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Introduction.

Let $A$ be a function space on a compact Hausdorff space $X$. In this
paper, we give conditions for certain families of closed subsets in $X$

under which $A$ is characterized. In particular, in \S 2 we show that if
any peak set for the real part of $A$ is a BEP-set for $A$ , then $A=C(X)$
(Theorem 2.2). A theorem in the case of function algebras corresponding
to it has obtained by Briem [4].

Throughout this paper, $X$ will denote a compact Hausdorff space.
$A$ is said to be a function space (resp. function algebra) on $X$ if $A$ is a
closed subspace (resp. subalgebra) in $C(X)$ containing constant functions
and separating points in $X$. Let $A$ be a function space and $F$ be a closed
subset in $X$. We say that $A|F$ has the norm preserving extension prop-
erty if for any $f\in A$ there is a $g\in A$ such that $g=f$ on $F$ and $\Vert g||=\Vert f||_{F}$ ,
where $\Vert g\Vert=\sup_{xeX}|g(x)|$ and $\Vert f\Vert_{F}=\sup_{xeF}|f(x)|$ . Such a closed subset
$F$ is called an NPEP-set for $A$ . For a closed subset $F$ in $X$, we put
$\hat{F}=\{x\in X:|f(x)|\leqq\Vert f\Vert_{F}\}$ for any $f\in A$ .

Let $A$ be a function space on X. $A^{\perp}$ denotes the measures $\mu$ on $X$

such that $\int fd\mu=0$ for any $f\in A$ , and $E$ denotes the closure of
$U_{\mu eA}\perp supp\mu$ . $E$ is the smallest one in the family of closed subsets $F$

in $X$ which satisfy the following property: $f\in A$ whenever $f\in C(X)$ and
$f(x)=0$ for any $x\in F$. We call $E$ the essential set for $A$ (see [8] for
essential sets in the case of function algebras).

Let $A$ be a function algebra on $X$. The following is due to Glicksberg
[7]: If $A|F$ is closed in $C(F)$ for any closed subset $F$ in $X$, then $A=$

$C(X)$ . In the case of function spaces $A$ , Briem [3] has shown that $A=$

$C(X)$ if any closed subset $F$ in $X$ is any NPEP-set for $A$ .
On the other hand, when $A$ is a function algebra on $X$, Briem [4]

has given conditions for peak sets for the real part ${\rm Re}$ $A$ of $A$ under
which $A$ coincides with $C(X)$ .
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In this paper, we give, in \S 1, a slight extension of the theorem of
Briem for NPEP-sets stated above. In \S 2, we give a result on peak
sets for ${\rm Re}$ $A$ in the case of function spaces in association with the
theorem of Briem for peak sets for ${\rm Re}$ $A$ in the case where $A$ is a func-
tion algebras.

\S 1. NPEP-sets.

The following lemma is obtained by a similar way as in the proof
of Briem ([3], Theorem 2).

LEMMA 1.1. Let $A$ be a function space and $F_{0}$ be a closed subset in
X. If any closed subset $F$ containing $F_{0}$ is an NPEP-set for $A$ , then
$\hat{F}_{0}\supset\bigcup_{\mu eA}\perp$ supp $\mu$ , and hence $\hat{F}_{0}\supset E$.

PROOF. We first have that for any $x,$
$y\in X\backslash \hat{F}_{0},$ $x\neq y$ , there is an

aeA such that $a|(\hat{F}_{0}\cup\{y\})=0$ and $a(x)=1$ . For otherwise, $a_{1}(x)=a_{2}(x)$ ,
whenever $a_{1}=a_{2}$ on $\hat{F}_{0}U\{y\},$

$a_{1},$ $a_{2}\in A$ . Hence the mapping $\varphi:a|\hat{F}_{0}\cup\{y\}\rightarrow$

$a(x)$ is a well-defined linear functional on $A|(\hat{F}_{0}\cup\{y\})$ . Since $\hat{F}_{0}\cup\{y\}$ is
an NPEP-set for $A$ , the norm of $\varphi$ is 1. Hence $a(x)=\int_{\hat{F}_{0}\cup iy\}}ad\mu(aeA)$

for a measure $\mu$ on $\hat{F}_{0}\cup\{y\}$ with $\Vert\mu\Vert=1$ . We easily see that $|\mu|(\hat{F}_{0})>0$ .
Since $x\not\in\hat{F}_{0},1=a_{0}(x)>\Vert a_{0}\Vert_{\hat{F}_{0}}$ for an $a_{0}\in A$ . We can assume that $|a_{0}(y)|\leqq 1$

since $\hat{F}_{0}\cup\{x\}$ is an NPEP-set for $A$ .
$1=a_{0}(x)=\int_{\hat{F}_{0}\cup\{y\}}a_{0}d\mu\leqq\Vert a_{0}||_{\hat{F}_{0}}|\mu|(\hat{F}_{0})+|\mu|(\{y\})<|\mu|(\hat{F}_{0})+|\mu|(\{y\})=\Vert\mu\Vert=1$ .

From this contradiction it follows that $a|(\hat{F}_{0}\cup\{y\})=0,$ $a(x)=1$ for an $a\in A$ .
Similarly, we can show that for any closed subset $F\supset\hat{F}_{0}$ and for

any $x\in X\backslash F$, there is an $ae$ $A$ with $a|F=0$ and $a(x)=1$ . From this, we
have that for any closed subset $F\supset\hat{F}_{0}$ and any closed subset $G$ with
$ F\cap G=\emptyset$ , there is an aeA such that $a|F=0,$ ${\rm Re} a|G>0$ and $a(X)\subset D=$

$\{z\in C:|z-1/2|\leqq 1/2\}$ . We put $ L(F, G)=\sup\{\gamma eR:{\rm Re} a|G\geqq\gamma$ for an $a\in A$

with $a|F=0,$ $a(X)\subset D$}. By a similar manner as in the proof of Briem
([3], Lemma 6), we have that $L(F, G)>2^{-11}$ for any closed subset $F\supset\hat{F}_{f}$

and any closed subset $G$ with $ F\cap G=\emptyset$ . This implies that supp $\mu\subset\hat{F}_{0}$

for any $\mu\in A^{\perp}$ . For, if $|\mu|(X\backslash \hat{F}_{0})>0$ for a $\mu eA^{\perp}$ , we can assume that
$|\mu|(X\backslash \hat{F}_{0})=1$ .

Here we can find finitely many mutually disjoint closed subsets
$F_{1},$ $F_{2},$

$\cdots,$
$F_{n}\subset X\backslash \hat{F}_{0}$ and $z_{i}\in C,$ $|z_{\ell}|=1(i=1,2, \cdots, m)$ such that the

measure $\lambda=z_{1}|\mu|_{F_{1}}+\cdots+z_{m}|\mu|_{F_{n}}$ satisfies that I $x-\mu_{X\backslash \hat{F}_{0}}||<2^{-12}$ . Put $\nu=$

$\mu_{\hat{F}_{0}}+x$ . Then 1 $\nu-\mu\Vert<2^{-12}$ . From the fact above, there are $be$ $A$ such
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that $b_{i}|(\hat{F}_{0}\cup F_{j})=0(j\neq i),$ ${\rm Re} b_{i}|F_{i}\geqq 2^{-11}$ and $b_{i}(X)\subset D(i=1,2,$ $\cdots,$ $m,$ $j=$

1, 2, $\cdots,$ $m$). If we set $a=(\overline{z}_{1}b_{1}+\cdots+\overline{z}_{m}b_{rn})|(\hat{F}_{0}\cup F),$ $F=\bigcup_{i=1}^{m}F_{l}$ , then
$a\in A|(\hat{F}_{0}\cup F),$

$\Vert a\Vert_{\hat{F}_{0}\cup F}\leqq 1$ . Hence $c|\hat{F}_{0}\cup F=a,$ $\Vert c\Vert\leqq 1$ for a $ceA$ . An
easy calculation shows that ${\rm Re}\int cd\nu\geqq 2^{-11}(1-2^{-12})$ . On the other hand,

${\rm Re}\int cd\nu\leqq|\int cd\nu|=|\int cd\nu-\int cd\mu|\leqq\Vert\nu-\mu\Vert<2^{\leftarrow 12}$ since ceA and $\mu\in A^{\perp}$ .
This contradiction proves the lemma.

From Lemma 1.1, we have

THEOREM 1.2. Let $A$ be a function space on $X$ and $F_{0}$ be a closed
subset in X. If $F$ is an NPEP-set for $A$ for any closed subset $F$ con-
taining $F_{0}$ , then $F_{0}\supset\partial_{A|E}$ , where $\partial_{A|E}$ denotes the Shilov boundary for the
function space $A|E$ .

PROOF. We first show that $\hat{F}_{0}=F_{0}\cup E$ . From Lemma 1.1, we have
$\hat{F}_{0}\supset F_{0}\cup E$ . If $x\not\in F_{0}\cup E$, there is an $a\in C(X)$ such that $a|(F_{0}UE)=0$ ,
$a(x)=1,0\leqq a\leqq 1$ and $a|E=0$ . It implies that aeA and $a(x)>\Vert a\Vert_{F_{0}}$ . It
shows that $x\not\in\hat{F}_{0}$ and $\hat{F}_{0}=F_{0}\cup E$. Let $\{G_{\alpha}:\alpha\in I\}$ be the family of closed
neighborhoods of $E$ . Then $E=\bigcap_{\alpha eI}G_{\alpha}$ . Let $a\in A$ . Suppose that $ G_{\alpha_{0}}\cap$

$\{x\in F_{0}:|a(x)|\geqq\Vert a\Vert_{E}\}=\emptyset$ for an $\alpha_{0}\in I$. Then there is an $h\in C(X)$ such
that $0\leqq h\leqq 1,$ $h(E)=1$ and $h(X\backslash G_{\alpha_{0}})=0$ .

Now, since $ha=a$ on $E$ , we have that $ha\in A$ , and

$|ha(x)|\leqq|a(x)|<\Vert a\Vert_{E}=\Vert ha\Vert_{E}$ if $x\in F_{0}\cap G_{\alpha_{0}}$ ,
$ha(x)=0$ if $x\in F_{0}\backslash G_{\alpha_{0}}$ .

It follows that $\Vert ha\Vert_{E}>\Vert ha||_{F_{0}}$ and it is a contradiction since $\hat{F}_{0}\supset E$.
From this, for any $\alpha\in I$, $ G_{\alpha}\cap\{xeF_{0}:|a(x)|\geqq\Vert a\Vert_{E}\}\neq\emptyset$ . That is,
$\{G_{\alpha}\cap\{x\in F_{0}:|a(x)|\geqq\Vert a\Vert_{E}\}\}$ has the finite intersection property and hence
$ E\cap\{xeF_{0}:|a(x)|\geqq\Vert a\Vert_{E}\}\neq\emptyset$ . Thus $\partial_{A1E}\subset E\cap F_{0}\subset F_{0}$ .

COROLLARY 1.3. Let $A$ be a function space and $F_{1},$ $F_{2}$ be two closed
subsets in $X$ with $ F_{0}\cap F_{1}=\emptyset$ . If any closed subset containing $F_{0}$ is an
NPEP-set for $A$ and any closed subset containing $F_{1}$ is an NPEP-set
for $A$ , then $A=C(X)$ .

COROLLARY 1.4 (Briem [3]). Let $A$ be a function space. If any closed
subset in $X$ is an NPEP-set for $A$ , then $A=C(X)$ .

REMARK. In the case of function algebras, the following fact cor-
responds to Theorem 1.2: Let $A$ be a function algebra on $X$ and $F_{0}$ be
a closed subset in $X$. If $A|F$ is closed in $C(F)$ for any closed subset $F$
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containing $F_{0}$ , then $F_{0}\supset\partial_{41B}$ (cf. [9]).

\S 2. Peak sets for ${\rm Re} A$ .
We here give conditions for peak sets for ${\rm Re} A$ under which $A$ coin-

cides with $C(X)$ in the case where $A$ is a function space.
When $A$ is a function space, the following properties on a closed set

$F$ in $X$ are equivalent (cf. [6]): (1) $\mu eA^{\perp}$ implies $\mu_{F}\in A^{\perp}$ . (2) $A$ has
the bounded extension property with respect to $F$, i.e., for every $f\in A|F$

and each closed set $G$ in $X$ with $ G\cap F=\emptyset$ , and for each $\epsilon>0$ , there
exists a $g\in A$ such that $g|F=f,$ $\Vert g||=||f||_{F}$ and $||g||_{G}<e$ . Such a subset
$F$ is called a BEP-set for $A$ .

LEMMA 2.1. Let $A$ be a function space. If any peak set for ${\rm Re} A$

is a BEP-set for $A$ , then $A$ is self-adjoint, that is, if $f\in A$ , then $\overline{f}\in A$ .
PROOF. It is sufficient to show that if a peak set $F$ for ${\rm Re}$ $A$ is a

BEP-set for $A$ , then $F$ is an M-hull (cf. [1], Theorem 9.1, p. 220). In
order to prove that $F$ is an M-hull, we need to show that $F=\mathscr{G}^{-}\cap X$ for
some closed face $\mathscr{F}^{-}$ in $S_{4}=\{L\in A^{*}: L(1)=1=\Vert L\Vert\}$ (cf. [1], Proposition
2.7, p. 158). We can construct $Z$ satisfying the above as follows:
$\mathscr{G}^{-}=\{LeA^{*}:$ $L(f)=\int fd\mu(f\in A)$ for a measure $\mu$ such that $\mu\geqq 0,$ $||\mu||=1$

and supp $\mu\subset F$ . If $\backslash \pi\in L=(L_{1}+L_{2})/2,$ $L_{1},$ $L_{2}\in S_{A}$ , then $L_{i}(f)=\int fd\mu_{i}$

$(feA)$ with some measure $\mu_{i}\geqq 0\Vert\mu_{l}||=1(i=1,2)$ . Since $\mu-(\mu_{1}+\mu_{2})/2\in$

$A^{\perp}$ and $F$ is a BEP-set for $A,$ $\mu_{F}-\{(\mu_{1})_{F}+(\mu_{2})_{F}\}/2\in A^{\perp}$ . We here have
$\mu=\mu_{F}$ . It implies that $(\mu_{1})_{X\backslash F}+(\mu_{2})_{X\backslash F}\in A^{\perp}$ and hence $\int_{X\backslash F}d\mu_{1}+\int_{nF}d\mu_{2}=0$ .
So $\mu_{1}(X\backslash F)=\mu_{2}(X\backslash F)=0$ and $L_{1},$ $L_{2}\in \mathscr{J}$ This shows that $\mathscr{F}^{-}$ is a face
of $S_{A}$ . To show that $F=\mathscr{G}^{-}\cap X$, let $L_{x}e\mathscr{G}^{-}\cap X(Lae(f)=f(x), feA)$ .
Then $L_{x}\in F$ and xeF since $F$ is a peak set for ${\rm Re} A$ , and this proves
the lemma.

In association with a theorem of Briem ([4], Theorem 3), we can
obtain the following in the case of function spaces.

THEOREM 2.2. Let $A$ be a function space. Then the following four
properties are equivalent.

(i) Any closed subset in $X$ containing a peak set for ${\rm Re}$ $A$ is an
NPEP-set for $A$ .

(ii) Any peak set $F_{0}$ for ${\rm Re} A$ is a BEP-set for $A$ .
(iii) $A=C(X)$ .
(iv) Any closed subset in $X$ is an NPEP-set for $A$ .
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REMARK. When $A$ is a function algebra, the property (ii) above is
equivalent to (ii) in Theorem 3 of Briem ([4]).

PROOF. $(i)\rightarrow(ii)$ . Let $F_{0}$ be a peak set for ${\rm Re} A$ . By (i) and Lemma
1.1, $\hat{F}_{0}\supset\bigcup_{\mu eA}\perp supp\mu$ . On the other hand, $\hat{F}_{0}=F_{0}$ since $F_{0}$ is a peak set
for ${\rm Re} A$ . For, if $x_{0}\in\hat{F}_{0}\backslash F_{0}$ , we put $L(a|F_{0})=a(x_{0})$ for $aeA$ . Then $L$

is well-defined and it is a linear functional on $A|F_{0}$ with $\Vert L\Vert=L(1)=1$ .
Hence $a(x_{0})=|$ adv $(aeA)$ for a measure $\nu$ such that $supp\nu\subset F_{0},$ $\nu\geqq 0$

and $\Vert\nu||=1$ . Since $F_{0}$ is a peak set for ${\rm Re} A$ , there is an $f_{0}\in A$ such
that ${\rm Re} f_{0}=1$ on $F_{0}$ and $|{\rm Re} f_{0}(x)|<1(x\in X\backslash F_{0})$ . Hence $1=|{\rm Re} f_{0}d\nu=$

${\rm Re} f_{0}(x_{0})=|{\rm Re} f_{0}(x_{0})|<1$ . From this contradiction it follows that $\hat{F}_{0}=F_{0}$ .
The facts above show that for any $\mu\in A^{\perp}$ , supp $\mu\subset F_{0}$ and $\mu_{F_{0}}=\mu\in A^{\perp}$ .
It implies (ii).

$(ii)\rightarrow(iii)$ . By Lemma 2.1, $A$ is self-adjoint. It implies that $A=$

${\rm Re} A\oplus i{\rm Re} A$ . From this, ${\rm Re} A=A\cap C_{R}(X)$ and ${\rm Re}$ $A$ is closed in $C_{R}(X)$ .
Now, a set which is both a peak set and a BEP-set for a function space
$B$ is always a sharp peak set for $B$, that is, for each closed subset $G$

in $X$ disjoint from $F$ and for each $\epsilon>0$ there is an $f\in B$ such that $f=1$

on $F,$ $|f|<1$ elsewhere and $|f|\leqq\epsilon$ on $G$ (cf. [5]).
From the facts stated above, $B={\rm Re} A(=A\cap C_{R}(X))$ is a real function

space on $X$ and every peak set for $B$ is a sharp peak set for $B$ . Hence
${\rm Re} A=B=C_{R}(X)$ ([2], Theorem 5). It follows that $A=C_{R}(X)\oplus iC_{R}(X)=$

$C(X)$ .
$(iii)\rightarrow(iv)$ and $(iv)\rightarrow(i)$ are clear.

EXAMPLE. In connection with Theorem 2.2, we here give an example
of function spaces $A(\neq C(X))$ which have the properties $F$ is an NPEP-
set for $A$ for any peak set $F$ for ${\rm Re} A$’ and $F$ is a peak set for $A$

whenever $F$ is a peak set for ${\rm Re} A’$ .
Let $A=\{f\in C([0,1]):f(O)=\int_{0}^{1}f(t)dt\}$ . Then $A$ is a function space

on $X=[0,1]$ . We easily see that a real function $g$ in $C([0,1])$ belongs
to ${\rm Re}$ $A$ if and only if $g(O)=\int_{0}^{1}g(t)dt$ . From this, the following properties

for a closed subset $F_{0}$ in $X$ are equivalent:
(1) $F_{0}$ is a peak set for ${\rm Re} A$ , (2) $F_{0}$ is a peak set for $A$ and (3)

$F_{0}=X$ or $F_{0}\not\supset 0$ .
From this, we see that any peak set $F_{0}$ for ${\rm Re}$ $A$ is an NPEP-set

for $A$ . And if $F_{0}$ is a peak set for ${\rm Re} A$ , then $F_{0}$ is a peak set for $A$ .
But $A$ does not coincide with $C(X)$ .
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