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Introduction.

Let A be a function space on a compact Hausdorff space X. In this
paper, we give conditions for certain families of closed subsets in X
under which A is characterized. In particular, in §2 we show that if
any peak set for the real part of A is a BEP-set for A, then A=C(X)
(Theorem 2.2). A theorem in the case of function algebras corresponding
to it has obtained by Briem [4].

Throughout this paper, X will denote a compact Hausdorff space.
A is said to be a function space (resp. function algebra) on X if Aisa
closed subspace (resp. subalgebra) in C(X) containing constant functions
and separating points in X. Let A be a function space and F be a closed
subset in X. We say that A|F has the norm preserving extension prop-
erty if for any fe A thereis a ge A such that g=fon F and ||g||=]| £
where ||g||=sup,.x |g(®)| and || f|lr=sup,.r | f(x)|. Such a closed subset
Ii’ is called an NPEP-get for A. For a closed subset F in X, we put
F={ze X:|f@)|<| flls} for any fe A.

Let A be a function space on X. A' denotes the measures ¢ on X

such that S Sfdp=0 for any fe A, and E denotes the closure of

Upesat supp £. E is the smallest one in the family of closed subsets F'
in X which satisfy the following property: fe A whenever fe C(X) and
S@)=0 for any xe F. We call E the essential set for A (see [8] for
essential sets in the case of function algebras).

Let A be a function algebra on X. The following is due to Glicksberg
[7]: If A|F is closed in C(F) for any closed subset F' in X, then A=
C(X). In the case of function spaces A, Briem [3] has shown that A=
C(X) if any closed subset F in X is any NPEP-set for A.

On the other hand, when A is a function algebra on X, Briem [4]
has given conditions for peak sets for the real part Re A of A under
which A coincides with C(X).
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In this paper, we give, in §1, a slight extension of the theorem of
Briem for NPEP-sets stated above. In §2, we give a result on peak
sets for Re A in the case of function spaces in association with the
theorem of Briem for peak sets for Re A in the case where A is a fune-
tion algebras.

§1. NPEP-sets.

The following lemma is obtained by a similar way as in the proof
of Briem ([3], Theorem 2).

LEMMA 1.1. Let A be a function space and F, be a closed subset in
X. If any closed subset F containing F, is an NPEP-set for A, then
F,> Ueqe supp 2, and hence F,DE.

Proor. We first have that for any «, ye X\FA'O, x#y, there is an
a€ A such that al(F U{y})=0 and a(x)=1. For otherwise, a,(x) =a,(x),
whenever a,=a, on F,U{y}, a,, a,€ A. Hence the mapping ¢: alFoU{y}——>
a(x) is a well-defined linear functional on A|(F,U {¥}). Since F,u{y) is

an NPEP-set for A4, the norm of @ is 1. Hence a(x)—s adp (ae€ A)

A FoUIV
for a measure £ on F,U{y} with leell=1. We easily see that lpI(Fo)>0
Since - & B, 1=a,x)> lla, ]|, for an a,€ A. We can assume that |a,(y)|=1
since F,U{x} is an NPEP-set for A.

1=a@=|, adpsiaols]el@+ipiduD<lelBo+| i h=p=1

From this contradiction it follows that a|(¥,U{y})=0, a(z)=1 for an ac A.
Similarly, we can show that for any closed subset FoF, and for
any x€ X\F, there is an a€ A with a¢|F=0 and a(x)=1. From this, we
have that for any closed subset FOF, and any closed subset G with
FNG=Q, there is an a€ A such that ¢|F=0, Rea|G>0and a(X)C D=
{ze C: |12—1/2|<1/2}. We put L(F,G)=sup{re R:Rea|G=r foranac A
with a|F=0, a(X)cD}. By a similar manner as in the proof of Briem
([3], Lemma 6), we have that L(F, G)>2"" for any closed subset F:)Fr
and any closed subset G with FnG @. This implies that supp pCF’
for any pe A*. For, if | pI(X\Fo)>O for a e A+, we can assume that
| |(X\Fy)=1.
, Here we can find ﬁmtely many mutually dlSJOlnt closed subsets
F,F, ..., F,cX\F, and z.eC, |z,]=1 (i=1,2, ---, m) such that the
measure x=zll;z|h+---+zm|;z|pm satisfies that HX—;&X\}OIKZ‘H. Put v=
ts,+N. Then ||y—p||<27%. From the fact above, there are b,e A such
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that bi](ﬁoUF) 0 (j#0), Reb| Fiz2™" and b(X)cD (i=1,2, -, m, j=
L2 -- ,m) If we set a=(Zb,+ ;—i—%mb,,,)I(FoUF), F=Upr, F,, then
aeAl(F UF), llalltur=1. Hence ¢|F UF=a, |c||<1 for a ce A. An

easy calculation shows that Re S cdyz2"" (1—27%). On the other hand,

Re S cdy= IS cdv] = ‘ S cdu—g cd/z] <|ly—p||<2™ since ce A and une At
This contradlctlon proves the lemma. :

From Lemma 1.1, we have

THEOREM 1.2. Let A be a function space on X and F, be a closed
subset in X. If F is an NPEP-set for A for any closed subset F' con-
taining F, then F,D0, 5, where 04z denotes the Shilov boundary for the
SJunction space A|E. :

ProOF. We first show that f’o———FoUE. From Lemma 1.1, we have
F,oF,UE. If ¢ F,UE, there is an ae C(X) such that a|(F,UE)=0,
a(*)=1, 0=a=1 and a|E=0. It implies that a€ A and a(@)>|a|s. It
shows that x ¢ F, and F,=F,UE. Let {G,: xe I} be the family of closed
neighborhoods of E. Then E=N,.;G.. Let ac A. Suppose that G, N
{xe Fy: la(x)|=]|allz}=@ for an @, I. Then there is an ke C(X) such
that 0<h =1, W(E)=1 and (X\G,)=0.

Now, since ha=a on E, we have that hac A, and

lha(@) |=|a(@) |[<||allz=|lhallz if xeF,NG,,
ha(x)=0 . if xe F\G,, .

It follows that ||ha||;>| hals, and it is a contradiction since F,DE.
From this, for any acl, G,N{xe F;:|ak)|=|a|z}#*=>@. That Iis,
{G.N{xe F,: la(x)|=]||al|z}} has the finite intersection property and hence
Enf{re Fy: |la@)|=]||allz}#2@. Thus o, ,<ENF,CF,.

COROLLARY 1.8. Let A be a function space and F,, F, be two closed
subsets in X with FoNF,=Q. If any closed subset containing F, is an
NPEP-get for A and any closed subset containing F, is an NPEP-get
for A, then A=C(X).

COROLLARY 1.4 (Briem [3]). Let A be a function space. If any closed
subset tn X is an NPEP-get for A, then A=C(X).

REMARK. In the case of function algebras, the following fact cor-
responds to Theorem 1.2: Let A be a function algebra on X and F, be
a closed subset in X. If A|F is closed in C(F') for any closed subset F
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containing F, then F,Dd,; (cf. [9]).

§2. Peak sets for Re A.

We here give conditions for peak sets for Re A under which A coin-
cides with C(X) in the case where A is a function space.

When A is a function space, the following properties on a closed set
F in X are equivalent (cf. [6]): (1) pe A' implies p.e ALt. (2) A has
the bounded extension property with respect to F', i.e., for every fe A|F
and each closed set G in X with GNF=¢g, and for each £¢>0, there
exists a ge A such that g|F=f, ||g||=|f|lr and ||g|ls<e. Such a subset
F' is called a BEP-get for A.

LEMMA 2.1. Let A be a function space. If any peak set for _ReA
18 a BEP-set for A, then A s self-adjoint, that is, if f€ A, then f¢c A.

Proor. It is sufficient to show that if a peak set F' for Re A is a
BEP-set for A, then F is an M-hull (cf. [1], Theorem 9.1, p. 220). In
order to prove that F is an M-hull, we need to show that =% N X for
some closed face &+ in S,={Le A*: L(1)=1=| L||} (cf. [1], Proposition
2.7, p. 158). We can construct .&# satisfying the above as follows:
9"={Le A*: L(f)=§ fdp (fe A) for a measure ¢ such that >0, || ¢||=1
and supp ycF}. If o eL=(,+L)2, L,L,eS,, then Li(f)=s Fdp,

(f e A) with some measure £,=0 |[g; ] =1 (¢=1, 2). Since p— (g, +)/2¢€
A* and F is a BEP-set for A, p,—{(¢t)r+()r}/2€ A*. We here have

gt=ptp. It implies that (2)re+ () re€ AL and hence S dpt Sm dpt,=0.

X
So p,(X\F)=p,(X\F)=0 and L, L,e &#. This shows that & is a face
of S,. To show that F= NnX, let L,e # NX (L(f)=f(x), feA).
Then L_c ., and x € F since F is a peak set for Re A, and this proves
the lemma.

In association with a theorem of Briem ([4], Theorem 3), we can
obtain the following in the case of function spaces.

THEOREM 2.2. Let A be a function space. Then the following four
properties are equivalent.

(i) Amny closed subset in X containing a peak set for Re A is an
NPEP-get for A.

(ii) Any peak set F, for Re A is a BEP-get for A.

(iii) A=C(X).

(iv) Any closed subset in X is an NPEP-set for A.
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REMARK. When A is a function algebra, the property (ii) above is
equivalent to (ii) in Theorem 3 of Briem ([4]).

PROOF. (i)—(ii). Let F, be a peak set for Re A. By (i) and Lemma
1.1, F,o Ugeat Supp ££.  On the other hand, F,=F, since F, is a peak set
for Re A. For, if x,€ f‘o\Fo, we put L(a|F,)=a(x,) for a€ A. Then L
is well-defined and it is a linear functional on A|F, with ||L|=L(1)=1.
Hence a(w0)=Sadv (ae A) for a measure v such that suppvcF, v=0
and ||v||=1. Since F, is a peak set for Re A, there is an f,€ A such
that Ref,=1 on F, and |Ref,(x)|<l (z€ X\F,). Hence 1=SRe fody=
Re f,(x,)=|Re fi(@,) | <1. From this contradiction it follows that F,=F,
The facts above show that for any pe A%, supp #uCF, and p,=pec A*.
It implies (ii).

(ii)—(iii). By Lemma 2.1, A is self-adjoint. It implies that A=
Re A@iRe A. From this, Re A=A NCX) and Re 4 is closed in Cr(X).
Now, a set which is both a peak set and a BEP-set for a function space
B is always a sharp peak set for B, that is, for each closed subset G
in X disjoint from F and for each ¢>0 there is an fe€ B such that f=1
on F, |f|<1 elsewhere and |f|<e on G (cf. [5]).

From the facts stated above, B=Re A(=A N Cx(X)) is a real function
space on X and every peak set for B is a sharp peak set for B. Hence
Re A=B=Cx(X) ([2], Theorem 5). It follows that A=C,(X)PiCx(X)=
C(X).

(iii) — (iv) and (iv)— (i) are clear.

ExAMPLE. In connection with Theorem 2.2, we here give an example
of function spaces A (#C(X)) which have the properties “F is an NPEP-
set for A for any peak set F for Re A” and “F is a peak set for A
whenever F is a peak set for Re A”.

Let A={ fe (o, 1]): f(0)=Sl f(t)dt}. Then A is a function space
on X=[0,1]. We easily see thoat a real function g in C([0, 1]) belongs
to Re A if and only if gv(O):S1 g(t)dt. From this, the following properties
for a closed subset F, in X eotre equivalent:

(1) F, is a peak set for Re A, (2) F, is a peak set for A and (3)
F,=X or F;30.

From this, we see that any peak set F, for Re A is an NPEP-set
for A. And if F, is a peak set for Re 4, then F| is a peak set for A.
But A does not coincide with C(X).
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