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Introduction

Let H={xec R"; x,>0}, n=2, be the upper half space and G be the
Green function for H. Wu [10] studied the tangential behavior of Green
potentials u(a:)=§ G(z, y)M(¥)dy under a certain condition on A. According
to Wu, we shaljlq use the following notation: Let P={x;x,=0}, Q=
{; x,=1} and &'=(%, +++, ®,_,). For v=1, ac P and b Q, we denote by
I'(7, a, b) the are in H joining b to a with tangency v to the plane P so
that if xeI'(7, a, b), then

x—a =x"b'—a’) .

For a positive number m let R(v, a, m) be the set {x; m|z'—a'|"<x,<1}.
If Y=1 and f is a function on H, we say that f(x) has T}-limitl at ac P
provided f(x) tends to I as x—a inside R(v, a, m) for each m>0. We
observe that f(x) has T,-limit [ at @ if and only if f(x) has nontangential
limit I at a. Wu [10; Theorem 1] proved

THEOREM A. If u#c and
(1) | rwrutay<o

Jor some p=1 and B @Cp—n<B=2p—1), then corresponding to each
Y A7 —1)/(B—2p+n)), there is a set V;C P with (8—2p+n)v-dimen-
stonal Hausdorff measure zero, such that for each a € P\V;

(i) im case p>n/2, w has T,-limit zero at a;

(ii) im case 1<p=n/2, the set E,={bec Q; u(x) does not approach zero
as x—a along I'(7, a, b)} has Hausdorf dimension at most n—2p;
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(iii) in case p=1, C(E,)=0 (n=3) or the logarithmic capacity of E,
28 zero (n=2). ‘

Here C,(FE) is defined by
CB)=inf {uR); | lo—yl—rdp@w)z1 on B}

with 0<a<mn. Recently Mizuta [8; Theorem 9] dealt with the tangential
behavior of Green potentials of order a and noted that (i), (ii) and (iii)
are also valid for every v=1 and every a€ P in case 8=2p—n. As to
the case in (ii), however, the size of the exceptional set E, can be im-
proved. We shall characterize E, by using the Bessel capacity. Our
characterization is a natural extension of [7; Theorem 6]. In order to
state our theorem we give the definition of the Bessel capacity, and more
generally, L*-capacity.

Let K be the totality of nonnegative nonincreasing lower semiconti-
nuous functions on [0, + ). We define L*-capacities for k € K as follows:

CuE)=int{|I£15; | kle—yDf@)dyz1 on B, fz0} , i p>1,

Co(B) =int{p(R"); Sk(lw—yl)d#(y)zl on E, pz0} .

We note C,=C,,,, with k,(t)=t""".

Let I and K, stand for the Gamma function and the modified Bessel
function of the third kind of order v, respectively. Then the Bessel
capacity B,, with index (a, p) is defined by B, ,=C,,,, where

ga(t) — 2—(n+a—2)/27t—n/2["(a/2) —lt (a—n)/2K(n_a)/2(t)

(see e.g. [4; p. 279]). It is known that g,(t) rapidly decreases to zero as
t— oo, and that g,(t) is comparable to ¢* (resp. —logt) for 0<a<n
(resp. a=n) as t—0 ([4; (22), (23) and (24)]). Hence

(i) in case 0<a<m, B,,(E)=0 if and only if C,(E)=0;

(ii) B,.(E)=0 if and only if the logarithmic capacity of E is zero.
We also have from [4; Theorems 20, 21 and 22]

(iii) in case ap>mn, B, ,(E)=0 if and only if EF=Q;

(iv) in case 1=p=n/a, if B, ,(E)=0, then the Hausdorff dimension
of E is at most n—ap;

(v) in case 1=p<mn/a, if the (n—ap)-dimensional Hausdorff measure
of E is zero, then B, ,(E)=0.
It is easy to see that the converse of each of (iv) and (v) is not nece-
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ssarily true.
Our improvement of Theorem A is

THEOREM 1. Let 1=p=n/2 and let u, B, » and 7 be as in Theorem
A. Then there is a set V,CP with (8—2p+n)7-dimensional Hausdorff
measure zero such that for each a€ P\V,, B, (E,)=0.

We observe that if p=1, then Theorem 1 is nothing but Theorem A
(iii). In case B<2p—mn, we also obtain from the proof of Theorem 1.

COROLLARY 1 (cf. [8; Theorem 9 (ii)]). Let u# < and ) satisfy (1)
with B<2p—mn. For every v=1 and every ac P

(i) im case p>n/2, w has Ty-limit zero at a;

(ii) in case 1=p=n/2, B, ,(E,)=0.

The proof of Theorem 1 is closely related to contractive properties
of L*-capacities. Let T: R"— R" be a contraction mapping, i.e., |Tx— Ty|=
lt—y| for all z and ye R". First we ask if the inequality C,  (TE)<
C:.,(E) hold.

It is not so difficult to prove that C, (TE)<C,.E), and it seems
that Wu implicitly used this inequality in the proof of [10; Proposition 2].
Professor B. Fuglede kindly pointed out that if E is compact, p=2 and
k(|m|)=§h(lw——yl)h(lyl)dy for some ke K, then one can derive C, . (TE)<
C.(E) from C,,(E) =e,(F) and ¢,(TE)<e,(E), where eh(E)=max{p(E);
Sh(lx——y])d/x(x)dp(y)gl, supp #CE}. The inequality ex(TE)=ey() can be
proved in a way similar to that of Landkof [2; Theorem 2.9] by the aid
of the selection theorem found in [9; Theorem 5.1].

However whether C, (TE)<C,,(E) holds or not for general kec K,
p>1 and T seems to be unknown. In this note we shall deal with the
case when p>1 and %k is a general function in K, but T is of the form
Tx=(Tw, -+, T,x,), where T, (1=¢=mn) is a contraction mapping from
R to R. We shall prove

THEOREM 2. Let p, k and T be as above. Then
(2) C...(TE)<C, (E) Sfor all ECR™.
As a simple corollary to Theorem 2, we have

COROLLARY 2. Let p and k be as above. If T is an affine contrac-
tion mapping from R"™ to R", Then (2) holds.

The work of Meyers [3] was brought to our attention by Professor
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D.R. Adams. In that paper it was proved that (2) holds in case T'is an
orthogonal projection, which was also obtained in [5; Lemma 1]. Profes-
sor N.G. Meyers informed that about ten years ago he proved that (2)
holds if 7' is a special mapping such as a linear contraction mapping
or a certain nonlinear mapping. However his work has never been
published.

§1. Proof of Theorem 2.

Throughout this section we fix a contraction mapping T;: R—R.
The letters I and J will stand for an (open) interval and a (finite) union
of intervals, respectively. We write I,<I, if the left end of I, is not
smaller than the right end of I,. A union J of intervals can be always
written as J=I,U:--UI,, where I,_,<I,, The length of J is denoted by
|J]. We call J* a gathered union of intervals of J (with respect to T)
if |J*|=|J] and

(3) |, ko —uhdy<| k(To—udy

for all ke K and ze R. If J* is an interval, then we call it a gathered
interval of J. We shall prove later that every union of intervals has a
gathered union of intervals (see Lemma 6).

We write B(x, r)={y; ly—=x|<r}. Let w,(x; I)=min{x—a, b—2} for an
interval I=(a, b). If J is a union of intervals, then we put w(x;J)=
min w,y(x; I), where the minimum is taken over all intervals I satisfying
|I|=]|J| and

S, k(lx—yl)dyéslk(lw—yl)dy for all keK,

or equivalently,

(4) |J N B, r)I=|INBx, r)| for all »>0.

Since |JN B, r)|<2r, I=(x—|J|/2, x+|J|/2) satisfies (4), and hence
(5) wix; J)=Z|J)/2 .

It is convenient to give a different characterization of w(x; J).

LEMMA 1. Let r x)=max{r;|JNBx, r)|=0} for x¢J and r(x)=0
Jor xeJ. Then

(6) w(x; J)=max{|lJ N Bz, r)|—r; r=r )} .
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PROOF. Let «(c, r)=|(c—|J], ¢)N B0, r)| for c=|J|/2 and »>0. We
observe that 4(c, ) is a nondecreasing function of ce(—oo, |J]/2] for
every fixed r>0, and that if |I|=|J|, then

(7) [IN B(w, r)|=(wy(x; I), )
Hence by (4) and (5)
(8) w(z; J)=min{e; ¥(c, r)=|J N Bz, r)| for all »>0} .

On the other hand, we obtain that if 0=<c¢=<|J|/2, then

: 2r for O0<r=ec
(9) ¥ (e, r)={'r+c for e=r=|J|—ce
[J] for r=|J|—ec,
and if ¢<0, then
0 for 0<r=-—c
(10) (e, r)={'r+c for —e=r=|Jl—ec
7] for rz=|J|—c.

We infer from (8), (9) and (10) that
w(w; J)=min{c; r+c=|J N Bz, r)| for all r=r )},

which leads to (6).
As a simple corollary to Lemma 1, we have

(11) w(w; D=w,e; I) if I is an interval .

By using w(x; J), we have a necessary and sufficient condition for J to
have a gathered interval.

LEMMA 2. Let I* and J be an interval and a wunion of intervals
such that |I*|=|J|. Then I* is a gathered imterval of J if and only if

12) w(e; J)Sw(Tx; I*)
SJor all x e R.

PrOOF. We note that I* is a gathered interval of J if and only if
(13) lJ N Bz, r)|=|I* N B(Tw, r)]

for all »>0 and all ze R. If (13) holds, then it follows from (7) and (11)
that
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[J N Bz, )| = (w(Tye; I*), )

for all >0 and all x€ R, so that (8) leads to (12).
On the other hand, suppose that (12) holds for all zc€ R. Since

4(c, r) is a nondecreasing function of ¢ on (—eo, |/1/2] for every r, we
have

p(w(e; I), ) p(w(Tyx; I*), ) for all »>0.

It follows from (7), (8) and (11) that (13) holds for all »>0 and xz € R.

We shall prove later that (12) holds for all x€ R if (12) holds only
for finitely many z’s determined by J (see Lemma 4). For this purpose
we evaluate w(x; J) by writing J=LU---UI, with I,_ <.

LEMMA 8. For 0=<i=j=<m let I,=(c,—p, ¢;+Dpy), A,=l[ci,+
Di—ys C;— D4, €(%, N=2""c;—p.+c;+D;) J@, 5)=Ui- I, and AQ%, J)= Uit A,
if 1<g, A@, =@ if i=3. Then w(x;J) is equal to

(14) MaX,ss;smt2 (I DI—1AG, H)—le—c(, NI} .
PrOOF. We note that if <7, then

(15) ¢;+pi=c,—p,+|J, ) +|AG, 5)| .
Hence
(16) 274(|J(E, NI—1AG, D) —lz—c@, NI=IE, DI—7r, 2, 5)

with »(z, ¢, j)=max{x—c,+p, ¢;+p;—x}. We note that r(x, 4, 5) is the
minimum of the set of » such that B(x, r)DJ(%, 7), so that r(x, ¢, 5)=r(x)
and

(17) lJn B(w’ ’r(w9 i? j))‘—’r(x: i’ j)Z—IJ(ir j)l_'r(m! 7:) j) .

In view of (16), (17) and Lemma 1, we obtain that w(x; J) is not smaller
than (14).

On the other hand we observe that —r,(x) equals 0 if xeJ,
27*1J(0, 0)|—|&—c(0, 0)] if x=c,—p,,
27 J(m, m)|—|x—c(m, m)| if x=cn+pn,
max{27|J(, 9)| —lx—c(, 9)|, 2@+, i+1)|—|r—c(i+1, 1+1)]}
if zeA@l,2+1) and 0=i=m-—1.

Hence it suffices to prove that w(x; J) is not greater than (14) under the
additional assumption that w(x; J)> —7.(x). Suppose that |JNB(x, r)|—r
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attains the maximum at r=r,, We may assume that there are two
integers 4 and j such that 0=<7<j7=<m and

L—1r,=C,—D; , v+r,el;
or
x—rel,;, T+ri=c;+Dp; .

Hence we have r,=7,(x) and
|J N B, r)|—r=|J(, H|—r, 1, J) -

From Lemma 1 and (16) we obtain that w(x; J) is not greater than (14).
The lemma follows.

LEMMA 4. Let J be as above. If I* is an interval such that
|I*|=|J|, then the following statements are equivalent:

(i) I* is a gathered interval of J.

(ii) For all xe R, (12) holds.

(iii) For xz=c(z, 7), 0=Z1=j=<m, (12) holds.

(iv) For i, 7, 0=t=j5=m,

(18) 27(JG, DI—1AG, H)=w(Tie, 5); IF)

Proor. We have proved in Lemma 2 that (i) and (ii) are equivalent.
It is clear that (iii) follows from (ii). We observe from Lemma 3 that
(iii) yields (iv). In order to complete the proof, we suppose (iv) and show
@ii).

We infer from Lemma 38 that if w(x;J) attains the local maximum
at x=u,, then x,=c(7, ) and w(x,; J)=2"(|J(, 5)|—|A(%, 7)|) for some ¢ and
j. Let xy, +««, 2, (¢, <---<2x;) be the points at which w(x; J) attains the
local maxima. On account of (18), we obtain w(x;; J)=w(T\x;; I*) for
7=0, «-+, L.

We shall prove w(x; J)Sw(Twx; I*) for z;_,<x=<x; and 1<j=<l. Note
lw(Tx; I*)—w(Tyx;; I*)|<|Tw— Tyx;|. Since T, is a contraction mapping,
it follows that

w(Tyx; I*YZw(T;; I*)— | T — Tyl =w(Tyxj; I*)—|e—x ) 2w(e; J)—|e—x, .
In the same way as above

w(Tyx; IMYZw(x;_.; J)—|c—12;_4 .
However Lemma 3 leads to

w(w; J)=max{w(w;_,; J)—|w—x;..], w(x;; J)—|o—2}
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for x;,_,<x=<x;, Hence w(x;J)Sw(Tx; I'*).
By using
w(x; J)=w(x,; J)—|x—x, for z<z,,
w(x; J)=wx,; J)—|x—x] for x>z,

we can prove w(x; J)Sw(Twx; I*) for <z, or >z, Thus the lemma
follows.

Suppose that I*=(a, b) satisfies (18). Since w(wx; [*)=min{r—a, b—x},
it follows that 2-'(|J(Z, 5)|—|A(Z, H)=min{T,c(, 7)—a, b— T,c(z, 7)}, so that

a=Te(i, 5)—27(JG, ) —1AE D) ,
b= Tye(3, 5)+27(J G, 9)—AG, D))

Let d(J)=min{|I*|; I* is an interval satisfying (18) for all i, 7, 0<i<
j=m}. From the above observation, we have

(19)

d(J)=max{d'(s, §, ¥, j'); 0=i=j=m, 0=V'=<j'=m},

where d'(s, g, ¥, 3")=Tic(t, 3)— Tic(@, 3")+27(|J(, 5)|—[AG, 7)|+JE, 7)) —
|A(#, 5)[). Changing the roles of {7, 7} and {4, 5}, we obtain that

d(J)=max{d(, j, ¥, j'); 0=i=j=m, 0=V <j'<m},

where d(3, 5, ¥, 3)=|T\c(3, 5)— Tic(@', 3 +27(J@E, DI—IAG, )|+ |JE, )| —
|A®#, 57))). It follows from Lemma 4 that J has a gathered interval if
and only if d(J)=<|J|, or equivalently,

(20) a@, 3, v, 5H=|J|

for all ¢, 7, ¢, 5/, 0Zi<7<m, 0=V =<5 =<m.

For a subset Sc{0, ---, m} we write J(S)=U,.sI;, By a partition
of {0, ---, m} we mean a mutually disjoint family {S,, ---, S;} such that
{0, ---,m}=8,U---US,. The number [ is called the length of the parti-
tion {S, ---, S}}.

LEMMA 5. Let {S, S} be a partition of {0, ---, m}. Suppose that
J(S) and J(S,) have gathered intervals I'* and I"*. If I'*NI"*%Q,
then J has a gathered imterval.

ProoF. It is sufficient to prove (20) for all {3, 4, ¢, 5/}<{0, ---, m}
satisfying 1<j and ¢'=<j’. First suppose that ¢, €S, and 7, 7 €8S..
Since I'*NI"*+# @, we infer from (19) that

d(, 3, ¥, ) =max{¥’, b} —min{a’, a”’}<|J| ,
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where I'*=(a’, b’) and I"*=(a", b").

Secondly suppose that {i, 7,7, 7}<S,. Since J(S,) has a gathered
interval, d(z, 7, ¢/, 7)< |J(S)I<|J].

Thirdly suppose that {7, 7, 7}cS, and j'e€S,. Since (@, j)=
c@, 5'—1)+27(|I;/|+]A;]), we have

|Te(e, 3")— Tie(, PDI=|Tie(@, 5’ —=1)— Tie(@, 5)|+27( Iy +14,]) .
Hence

@, 4, v, =T, §'—1)—Tie(3, HI+27( L] +]Az])
+27(J G, DI—1AG, DI+IE, ) —AG, 7))
=d(, 4, 7, I’ =D+ .

Repeating this, we obtain
a@, g, v, 3)=d@, g, ¢, D+ L+ + L),

where l=max{v € S;; v<j'}. Since {1, 5, 7, 1}<S, and {{+1, ---, J}CS,, we
have

@, 4, ¥, ) =|J(SH+ I (S)l= ] .

Similarly we have (20) in case {4, 7, 5/}<S, and 7' €S,. Changing the
roles of S, and S,, we can prove (20) in every case. Thus the lemma
follows.

LEMMA 6. FEwvery union J of intervals has a gathered wunion of
wntervals.

Proor. Let J=I,U---UI, with I,_,<I,, On account of Lemma 2,
we obtain that I¥=(Tc;—p, Tic;+p,) is a gathered interval of I, for
each ¢. Let {S,, ---, S;} be a partition of {0, ---, m} such that

(21) every J(S,) has a gathered interval I*(S,) .

Obviously {{0}, - -, {m}} satisfies (21). We assume that {S, ---, S} is a
partition having the minimum length among partitions satisfying (21).
We claim that {I*(S)), ---, I*(S)} is mutually disjoint. Suppose that
I*(S)NI*S)+=@. Applying Lemma 5 to J(S,US,), we observe that
J(S,US,) has a gathered interval. Hence {S,US,, S,, :--, S;} is a partition
satisfying (21). This is a contradiction. We see that J*=I*(S)U---U
I*(S,) is a gathered union of intervals of J. In fact for any ke K and
any *€ R,



232 HIROAKI AIKAWA

S: k(lx—yl)dy=g S 5 k(jlx—y|dy

J(

1
=3 kTa—yddy=| kTa—yddy .
=1 Jr*(sp J*
Thus the lemma follows.

By a step function we mean a linear combination of characteristic
functions of open rectangles in R".

LEMMA 7. If f is a monnegative step function on R, then there
exists a mnommegative step function f* on R such that ||f*|,<|fll, for
all p=1 and

(22) | ko —udrwdy=| kTa—uD* @iy

for all ke K and all xe€ R.

PrOOF. Let f be a nonnegative step function on R. We can write
f=>r, alX, such that J,o..-DJ, and a,>0. By the aid of Lemma 6,
every J; has a gathered union J¥ of intervals. Letting f*=3, aX,;*,
we observe that f* satisfies (22).

Now we prove || f*|,<I|fll, by induction on m. The case m=1 is
obvious. We assume that

m—1

> atx.r;"
=]

m—1
2 aix.f‘
=1

=
?

?

Noting that if p=1 and v=0, then (¥ +v)?—u* is a nondecreasing function
of =0, we have

TR S DO
= S * {(a'm + ,:Zn;l aix.r;")p - (’:2:; aix.l:‘)p} de+ ':z:; aix,,;k

?
14

St +ar (@t o W+ [ ey

»
P
On the other hand,

1A= (o -+ — (et - +aw )Wl + |3 2y,

so that |[f*[,=If1l,-

PROOF OF THEOREM 2. We may assume that every T, (2<i<m) is
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the identity, because the general case can be proved by iteration. First
suppose that E is a compact set. In the same way as in [4; Lemma 2],
we can prove

CuoE)=int {| 1113 | K(z—yDf@)dyz1 on E,

f is a nonnegative step function}

by using [1; Lemma 2.2.1]. Given ¢>0, we take a nonnegative step
function on R" such that Sk(lm——yl)f(y)dygl on E and ||f]2<C, (E)+e.
We write x=(x,, "), for (*)=Sf((+, ")) and k,..(£)=k(#+|x"[*)*?). Obviously
k. e K for every 2" e R"*. By the aid of Lemma 7 we can find non-
negative step functions f%, on R such that ||f% |38, £y, ¥)=
Jr(y) is a step funetion on R", and

S kz"—y”(lxl— yll)fy"(y1>dy1§ S kz"—y”(l T1m1"y1‘)fu#’(y1)dy1

for all x, € R and all 2", ¥’ € R*'. Integrating the above quantities with
respect to dy”’, we have || f*|2<|f]|2 and

| k(o —uhrw)dy= | K(To—y)r*w)dy

on R"; in particular, Sk(lTx—yI)f*(y)dygl on TE. Hence

Co. (TEYZ || F* =715 <Cun(E)+e

Since ¢>0 is arbitrary, we have C, (TE)=<C, (E).
Let V be an open set. Then there is a sequence of compact sets E;
such that E;TV. On account of [4; Theorem 6], we have

Ck’p(TV) =lim Ck,p( TE,) élim Ck’p(Ej) = Ck,p( V) .
J—o0 J—roo

Since C,, is an outer capacity ([4; Theorem 1]), for any set E with
Ci»(E)< o and €>0, there is an open set V containing E and C, (V)<
C:»,(E)+e. Hence '

Ceo(TE)=C,, ,(TV)=C, o(V)<C, (E)+¢,
so that C,  (TE)<C, ,(E). The proof is complete.
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§2. Proof of Theorem 1.

We may assume that 1<p=n/2 and 2p—n<B<2p—1, because if
p=1, then Theorem 1 follows from Theorem A (iii), and if 8=2p—1,
then Y=1 and Theorem 1 is nothing but a known radial limit theorem
of Green potentials (see e.g. [7; Theorem 6]). Note n=3. The following
estimate of Green function for H is well known:

(23) Az y, le—y " le—7 =G, W< Az, l2—y|* " |le—7|°,

where 7=(¥,, ***, Yo, —¥Y.) for y=(@,, -+, ¥,) and A is a positive constant
depending only on the dimension n. We shall use the following notation:

L={xe H; 2775 |x| <27},
Ji={xe H; 2" '<2,<277},
Ir=I,_,ULUI,, and J¥=J;_,UJ;UJ;,. Unless otherwise specified, A

J J
will denote a positive constant depending only on =, p, B8 and 7, possibly

changing from one occurrence to the next.
We take a constant ¢, 0<c<1/8, satisfying (2m)™"+4c={(1—4c)/m}".
We observe that if e R(7, a, 2m), x,<1/2 and y € B(z, 4cx,), then
Y —a'|<|2’ —a'| +4cx, <{x/Cm)}'T+4cx,
={A —4c)x./m}'" < (Yo /m)"" ,
and y,<x,+4cx,<1l. Hence
(24) if xe R(v, a, 2m) and z,<1/2, then B(z, 4cx,)CR(7, a, m) .

We decompose u into the sum of », w, and 2z so that wu(x)=v(x)+
w(x) +2(x), where

(%)= Sm s G(x, Y)My)dY ,
W(m) - SR(T a,m)\B(z,62y) G(w’ y)N(y)d?] ’
wo)=| Gy .

We shall examine v, w and z seperately. Wu [10; Proposition 3] proved
LEmMMA 8. If

(25) AMYPYP Ay < oo,

SR(T,a,m)
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then w(x)—0 as x approaches a inside R(7, a, m).

She also stated that z(x)—0 as x approaches a¢ under a certain condi-
tion on \. Nevertheless her proof is not complete. The inequality on
the 8-th line from the bottom in [10; p. 905] is not always valid. In
fact, #'=(",0, --+,0,10m5 ") e R(7, 0, 5m) and ¥ =("40, ---, 0, mjT) e
H\R(7, 0, m), but |x? —y9|/|y?|=9mj*~7, which tends to 0 as j— o if v>1.
By using a different decomposition, Mizuta [8; Theorem 7] showed that
w+2 has T)-limit zero at all points a € P apart from an exceptional set
whose 7(8+n—2p)-dimensional Hausdorff measure zero. For reader’s
convenience we give

LEMMA 9. If 2% and

(26) lim ¢7es—n-» S MY yEdy =0
t—0 B(a,t)NH
then 2(x) has limit zero as x—a inside R(v, a, 2m).

PROOF. We may assume a=0 and supp nCB(0, 1/2). For j=1 we
let

?(J) =2"“"+"‘2”””(S x(y)”yﬁdy)l/p
I\R(T,0,m)
We infer from (26) that
@7) lim (5)=0 .
, oo

Since B<2p—1, it follows that
(28) Sts(p_p)/(p—nds=At(2p—p—1)/(p-—1) ,

0
so that
@9) | W)Y,y

I,'\R(T,o,m)

(p—p) /{p—1) BN irptn—tp) .
é{s ynp ? dy} 9—irlp+n—2p /p¢(‘7)
I;\R(T,0,m)

mrs B)/p—1) ) (pue (B+n—2p)/
P— P— —Jir(g+n—2p)/p y
= {Sly'|<2-i SO Y. dyndy} 2 ?(7)
éAz-—j{('n—l) (p—-l)/p+r(2p—ﬁ—1)/p+r(ﬁ+n—2p)/p}¢(j)

=A2—j(n—1)(p—1+r)/pq)(j) .
If xel;, yel;_, and 1=2, then we have by (23)
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G(x, Y= A2"9-9279y, .
Hence (29) leads to

sup S G(x, Y\w)dy
zel; JIj_4\R(T,0,m)

§ A2n(j—t)2—52(i-—j) (n—1) (p—1+r)/p¢(j — ,i)
S A2 DU Vrgy(§ ) S A2 (5 —1) ,

if 2=<1<5—1. Therefore

sup S,-_l G(x, YA(Y)dy=A 12;‘; 2-'p(5—1) .

zelj ‘gzlj__t\R(T,o,m)

We infer from (27) that the last term tends to zero as j— . Similarly
it follows from G(zx, y)< A2y, for xeIl;, yeI,,, and ©=2 that

sup S o G@x, Y\ (y)dy

zelj 522 I544\R(T,0,m)

<A ;::2 2 —1ig= 8N =D =147 /pep (5 - 3)
éA g 2(1—n)t¢(j+?:) .

The last term has limit zero as j— .

Now let ¢ be the constant taken at the beginning of this section.
We observe from (24) that if ¢ RE(v, 0, 2m), x,<1/2, y € H\R(7, 0, m) and
|y’ —o'| <czx,, then [|x,—y,|=8cx,. Put S,={yeIf\R(7, 0, m); [y —a'|<cw,}
and S;=I\(R(7,0, m)US,) for xe ;N R(7, 0, 2m). It follows from (23)
that if xe R(7, 0, 2m) and y€S,, then G(z, y) <Az} "y,. Hence we have
by (28)

sup S G, M)Ay

z€I;NR(r,0,2m)

S A{p(G—1)+@(5) + (5 +1))2irer—p-msr
X sup x‘,‘;‘“(S yg—ﬁ)/(p—ndy)”p '

zeljnR(r,o,zm) Sg
= A{p(G—1)+9(5) + (5 +1)}27Cr=b=m/
% sup x:‘_n{s dy' sz—r(:‘—l)
zel;NR(r,0,2m) ly'—z'|<czy 0

=A{lp(1—1D)+o(G) +o(F+1)},
where p'=p/(p—1). Using G(x, y)<Ax,y,[e’—y'|™, we have

1/p’
y;p—ﬂ)/(p—l)dy }
n
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, G, YNy)dy

swp |
a:teﬂR(r,o,zm) .S'z

< Alp(i—1)+@(f) +p(+ L)2ires—s-wrs
Y sup mn{s lxr_yr‘-—nprdyls
zeI;NR(r,0,2m) ly'—z'1Zezy

sAlp((—-D+9()+o(G+1)} .

Therefore the lemma follows from (27).

me—7(5—1)

i/p’
y;p—ﬁ)/(p—l)dy }
n

0

REMARK 1. The assumption (26) can be replaced by

(26") S MY)PYPdy < oo for some ¢>0.
Bla,t)NH

In fact, letting 83=2p—n and

. 1/p
P(g) = ( S x(y)"y“;‘““"dy) ,
I\R(7,0,m)

we observe that (27) and (28) hold, and that the same argument as above
is applicable.

We refer a proof of the following covering lemma to [2; Lemma
3.2]. Let C(x, ) be the closed ball with center at & and radius 7.

LEMMA 10. Suppose that a set ECR"™ is covered by closed balls
C(x, r(x)) such that x € E and sup,.z r(x)<oo. Then there exists a covering
{C(x;, r(x;))}; of E whose multiplicity is not larger than a certain constant
N, depending only on the dimension n.

Let V={a € P; (25) does not hold for some m >0} and V'={a e P; (26)
does not hold for some m>0}. On account of Lemmas 8 and 9, if a€
P\(VU V"), then

(30) lim ){w(w)-l—z(x)}:O for m>0.

z—a, s R(r,a,m

Hence it is natural to ask if we can take VUV’ as V, in Theorem 1.
We shall show that this is true. First we see

LEMMA 11. Let V and V' be as above and let N\ satisfy (1). Then
the (B—2p+n)v-dimensional Hausdorff measure of VU V' is zero.

PROOF. Suppose that A satisfies (1). Wu [10; Proposition 6] proved
that V has (8—2p+n)v-dimensional Hausdorff measure zero. Note V'=
Ueso Vi with
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V.= {a € P; lim sup tr@r—#—» S
t—0 B(a,t)NH

h(y)’yﬁdy>e} .

It is sufficient to prove that the (8—2p-+mn)v-dimensional Hausdorff
measure of V; is zero. On account of (1), there is >0 such that

MY)Pyhdy<y .

S(y:0<y,.sm

For each a€ V; find r(a), 0<r(a)<p, such that

r@yr+ | MuPYidy>e -

Cla,r(a))NH

By Lemma 10 we can choose {a;};C V, such that

V.c Uy Cla;, r(ay) ,

MYy yhdy >r(a) e,

g™ S
Claj,ria))NH

the multiplicity of {C(a;, (a;))};=N, .

Since 0<r(a;)=<p,

3, r(agy -t < Nos™ S MY)yidy < Nee™7

(PHES 14}

From the arbitrariness of 7 we obtain that V, has (8—2p-+n)v-dimen-
sional Hausdorff measure zero. The lemma follows.

Next we show that if ae€ P\(VU V"), then there is a certain excep-
tional set F' such that

lim u(x)=0 for m>0.

z—a,z € R(r,a,m)\F
To make it precise, we introduce

DEFINITION 1 (cf. [8; §1]). A set FCH is called (2, p)-thin on P if
3 Bus(SAF NI )< oo,

where S;z=27z. A function f on H is said to have (2, p)-fine T)-limit [
at a if there is a set F' (2, p)-thin on P for which

lim Sflx)=1 for m>0.

z—a,% € R(r,a,m)\F
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REMARK 2. Let 2p>mn. Itis known that there is a positive constant
£ such that B,,(E)z=k for E+@ ([4; Theorem 20]). Hence if F is
(2, p)-thin on P, then FNP=; the (2, p)-fine T,-limit and T,-limit are
equivalent.

LEMMA 12 (cf. [8; Theorem 7]). Let V and V' be as in Lemma 11.
If aeP\V, then v has (2, p)-fine T,-limit zero at a. Moreover if a¢€
P\(VU V"), then u has (2, p)-fine Ty-limit zero at a.

PrROOF. Let ae€ P\V and m>0. Without loss of generality we may
assume that a=0. Let ¢ be the constant taken at the beginning of this
section. We observe from (24) that if xeJ,;NR(7, 0, 2m), then

yeClz,2~1—de)ngs

C B(z, 2'¢)cJ¥ N B(x, 4cx,)JF N R(7, 0, m) .

(31) U B(y, c¢y,) < B(x, 27" i¢c+279¢)
i

By Lemma 10 we can choose {z{"})?cJ,;NR(7Y, 0, 2m) such that

(32) J;NR(v, 0, 2m)c U9 Cxi?, 277¢)
C UYPB®, 2-ic)cJF NR(Y, 0, m)

and the multiplicity of {C(x{’, 2779¢)}Y is not greater than N,. Hence
the multiplicity of {B(x{’, 2"9¢c)}’ is not greater than a constant de-
pending only on the dimension n.

Let F,, ,={xec R(7, 0, 2m); v(x)=t} for t>0. Since G(z, ¥)=|x—y|*™,
we have from (31)

F,.NCx?, 277ic)NJ;

c {x e Clxf, 27 9e)NJ 3 S ) Ix—ylz‘"x(y)dyzt} ,

: B(zij),zl“jc
so that
Ry (Fo:NClai?, 27 7e) N T3 Blai?, 2770))

=t* S NMy)rdy ,

B(a{ 21—de)

where R, ,(E; U) denotes the Riesz capacity relative to an open set U
defined by R, (E; U)—_—inf{n f”;;Skz(Ix—yl_)f(y)dygl on E, f is a non-
negative measurable function vanishing on R\ U} with k,(t)=t>" (see [T7;
p. 116]). Since the multiplicity of the covering {B(z{’, 2'7i¢)}’? is in-
dependent of j, it follows from (32) that
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S R, (F. 0 Clal?, 276 N J;; B, 29¢))
i=1
gAt"’S . A@)*dy .
Jj NR(,0,m)
On account of (25), we have

oo N(5
3, 2000 3 R, (F i1 Cat?, 27740) 1T 5 Blal?, 290) <o .

It is well known that R, ,(rE;rU)=r""*R, (E; U) (see [7; p. 116]), so
that

2

3 S Ry (S, (I N O, 2-5¢) N J,); S{Bs, 29e)) < oo .

)
j=1

-
-

Since the radius of S,;(B(x{, 2'%¢)) is 2¢, independent of j and ¢, there
is a positive constant A independent of 7 and ¢ such that g,(lr—y))=
Alx—y*™ for x e S;(C(x{?, 27*"%¢)) and y € S;(B(x{’, 2'~c)), where g, is the
Bessel kernel as was defined in the introduction. From the definition of
Lr-capacities it follows that

B, ,(Si(F,.NC(xi’, 277 c) N J )
S AR, (S{(Fo,.NC@?, 277ic) N Jy); S{( Bz, 2¢))) ,

and hence

=

i el B, ,(S;(F..NC&y, 27 i) NJ;)) < oo .

i=1

-

Since B, , is countably subadditive, we have
3, Bun(SiFu NI N <o

so that F,, is (2, p)-thin on P.
For positive integers £ and I we find j(k, ) such that

. Z Bz,p(sj(Fx/k,uz N J,'))<2_'°_l .
3=3k,l)

Let

cCs

F="U

k=11=1 j=

_U Fl/k,l/ani .
(k,1)

Since B,, is countably subadditive,
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i B, (S{FNI)N<S S Byo(SiFun0Jy)

J=1 4k, )53

so that F' is (2, p)-thin on P. From the construction of F it is easy to
see that

lim v(x)=0 for m>0.

z—0,2€ R(7,0,m)\F
Hence v has (2, p)-fine T'-limit zero at 0. The second assertion immediate-
ly follows from Lemmas 8 and 9. The proof is complete.

REMARK 3. Let 2p>n. It follows from Remark 2 that if ac
P\(VU V'), then u has T,-limit zero.

We consider a relation between (2, p)-fine T)-limits and limits along
curves I'(7, a, b). We have

LEMMA 13. Let 1=<p=n/2. If f has 2, p)-fine T,-limit | at a, then
{beQ; flx) does mot approach | as x—a along I'(7, a, b)} has B, ,-capacity
zero.

PrOOF. We may assume a=0. Let F' be (2, p)-thin on P and
lim Sx)=1 for m>0.

z—0,2€ R(7,0,m)\F
It is sufficient to show
E'={beQ; I'(", 0, b)cR(7, 0, 2m), f(x) does not approach [
as x—a along I'(7, 0, b)}

has B, ,-capacity zero for each m>0.
Let Tux=@ "y %), Uxr=(x;"2', z,) and zwx=(x’,1). Since x¢
r®,0,b) if and only if a2’'=x7b’, we have

FNr@,0,0)NJd;#0=cUT;S;(FNI(,0, b)NJ;)={b}.

Hence E'cClimsup;..zUT;S;(FNJ;). We observe that = and 7T, are
affine contraction mappings and U is a bi-Lipschitz mapping on
R(7, 0, m)NJ,. Hence Corollary 2 and [6; Lemma 3] yield

B, (#UT;S;{(FNJ;))<AB, (S;(FnJy),
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S B, (rUT;S{FNJI )< ,

i=1
which implies that
Bz'p(lim sup @ UTij(F N Ji)) = Bz,p(E’) =0.
§—ooo

The proof is complete.

PROOF OF THEOREM 1 AND COROLLARY 1. Combining Lemma 11, 12
and 13, we obtain the theorem. Suppose that A satisfies (1) with 8=
2p—mn. Then

S MYPYw Ay <o for acP, 0<t<1,

B(a,t)NH

and in particular (25) for all ¥=1 holds at any point @ on P. Hence by
Lemma 8 and Remark 1 we have (30) for any a€ Pand vy=1. This with
Lemmas 12, 13 and Remark 3 yields the corollary.

§3. Remarks.

We shall show that the size of each of V; and E, in Theorem 1 is
best possible. We give

PROPOSITION 1. Let p=1, 2p—n<B=<2p—1 and 1=7v=(n—1)/
(B—2p+mn). Suppose that VCP and (8—2p-+n)v-dimensional Hausdorff
measure of V is zero. Then there exists a momnegative measurable
Function » on H satisfying (1) such that G(x, \) fails to have (2, p)-fine
T.-limit zero at any € V.

In order to prove the proposition, we give a necessary condition for
a set to be (2, p)-thin on P. Let d(x)=dist(x, P).

LEMMA 14. Let FcH. If there are l, 0<l<1/4, and {x*},CF such
that B(x', 16(x*))CF and lim inf, .. 6(z*)=0, then F' is not (2, p)-thin on P.

ProoF. Let j(2) be the integer such that 2-7¥*<(x*)<27/®. Taking
a subsequence of {x‘}, if necessary, we may assume that lim,.. j(?)= .
Since 0<l<1/4 and B(x*, ld(x*))CF, it follows that F'NJ;, includes a ball
with radius 127792, so that S;(FNJ;,) includes a ball with radius /4.
Hence B, ,(S;(FNJ;w)=A with A independent of 4, so that F' is not
(2, p)-thin on P.
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PROOF OF PROPOSITION 1. Let m>0. We shall find a nonnegative
measurable function )\ satisfying (1) such that G(-,\)#~ and
{x € R(7, & m); G(x, A)=1} is not (2, p)-thin on P for every £€ V. Obvi-
ously G(-, ») fails to have (2, p)-fine T,-limit zero at ce V.

Take a constant k>m. We find a constant [, 0<l<1/4, such that

(33) mEl+17 <A =Dk .

Let =2 and ki7<1. Since the (B8 —2p + n)v-dimensional Hausdorff
measure of V is zero, there are 9= (¥4, -.., £, 0) e Pand r;, 0<r,;<1/4,
such that

(34) VCU B¥, ),  SorEwrmrggt,
J J
Put o=(gt, -+, £, krly), @) =3")" on B(a¥, 216(")) and ny(@)=0

elsewhere. We obtain from (23) that if «e< B(xf, l6(z*)) and y e B(x¥,
216(x*)), then G(x, y)=Ad(x*)* ", so that

G, Ne)) ZA0@) " |Nslh,=A on Bz, lo(x*)) ,

where A is independent of ¢ and 5. Hence we can find a constant A4,
such that \,=A4,sup; \,; satisfies

G(x, »)=1 on LJJ B(x*, 1o(x*)) .
Since o(x*)=krl;, it follows from (34) that
[ Mwrowrays s | rwrswrdy=4 S syt <Az
Noting n—1=8—2p+n and o(x*)=kr;<ki7<1, we have

[ vup@way=4, 3 | vwpwdy=a S o< aze.

:

Let n=>2,2\; Then

(35) Gz, »)=1 on iU B(x*, 16(x*))
Y

and X\ satisfies (1). Since S)\,(y)a(y)dy<oo, G(+, N)FE o,

Let £€ V. We shall show that F={x e R(v, & m); G(x, A)=1} is not
(2, p)-thin on P. Let 1=2 and ki 7<1l. From (84) we find £ and r,;
such that ze B(¢Y, r,;) and 0<r,;<1/i. For simplicity we put &(¢)=¢",
r(t)=r; and x()=u=(el, ---, &, krl;). Take xe B(x(?), lo(x())) and
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observe that

o' —&'| < | —2(2)| + 18(2) — & < 1o (ow(2)) +7(7)
={kr@@) '+ Dr@)=k+1)r@) ,

and that
A=Dkr@)=(1—-1)0x®))<d@) <A +Dkr@)y <A +Dki™7 .
On account of (83), we have
mlx’ — &' <mlk+1)r@E)Y S —Dkr@) <él@) <A +Dki",
so that
B(x(3), lo(x(2)))c R(7, & m) for 4, A+Dki77<1.

Hence (35) leads to B(x(1), lo(x(s)))C F' if 4 is large. Since lim,. 6(x(¢))=0,
we infer from Lemma 14 that F is not (2, p)-thin on P. The proof is
complete.

Let us see that the size of E, is best possible.

PROPOSITION 2. Let 1=p=n/2 and v=1. If EcCQ and B,,(E)=0,
then there is a monnegative measurable function n on H such that G(-, \)
has (2, p)-fine T:r-limit zero at 0, but

(36) limsup G(x, A)=o0

z—0,2€ I"'(r,0,b)
for any be E.

ProOF. Let E;={(2 i"«',27%);xe€E}. Note that B,,(E;)=0. We
recall that the Bessel kernel ‘g,(t) is comparable to t*™ as t—0. On
account of (23), we find a nonnegative measurable function A; such that

supp A;CJ;,UJ;Ud Gy,
S N(H)PdyY<ee
G(x, Nj)=c on KEj,

G(x, 7\:5)$ oo,

Let 7<2p—mn. We choose positive numbers «; such that the function

A defined by 3); a;n; satisfies S AMY)?PYldy < o and G(x, \M)#E . It isclear
H

that (25) for any m>0 and (26’) hold at any ac P, so that Lemma 8, 12
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and Remark 1 yield that G(-, ) has (2, p)-fine T,-limit zero at any a € P.
If beE, then b/=(27,279)el'(7,0,b)N{xec H; 0(x)=2"}CFE,; so that
G(b?, \)=c. Hence (36) holds.
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