > 1$ be a fundamental unit of $Q(\sqrt{p})$. As well-known, the Dirichlet's class number formula is stated in the form

(1)
$$\varepsilon^{h} = \frac{\prod_{b} \sin \frac{\pi b}{p}}{\prod_{a} \sin \frac{\pi a}{p}} ,$$

where a and b runs over quadratic residues and quadratic non-residues between 0 and p/2 respectively. As h is a positive integer, the right-hand side of (1) is a unit in $Q(\sqrt{p})$. So ε^h is written in the form $u+v\sqrt{p}$, $u,v\in \mathbb{Q}$. The explicit formula of u and v is given by H. Hasse. (See [1].) In this paper we shall prove an alternative form of Hasse's theorem, which is slightly simpler in structure.

Let g be a fixed positive quadratic non-residue mod p and let $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ be systems of n = (p-1)/4 quadratic residues a_{ν} and quadratic non-residues b_{ν} with $0 < a_{\nu}$, $b_{\nu} < p/2$. Furthermore let $x = (x_1, \dots, x_n)$, where $-(g-1) \le x_{\nu} \le g-1$ and any x_{ν} is odd or even, according as g is even or odd, be a solution of the congruence, respectively,

$$ax = a_1x_1 + \cdots + a_nx_n \equiv a_v \pmod{p}$$
,
 $ax = a_1x_1 + \cdots + a_nx_n \equiv b_v \pmod{p}$,

and

$$ax = a_1x_1 + \cdots + a_nx_n \equiv 0 \pmod{p}.$$

We write

Received May 26, 1982

$$A_{\nu} = \sum_{ax \equiv a_{\nu} \pmod{p}} 1$$

$$B_{\nu} = \sum_{ax \equiv b_{\nu} \pmod{p}} 1$$

and

$$C = \sum_{ax \equiv 0 \pmod{p}} 1$$
,

which denotes the number of solutions of $ax \equiv a_{\nu} \pmod{p}$, $ax \equiv b_{\nu} \pmod{p}$ and $ax \equiv 0 \pmod{p}$ respectively. For discribing our main theorem we need the following

LEMMA. A_{ν} and B_{ν} do not depend on.

PROOF. It is enough to prove $A_{\nu} = A_{\mu}$, ν , μ , =1, \cdots , n. For two fixed quadratic residues a_{ν} , a_{μ} there exists a quadratic residue $r = r(\nu, \mu)$ such that $a_{\mu} \equiv ra_{\nu} \pmod{p}$. Then for each $i = 1, \dots, n$ there exists one and only one j $(j = 1, \dots, n)$ such that $ra_{i} \equiv \pm a_{j} \pmod{p}$. If x is a solution of $ax \equiv a_{\nu} \pmod{p}$, then

$$rax = \sum_{i} ra_{i}x_{i} \equiv \sum_{j} a_{j}(\pm x_{i}) \pmod{p}$$
$$\equiv ra_{\nu} \equiv a_{\mu} \pmod{p}.$$

Put $x' = (x'_1, \dots, x'_n)$, $x'_j = \pm x_i$, then x' is a solution of $ax \equiv a_\mu \pmod{p}$. In other words we are able to obtain x' from x if we rearrenge x, taking suitable signs. Therefore we conclude $A_{\nu} = A_{\mu}$.

From Lemma it follows that A_{ν} and B_{ν} can be written A and B respectively, taking off suffices. Our main theorem is now stated as follow.

THEOREM. Let

$$v_g = \frac{1}{2} \left\{ \lambda_g + \sum_{k=1}^{\lceil (g+1)/2 \rceil} \sum_{s \in I_{2k-1}} \left(\frac{s}{p} \right) \right\}$$
 ,

where I_k is an open interval ((k-1)p/2g, kp/2g), λ_g denotes the number of kg $(1 \le k \le (p-1)/2)$, whose smallest positive residue mod p is greater then p/2, $\left(\frac{s}{p}\right)$ is Legendre symbol, finally [w] is Gauss's symbol for a real number w

If
$$p \equiv 5 \pmod{8}$$
, then $\varepsilon^h = (-1)^{v_g} \{C - (A+B)/2 - ((A-B)/2)\sqrt{p}\}$.
If $p \equiv 1 \pmod{8}$, then $\varepsilon^h = -(-1)^{v_g} \{C - (A+B)/2 + ((A-B)/2)\sqrt{p}\}$.

PROOF. By Corollary 2 and Lemma 2 of [3], it holds that

$$(2) \qquad \varepsilon^{h} = -(-1)^{v_{g}} \prod_{r} (\theta^{(g-1)r} + \theta^{(g-3)r} + \cdots + \theta^{-(g-3)r} + \theta^{-(g-1)r})^{\left(\frac{2}{p}\right)},$$

where θ is a primitive p-th root of unity and r ranges over the quadratic residues mod p between 0 and p/2. The right-hand side of (2) can be written in the form

$$-(-1)^{v_g}\!\Big(C+A\!\Big(\sum\limits_{
u=1}^n heta^{a_
u}\!+\!\sum\limits_{
u=1}^n heta^{-a_
u}\Big)\!+\!B\!\Big(\sum\limits_{
u=1}^n heta^{b_
u}\!+\!\sum\limits_{
u=1}^n heta^{-b_
u}\Big)\Big)^{\left(rac{2}{p}
ight)}$$
 .

On the other hand, it holds that

$$\sum_{\nu=1}^{n} \theta^{a_{\nu}} + \sum_{\nu=1}^{n} \theta^{-a_{\nu}} + \sum_{\nu=1}^{n} \theta^{b_{\nu}} + \sum_{\nu=1}^{n} \theta^{-b_{\nu}} = -1$$

and

Therefore we have

$$arepsilon^{h} = -(-1)^{v_g} \left(C - rac{A+B}{2} + rac{A-B}{2} \sqrt{p}
ight)^{\left(rac{2}{p}
ight)} \; .$$

Together with the fact that $N\varepsilon = -1$ and h is odd, this concludes the proof.

If we take g=2 in case $p\equiv 5\pmod 8$, then we get the result of P. Chowla. (See [2].) As an application of the theorem, we can prove the result of [3], which is a generalization of [2], in the same manner as the paper of P. Chowla.

References

- [1] H. HASSE, Vorlesungen über Zahlentheorie, Springer, 1950.
- [2] P. Chowla, On the class-number of real quadratic fields, J. Reine Angew. Math., 230 (1968), 51-60.
- [3] N. KIMURA, On the class number of real quadratic fields $Q(\sqrt{p})$ with $p \equiv 1 \pmod{4}$, Tokyo J. Math., vol. 2, no. 2 (1979), 387-396.

Present Address:
College of Industrial Technology
Nihon University
Narashino-shi, Chiba 275