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Introduction

Let $X$ be a compact Hausdorff space and $\tilde{X}=\beta(N\times X)$ be the Stone-
$6_{ech}$ compactification of $N\times X$, the direct product of the space of natural
numbers $N$ and $X$. We consider a Banach space $E$ which satisfies that $E$

is a Banach space lying in $C(X)$ (resp. $C_{R}(X)$ ) with the norm $\Vert\cdot\Vert_{E}$ such
that $\Vert u||_{\infty}\leqq\Vert u\Vert_{E}$ for each $u$ in $E$ where $\Vert\cdot\Vert_{\infty}$ denotes the supremum
norm and we also suppose that $E$ separates the points of $X$ and contains
constant functions with $\Vert 1\Vert_{E}=1$ . Let $\tilde{E}=1^{\infty}(N, E)$ be the Banach space
of all bounded sequences in $E$ with the norm $\Vert(f_{n})\Vert_{E}^{\sim}=\sup_{n}\Vert f_{n}||_{E}$ . For
every $(f_{n})$ in $\tilde{E}$ we can suppose that $(f_{n})$ is a bounded continuous function
on $N\times X$ defined as $(f_{n})(m, x)=f_{m}(x)$ for $(m, x)$ in $N\times X$. So we may
suppose that $\tilde{E}$ is lying in $C(\tilde{X})$ (resp. $C_{R}(\tilde{X})$). We say that $E$ is ultra-
separating on $X$ if $\tilde{E}$ separates the points of $\tilde{X}$ (cf. [2], [3], [4]).

\S 1. A characterization for ultraseparability.

We say that $A$ is a Banach function algebra on $X$ if $A$ is a Banach
algebra lying in $C(X)$ which separates the points of $X$ and contains
constant functions. It is shown in B. T. Batikyan and E. A. Gorin [2]
that ultraseparability for a Banach function algebra $A$ can be charac-
terized as follows:

There exist a natural number $m$ and $\delta>0$ such that for every pair of
disjoint compact subsets $Y_{1}$ and $Y_{2}$ of $X$ there exist functions $f_{1},$ $f_{2},$ $\cdots,$

$f_{n}$

and $g_{1},$ $g_{2}\cdots,$ $g_{n}$ in the unit ball of A which satisfy

$\sum_{i=1}^{n}(|f_{i}|-|g_{i}|)\geqq\delta$ on $Y_{1}$

$\sum_{i=1}^{m}(|f_{i}|-|g_{i})\leqq-\delta$ on $Y_{2}$ .

Let ${\rm Re} E=\{u\in C_{R}(X):\exists f\in E, {\rm Re} f=u\}$ . Then ${\rm Re} E$ is also an above
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type Banach space in $C_{R}(X)$ with the quotient norm $N(u)=\inf\{\Vert f\Vert_{B}:f\in E$,
${\rm Re} f=u\}$ . It is well-known that $E$ is ultraseparating on $X$ if and only
if ${\rm Re} E$ is so. Thus we may assume that $E$ is lying in $C_{R}(X)$ throughout
this paper. We show that ultraseparability for such $E$ is characterized
in the same way as the case of Banach function algebras.

THEOREM. Let $E$ be an above type Banach space in $C_{R}(X)$ , and let
$h$ be a real valued continuous function on [-1, 1] which is not the
restriction of a polynomial. Then $E$ is ultraseparating on $X$ if and
only if the following condition is satisfied:

There are a natural number $m$ and $\delta>0$ such that if $Y_{1}$ and $Y_{2}$

are disjoint compact subsets of $X$ then we can choose $f_{1},$ $f_{2},$
$\cdots,$ $f_{n}$

in the unit ball of $E$ and real numbers $\alpha_{1},$ $\alpha_{2},$ $\cdots,$
$\alpha_{*}with$ $|\alpha_{i}|\leqq 1$

$(*)$ satisfying

$\sum_{i=1}^{n}\alpha_{i}h\circ f_{i}(x)\geqq\delta$ on $Y_{1}$

$\sum_{i=1}^{n}\alpha_{i}h\circ f_{i}(x)\leqq-\delta$ on $Y_{2}$ .
To prove Theorem, we need the following lemma which is easily

proved by the same way as in [5].

LEMMA. Let $E$ and $h$ be as above. If $[h\circ E]$ is the uniform closure
of the space of all linear combinations of $h\circ u$ for $u$ in the unit ball of
$E$, then $[h\circ E]=C_{R}(X)$ .

PROOF OF THEOREM. We prove Theorem as same way as the proof
of Theorem in [2]. Assume that $E$ is ultraseparating on $X$ and yet the
requirements formulated in $(*)$ are not satisfied, that is, for any positive
integer $k$ there exists a pair of disjoint compact subsets $Y_{1,k}$ and $Y_{2.k}$ of $X$

such that for every $f_{1},$ $f_{2},$
$\cdots,$ $f_{k}$ in the unit ball of $E$ and for every

real numbers $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{k}$ with $|\alpha|\leqq 1$ for $i=1,2,$ $\cdots,$
$k$ and one of the

following is not satisfied.

$\sum_{l=1}^{k}\alpha_{i}h\circ f_{l}\geqq 1/k$ on $Y_{1.k}$

$\sum_{i=1}^{k}\alpha_{i}h\circ f\geqq-1/k$ on $Y_{2,k}$ .
There exists $F_{k}$ in $C_{R}(X)$ with $\Vert F_{k}\Vert_{\infty}\leqq 1$ such that $F_{k}=1$ on $Y_{1.k}$ and

$F_{k}=-1$ on $Y_{2,k}$ . Put $ff_{=}(F_{k})\in C_{R}(X)$ . By Lemma we can choose $\tilde{u}=$

$(u_{i,j})=(u_{i,1}, u_{i,2}, \cdots, u_{i.j}, \cdots)\in E$ with $||u_{i,j}\Vert_{E}\leqq 1$ for $i=1,2,$ $\cdots,$ $n$ and
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real numbers $\beta_{1},$ $\beta_{2},$ $\cdots,$ $\beta_{n}$ such that

$|\sum_{i=1}^{n}\beta_{i}h\circ\tilde{u}_{i}-F|<1/2$ .
So, for any $k$ ,

$|0|<1/2$ on $Y_{1,k}$

and

$|\sum_{i=1}^{n}\beta_{i}h\circ u_{i,k}+1|<1/2$ on $Y_{2_{*}k}$ .

Thus

$\sum_{i=1}^{n}(\beta_{i}/M)h\circ u_{i,k}>1/2M$ on $Y_{1,k}$

and

$\sum_{i=1}^{n}(\beta_{i}/M)h\circ u_{i,k}<-1/2M$ on $Y_{2,k}$

where $M=\max\{|\beta_{1}|, |\beta_{2}|, \cdots, |\beta_{n}|\}$ which is a contradiction for large $k$ .
Now assume that there exist a real valued continuous function $h$

on [-1, 1] and a positive number $\delta$ and a positive integer $m$ which
satisfy $(*)$ . Thus $\sum_{i=1}^{n}\alpha_{i}h\circ u_{i}>\delta/2$ on $Y_{1}$ and $\sum_{i=1}^{n*}\alpha_{i}h\circ u_{i}<-\delta/2$ on $Y_{2}$ .
Let $ x_{1}\sim$ and $\tilde{x}_{2}$ be different points in $\tilde{X}$ and $U_{1}$ and $U_{2}$ be open neighborhoods
of $\tilde{x}_{1}$ and $ x_{2}\sim$ respectively which have disjoint closures. Put

$Y_{1,k}=\{x\in X:(k, x)\in\overline{(\{k\}\times X)\cap U_{1}}\}$

$Y_{2,k}=\{x\in X:(k, x)\in(\{k\}\times X)\cap U_{2}\}$ .
We may suppose that $Y_{1,k}$ and $Y_{2,k}$ are disjoint compact subsets of $X$ for
every $k$ . Thus for every positive integer $k$ there exist $f_{1,k},$ $f_{2,k},$ $\cdots,$ $f_{n,k}$

in the unit ball of $E$ and real numbers $\alpha_{1,k},$ $\alpha_{2,k},$ $\cdots,$ $\alpha_{fn,k}$ with $|\alpha_{i,k}|\leqq 1$

for $i=1,2,$ $\cdots,$ $m$ such that

$\sum_{i=1}^{n}\alpha_{i,k}h\circ f_{i,k}>\delta/2$ on $Y_{1.k}$

and

$\sum_{i=1}^{m}\alpha_{i,k}h\circ f_{i.k}<-\delta/2$ on $Y_{2,k}$ .
We put $\tilde{\alpha}_{i}=(\alpha_{i.k})=(\alpha_{i,1}, \alpha_{i.2}, \cdots, \alpha_{i,k}, \cdots)$ and $\tilde{f}_{i}=(f_{i,k})=(f_{i,1},$ $f_{i,2},$ $\cdots$ ,
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$f_{i,k},$ $\cdots$ ) for every positive $i$ , then $\tilde{\alpha}$ and $\tilde{f}_{i}$ are functions in $\tilde{E}$ and, in
addition,

$\sum_{i=1}^{n}\tilde{\alpha}_{i}h\circ\tilde{f_{i}}\geqq\delta/2$ on $U_{1}$

and

$\sum_{i=1}^{*}\alpha h\circ\tilde{f}_{i}\leqq-\delta/2$ on $U_{2}$

especially $\sum_{c^{*}=1}\tilde{\alpha}_{i}h\circ\tilde{f}(x_{1}\sim)\neq\sum_{i=I}^{n}\tilde{\alpha}_{i}h\circ\tilde{f}_{i}(\tilde{x}_{2})$ . Thus there exist $j$ such that
$\tilde{\alpha}_{j}h\circ\tilde{f}_{j}(x_{1}\sim)\neq\tilde{\alpha}_{j}h\circ\tilde{f}_{\dot{f}}(x_{2}\sim)$ so $\tilde{\alpha}_{j}$ or $\tilde{f}_{j}$ separate $ x_{1}\sim$ and $ x_{2}\sim$ . That is, $\tilde{E}$ separates
$ x_{1}\sim$ and $ x_{2}\sim$ .

REMARK. One can use $h(t)=|t|$ in Theorem to characterize ultra-
separability for $E$ in the same way as a theorem of B. T. Batikyan and
E. A. Gorin.
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