Tangential Boundary Behavior of Green Potentials and Contractive Properties of L^p -capacities

Dedicated to Professor Yukio Kusunoki on the occasion of his 60th birthday

Hiroaki AIKAWA

Gakushuin University

Introduction

Let $H=\{x\in R^n; x_n>0\}$, $n\geq 2$, be the upper half space and G be the Green function for H. Wu [10] studied the tangential behavior of Green potentials $u(x)=\int_H G(x,y)\lambda(y)dy$ under a certain condition on λ . According to Wu, we shall use the following notation: Let $P=\{x;x_n=0\}$, $Q=\{x;x_n=1\}$ and $x'=(x_1,\cdots,x_{n-1})$. For $\gamma\geq 1$, $a\in P$ and $b\in Q$, we denote by $\Gamma(\gamma,a,b)$ the arc in H joining b to a with tangency γ to the plane P so that if $x\in \Gamma(\gamma,a,b)$, then

$$x'-a'=x_n^{1/r}(b'-a')$$
.

For a positive number m let $R(\gamma, a, m)$ be the set $\{x; m | x' - a'|^{\gamma} < x_n < 1\}$. If $\gamma \ge 1$ and f is a function on H, we say that f(x) has T_r -limit l at $a \in P$ provided f(x) tends to l as $x \to a$ inside $R(\gamma, a, m)$ for each m > 0. We observe that f(x) has T_1 -limit l at a if and only if f(x) has nontangential limit l at a. Wu [10; Theorem 1] proved

THEOREM A. If $u \not\equiv \infty$ and

$$\int_{H} \lambda(y)^{p} y_{n}^{\beta} dy < \infty$$

for some $p \ge 1$ and β $(2p-n < \beta \le 2p-1)$, then corresponding to each γ $(1 \le \gamma \le (n-1)/(\beta-2p+n))$, there is a set $V_{\tau} \subset P$ with $(\beta-2p+n)\gamma$ -dimensional Hausdorff measure zero, such that for each $a \in P \setminus V_{\tau}$

- (i) in case p>n/2, u has T_r -limit zero at a;
- (ii) in case $1 , the set <math>E_a = \{b \in Q; u(x) \text{ does not approach zero as } x \to a \text{ along } \Gamma(\gamma, a, b)\}$ has Hausdorff dimension at most n-2p;

Received November 6, 1984

(iii) in case p=1, $C_2(E_a)=0$ $(n\geq 3)$ or the logarithmic capacity of E_a is zero (n=2).

Here $C_{\alpha}(E)$ is defined by

$$C_{\alpha}(E) = \inf \left\{ \mu(\mathbf{R}^n); \int |x-y|^{\alpha-n} d\mu(y) \ge 1 \text{ on } E \right\}$$

with $0 < \alpha < n$. Recently Mizuta [8; Theorem 9] dealt with the tangential behavior of Green potentials of order α and noted that (i), (ii) and (iii) are also valid for every $\gamma \ge 1$ and every $a \in P$ in case $\beta \le 2p - n$. As to the case in (ii), however, the size of the exceptional set E_a can be improved. We shall characterize E_a by using the Bessel capacity. Our characterization is a natural extension of [7; Theorem 6]. In order to state our theorem we give the definition of the Bessel capacity, and more generally, L^p -capacity.

Let K be the totality of nonnegative nonincreasing lower semicontinuous functions on $[0, +\infty)$. We define L^p -capacities for $k \in K$ as follows:

$$C_{k,p}(E) = \inf \left\{ ||f||_p^p; \int k(|x-y|)f(y)dy \ge 1 \text{ on } E, f \ge 0 \right\}, \quad \text{if} \quad p > 1,$$

$$C_{k,\mathbf{1}}\!(E)\!=\!\inf\!\left\{\mu(\boldsymbol{R}^{\mathbf{n}});\int k(|x\!-\!y|)d\mu(y)\!\ge\!1\ \ \text{on}\ \ E,\ \mu\!\ge\!0\right\}\;.$$

We note $C_{\alpha} = C_{k_{\alpha},1}$ with $k_{\alpha}(t) = t^{\alpha-n}$.

Let Γ and K_{ν} stand for the Gamma function and the modified Bessel function of the third kind of order ν , respectively. Then the Bessel capacity $B_{\alpha,p}$ with index (α, p) is defined by $B_{\alpha,p} = C_{\varepsilon_{\alpha},p}$, where

$$\mathbf{g}_{\alpha}(t) \!=\! 2^{-(n+\alpha-2)/2} \pi^{-n/2} \Gamma(\alpha/2)^{-1} t^{(\alpha-n)/2} K_{(n-\alpha)/2}(t)$$

(see e.g. [4; p. 279]). It is known that $g_{\alpha}(t)$ rapidly decreases to zero as $t \to \infty$, and that $g_{\alpha}(t)$ is comparable to $t^{\alpha-n}$ (resp. $-\log t$) for $0 < \alpha < n$ (resp. $\alpha = n$) as $t \to 0$ ([4; (22), (23) and (24)]). Hence

- (i) in case $0 < \alpha < n$, $B_{\alpha,1}(E) = 0$ if and only if $C_{\alpha}(E) = 0$;
- (ii) $B_{n,1}(E)=0$ if and only if the logarithmic capacity of E is zero. We also have from [4; Theorems 20, 21 and 22]
 - (iii) in case $\alpha p > n$, $B_{\alpha,p}(E) = 0$ if and only if $E = \emptyset$;
- (iv) in case $1 \le p \le n/\alpha$, if $B_{\alpha,p}(E) = 0$, then the Hausdorff dimension of E is at most $n-\alpha p$;
- (v) in case $1 \le p < n/\alpha$, if the $(n-\alpha p)$ -dimensional Hausdorff measure of E is zero, then $B_{\alpha,p}(E) = 0$.
- It is easy to see that the converse of each of (iv) and (v) is not nece-

ssarily true.

Our improvement of Theorem A is

THEOREM 1. Let $1 \le p \le n/2$ and let u, β , λ and γ be as in Theorem A. Then there is a set $V_{\tau} \subset P$ with $(\beta - 2p + n)\gamma$ -dimensional Hausdorff measure zero such that for each $a \in P \setminus V_{\tau}$, $B_{2,p}(E_a) = 0$.

We observe that if p=1, then Theorem 1 is nothing but Theorem A (iii). In case $\beta \leq 2p-n$, we also obtain from the proof of Theorem 1.

COROLLARY 1 (cf. [8; Theorem 9 (ii)]). Let $u \not\equiv \infty$ and λ satisfy (1) with $\beta \leq 2p-n$. For every $\gamma \geq 1$ and every $a \in P$

- (i) in case p>n/2, u has T_r -limit zero at a;
- (ii) in case $1 \le p \le n/2$, $B_{2,p}(E_a) = 0$.

The proof of Theorem 1 is closely related to contractive properties of L^p -capacities. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction mapping, i.e., $|Tx - Ty| \le |x-y|$ for all x and $y \in \mathbb{R}^n$. First we ask if the inequality $C_{k,p}(TE) \le C_{k,p}(E)$ hold.

It is not so difficult to prove that $C_{k,1}(TE) \leq C_{k,1}(E)$, and it seems that Wu implicitly used this inequality in the proof of [10; Proposition 2]. Professor B. Fuglede kindly pointed out that if E is compact, p=2 and $k(|x|) = \int h(|x-y|)h(|y|)dy$ for some $h \in K$, then one can derive $C_{k,2}(TE) \leq C_{k,2}(E)$ from $C_{k,2}(E)^2 = e_k(E)$ and $e_k(TE) \leq e_k(E)$, where $e_k(E) = \max \left\{ \mu(E); \int h(|x-y|)d\mu(x)d\mu(y) \leq 1$, supp $\mu \subset E \right\}$. The inequality $e_k(TE) \leq e_k(E)$ can be proved in a way similar to that of Landkof [2; Theorem 2.9] by the aid of the selection theorem found in [9; Theorem 5.1].

However whether $C_{k,p}(TE) \leq C_{k,p}(E)$ holds or not for general $k \in K$, p>1 and T seems to be unknown. In this note we shall deal with the case when p>1 and k is a general function in K, but T is of the form $Tx=(T_1x_1, \cdots, T_nx_n)$, where T_i $(1\leq i\leq n)$ is a contraction mapping from R to R. We shall prove

THEOREM 2. Let p, k and T be as above. Then

(2)
$$C_{k,p}(TE) \leq C_{k,p}(E)$$
 for all $E \subset \mathbb{R}^n$.

As a simple corollary to Theorem 2, we have

COROLLARY 2. Let p and k be as above. If T is an affine contraction mapping from \mathbb{R}^n to \mathbb{R}^n , Then (2) holds.

The work of Meyers [3] was brought to our attention by Professor

D. R. Adams. In that paper it was proved that (2) holds in case T is an orthogonal projection, which was also obtained in [5; Lemma 1]. Professor N. G. Meyers informed that about ten years ago he proved that (2) holds if T is a special mapping such as a linear contraction mapping or a certain nonlinear mapping. However his work has never been published.

§1. Proof of Theorem 2.

Throughout this section we fix a contraction mapping $T_1: R \to R$. The letters I and J will stand for an (open) interval and a (finite) union of intervals, respectively. We write $I_0 < I_1$ if the left end of I_1 is not smaller than the right end of I_0 . A union J of intervals can be always written as $J = I_0 \cup \cdots \cup I_m$, where $I_{i-1} < I_i$. The length of J is denoted by |J|. We call J^* a gathered union of intervals of J (with respect to I_1) if $|J^*| = |J|$ and

for all $k \in K$ and $x \in R$. If J^* is an interval, then we call it a gathered interval of J. We shall prove later that every union of intervals has a gathered union of intervals (see Lemma 6).

We write $B(x, r) = \{y; |y-x| < r\}$. Let $w_0(x; I) = \min\{x-a, b-x\}$ for an interval I = (a, b). If J is a union of intervals, then we put $w(x; J) = \min w_0(x; I)$, where the minimum is taken over all intervals I satisfying |I| = |J| and

$$\int_I k(|x-y|)dy \leq \int_I k(|x-y|)dy \qquad \text{for all} \quad k \in K \ ,$$

or equivalently,

$$(4) |J \cap B(x, r)| \leq |I \cap B(x, r)| \text{for all } r > 0.$$

Since $|J \cap B(x, r)| \leq 2r$, I = (x-|J|/2, x+|J|/2) satisfies (4), and hence

$$(5) w(x;J) \leq |J|/2.$$

It is convenient to give a different characterization of w(x; J).

LEMMA 1. Let $r_0(x) = \max\{r; |J \cap B(x, r)| = 0\}$ for $x \notin J$ and $r_0(x) = 0$ for $x \in J$. Then

(6)
$$w(x; J) = \max\{|J \cap B(x, r)| - r; r \ge r_0(x)\}$$
.

PROOF. Let $\psi(c, r) = |(c - |J|, c) \cap B(0, r)|$ for $c \le |J|/2$ and r > 0. We observe that $\psi(c, r)$ is a nondecreasing function of $c \in (-\infty, |J|/2]$ for every fixed r > 0, and that if |I| = |J|, then

$$|I \cap B(x, r)| = \psi(w_0(x; I), r).$$

Hence by (4) and (5)

(8)
$$w(x; J) = \min\{c; \psi(c, r) \ge |J \cap B(x, r)| \text{ for all } r > 0\}$$
.

On the other hand, we obtain that if $0 \le c \le |J|/2$, then

$$\psi(c, r) = \begin{cases} 2r & \text{for } 0 < r \leq c \\ r + c & \text{for } c \leq r \leq |J| - c \\ |J| & \text{for } r \geq |J| - c \end{cases},$$

and if c<0, then

(10)
$$\psi(c, r) = \begin{cases} 0 & \text{for } 0 < r \leq -c \\ r + c & \text{for } -c \leq r \leq |J| - c \\ |J| & \text{for } r \geq |J| - c \end{cases}$$

We infer from (8), (9) and (10) that

$$w(x;J) = \min\{c; r+c \ge |J \cap B(x,r)| \text{ for all } r \ge r_0(x)\}$$
 ,

which leads to (6).

As a simple corollary to Lemma 1, we have

(11)
$$w(x; I) = w_0(x; I)$$
 if I is an interval.

By using w(x; J), we have a necessary and sufficient condition for J to have a gathered interval.

LEMMA 2. Let I^* and J be an interval and a union of intervals such that $|I^*| = |J|$. Then I^* is a gathered interval of J if and only if

$$(12) w(x; J) \leq w(T_1 x; I^*)$$

for all $x \in \mathbb{R}$.

PROOF. We note that I^* is a gathered interval of J if and only if

$$|J \cap B(x, r)| \leq |I^* \cap B(T_1 x, r)|$$

for all r>0 and all $x \in \mathbb{R}$. If (13) holds, then it follows from (7) and (11) that

$$|J\cap B(x, r)| \leq \psi(w(T_1x; I^*), r)$$

for all r>0 and all $x \in R$, so that (8) leads to (12).

On the other hand, suppose that (12) holds for all $x \in \mathbb{R}$. Since $\psi(c, r)$ is a nondecreasing function of c on $(-\infty, |J|/2]$ for every r, we have

$$\psi(w(x;J), r) \leq \psi(w(T_1x;I^*), r) \quad \text{for all} \quad r > 0.$$

It follows from (7), (8) and (11) that (13) holds for all r>0 and $x \in R$.

We shall prove later that (12) holds for all $x \in R$ if (12) holds only for finitely many x's determined by J (see Lemma 4). For this purpose we evaluate w(x; J) by writing $J = I_0 \cup \cdots \cup I_m$ with $I_{i-1} < I_i$.

LEMMA 3. For $0 \le i \le j \le m$ let $I_i = (c_i - p_i, c_i + p_i)$, $A_i = [c_{i-1} + p_{i-1}, c_i - p_i]$, $c(i, j) = 2^{-1}(c_i - p_i + c_j + p_j)$, $J(i, j) = \bigcup_{i=i}^{j} I_i$, and $A(i, j) = \bigcup_{i=i+1}^{j} A_i$ if i < j, $A(i, j) = \emptyset$ if i = j. Then w(x; J) is equal to

(14)
$$\max_{0 \le i \le j \le m} \{2^{-1}(|J(i, j)| - |A(i, j)|) - |x - c(i, j)|\}.$$

PROOF. We note that if $i \leq j$, then

(15)
$$c_{i}+p_{j}=c_{i}-p_{i}+|J(i,j)|+|A(i,j)|.$$

Hence

(16)
$$2^{-1}(|J(i, j)| - |A(i, j)|) - |x - c(i, j)| = |J(i, j)| - r(x, i, j)$$

with $r(x, i, j) = \max\{x - c_i + p_i, c_j + p_j - x\}$. We note that r(x, i, j) is the minimum of the set of r such that $B(x, r) \supset J(i, j)$, so that $r(x, i, j) \ge r_0(x)$ and

$$|J \cap B(x, r(x, i, j))| - r(x, i, j) \ge |J(i, j)| - r(x, i, j).$$

In view of (16), (17) and Lemma 1, we obtain that w(x; J) is not smaller than (14).

On the other hand we observe that $-r_0(x)$ equals 0 if $x \in J$,

$$\begin{split} 2^{-1}|J(0,\,0)|-|x-c(0,\,0)| & \text{if} \quad x \leqq c_0 - p_0 \;, \\ 2^{-1}|J(m,\,m)|-|x-c(m,\,m)| & \text{if} \quad x \trianglerighteq c_m + p_m \;, \\ \max\{2^{-1}|J(i,\,i)|-|x-c(i,\,i)|, \;\; 2^{-1}|J(i+1,\,i+1)|-|x-c(i+1,\,i+1)|\} \\ & \text{if} \quad x \in A(i,\,i+1) \quad \text{and} \quad 0 \leqq i \leqq m-1 \;. \end{split}$$

Hence it suffices to prove that w(x; J) is not greater than (14) under the additional assumption that $w(x; J) > -r_0(x)$. Suppose that $|J \cap B(x, r)| - r$

attains the maximum at $r=r_1$. We may assume that there are two integers i and j such that $0 \le i \le j \le m$ and

$$x-r_1=c_i-p_i$$
 , $x+r_1\in \overline{I}_j$

or

$$x-r_1 \in \overline{I}_i$$
, $x+r_1=c_i+p_i$.

Hence we have $r_1 \ge r_0(x)$ and

$$|J \cap B(x, r_1)| - r_1 = |J(i, j)| - r(x, i, j)$$
.

From Lemma 1 and (16) we obtain that w(x; J) is not greater than (14). The lemma follows.

LEMMA 4. Let J be as above. If I^* is an interval such that $|I^*| = |J|$, then the following statements are equivalent:

- (i) I^* is a gathered interval of J.
- (ii) For all $x \in \mathbb{R}$, (12) holds.
- (iii) For x=c(i, j), $0 \le i \le j \le m$, (12) holds.
- (iv) For i, j, $0 \le i \le j \le m$,

(18)
$$2^{-1}(|J(i,j)|-|A(i,j)|) \leq w(T_1c(i,j);I^*).$$

PROOF. We have proved in Lemma 2 that (i) and (ii) are equivalent. It is clear that (iii) follows from (ii). We observe from Lemma 3 that (iii) yields (iv). In order to complete the proof, we suppose (iv) and show (ii).

We infer from Lemma 3 that if w(x;J) attains the local maximum at $x=x_0$, then $x_0=c(i,j)$ and $w(x_0;J)=2^{-1}(|J(i,j)|-|A(i,j)|)$ for some i and j. Let x_0, \dots, x_l $(x_0<\dots< x_l)$ be the points at which w(x;J) attains the local maxima. On account of (18), we obtain $w(x_j;J)\leq w(T_1x_j;I^*)$ for $j=0,\dots,l$.

We shall prove $w(x; J) \leq w(T_1 x; I^*)$ for $x_{j-1} \leq x \leq x_j$ and $1 \leq j \leq l$. Note $|w(T_1 x; I^*) - w(T_1 x_j; I^*)| \leq |T_1 x - T_1 x_j|$. Since T_1 is a contraction mapping, it follows that

$$w(T_1x; I^*) \ge w(T_1x_j; I^*) - |T_1x - T_1x_j| \ge w(T_1x_j; I^*) - |x - x_j| \ge w(x_j; J) - |x - x_j|$$
.

In the same way as above

$$w(T_1x; I^*) \ge w(x_{i-1}; J) - |x - x_{i-1}|$$
.

However Lemma 3 leads to

$$w(x; J) = \max\{w(x_{j-1}; J) - |x - x_{j-1}|, w(x_j; J) - |x - x_j|\}$$

for $x_{j-1} \leq x \leq x_j$. Hence $w(x; J) \leq w(T_1 x; I^*)$. By using

$$w(x;J) = w(x_0;J) - |x-x_0|$$
 for $x < x_0$, $w(x;J) = w(x_i;J) - |x-x_i|$ for $x > x_i$,

we can prove $w(x; J) \le w(T_1 x; I^*)$ for $x < x_0$ or $x > x_i$. Thus the lemma follows.

Suppose that $I^*=(a, b)$ satisfies (18). Since $w(x; I^*)=\min\{x-a, b-x\}$, it follows that $2^{-1}(|J(i, j)|-|A(i, j)|) \leq \min\{T_1c(i, j)-a, b-T_1c(i, j)\}$, so that

(19)
$$a \leq T_1 c(i, j) - 2^{-1} (|J(i, j)| - |A(i, j)|), \\ b \geq T_1 c(i, j) + 2^{-1} (|J(i, j)| - |A(i, j)|).$$

Let $d(J) = \min\{|I^*|; I^* \text{ is an interval satisfying (18) for all } i, j, 0 \le i \le j \le m\}$. From the above observation, we have

$$d(J) = \max\{d'(i, j, i', j'); 0 \le i \le j \le m, 0 \le i' \le j' \le m\},$$

where $d'(i, j, i', j') = T_1c(i, j) - T_1c(i', j') + 2^{-1}(|J(i, j)| - |A(i, j)| + |J(i', j')| - |A(i', j')|)$. Changing the roles of $\{i, j\}$ and $\{i', j'\}$, we obtain that

$$d(J) = \max\{d(i, j, i', j'); 0 \le i \le j \le m, 0 \le i' \le j' \le m\}$$

where $d(i, j, i', j') = |T_1c(i, j) - T_1c(i', j')| + 2^{-1}(|J(i, j)| - |A(i, j)| + |J(i', j')| - |A(i', j')|)$. It follows from Lemma 4 that J has a gathered interval if and only if $d(J) \leq |J|$, or equivalently,

(20)
$$d(i, j, i', j') \leq |J|$$

for all i, j, i', j', $0 \le i \le j \le m$, $0 \le i' \le j' \le m$.

For a subset $S \subset \{0, \dots, m\}$ we write $J(S) = \bigcup_{j \in S} I_j$. By a partition of $\{0, \dots, m\}$ we mean a mutually disjoint family $\{S_1, \dots, S_l\}$ such that $\{0, \dots, m\} = S_1 \cup \dots \cup S_l$. The number l is called the length of the partition $\{S_1, \dots, S_l\}$.

LEMMA 5. Let $\{S_1, S_2\}$ be a partition of $\{0, \dots, m\}$. Suppose that $J(S_1)$ and $J(S_2)$ have gathered intervals I'^* and I''^* . If $I'^* \cap I''^* \neq \emptyset$, then J has a gathered interval.

PROOF. It is sufficient to prove (20) for all $\{i, j, i', j'\} \subset \{0, \dots, m\}$ satisfying $i \leq j$ and $i' \leq j'$. First suppose that $i, j \in S_1$ and $i', j' \in S_2$. Since $I'^* \cap I''^* \neq \emptyset$, we infer from (19) that

$$d(i, j, i', j') \leq \max\{b', b''\} - \min\{a', a''\} < |J|$$

where $I'^*=(a', b')$ and $I''^*=(a'', b'')$.

Secondly suppose that $\{i, j, i', j'\} \subset S_1$. Since $J(S_1)$ has a gathered interval, $d(i, j, i', j') \leq |J(S_1)| < |J|$.

Thirdly suppose that $\{i, j, i'\} \subset S_1$ and $j' \in S_2$. Since $c(i', j') = c(i', j'-1) + 2^{-1}(|I_{i'}| + |A_{i'}|)$, we have

$$|T_1c(i',j')-T_1c(i,j)| \leq |T_1c(i',j'-1)-T_1c(i,j)|+2^{-1}(|I_{j'}|+|A_{j'}|)$$
.

Hence

$$egin{aligned} d(i,\ j,\ i',\ j') &\leq |T_1c(i',\ j'-1) - T_1c(i,\ j)| + 2^{-1}(|I_{j'}| + |A_{j'}|) \ &+ 2^{-1}(|J(i,\ j)| - |A(i,\ j)| + |J(i',\ j')| - |A(i',\ j')|) \ &= d(i,\ j,\ i',\ j'-1) + |I_{i'}| \;. \end{aligned}$$

Repeating this, we obtain

$$d(i, j, i', j') \leq d(i, j, i', l) + |I_{j'}| + \cdots + |I_{l+1}|$$
 ,

where $l = \max\{\nu \in S_1; \nu < j'\}$. Since $\{i, j, i', l\} \subset S_1$ and $\{l+1, \dots, j'\} \subset S_2$, we have

$$d(i, j, i', j') \leq |J(S_1)| + |J(S_2)| = |J|$$
.

Similarly we have (20) in case $\{i, j, j'\} \subset S_1$ and $i' \in S_2$. Changing the roles of S_1 and S_2 , we can prove (20) in every case. Thus the lemma follows.

LEMMA 6. Every union J of intervals has a gathered union of intervals.

PROOF. Let $J = I_0 \cup \cdots \cup I_m$ with $I_{i-1} < I_i$. On account of Lemma 2, we obtain that $I_i^* = (T_1c_i - p_i, T_1c_i + p_i)$ is a gathered interval of I_i for each i. Let $\{S_1, \dots, S_l\}$ be a partition of $\{0, \dots, m\}$ such that

(21) every
$$J(S_i)$$
 has a gathered interval $I^*(S_i)$.

Obviously $\{\{0\}, \cdots, \{m\}\}$ satisfies (21). We assume that $\{S_1, \cdots, S_l\}$ is a partition having the minimum length among partitions satisfying (21). We claim that $\{I^*(S_1), \cdots, I^*(S_l)\}$ is mutually disjoint. Suppose that $I^*(S_1) \cap I^*(S_2) \neq \emptyset$. Applying Lemma 5 to $J(S_1 \cup S_2)$, we observe that $J(S_1 \cup S_2)$ has a gathered interval. Hence $\{S_1 \cup S_2, S_3, \cdots, S_l\}$ is a partition satisfying (21). This is a contradiction. We see that $J^* = I^*(S_1) \cup \cdots \cup I^*(S_l)$ is a gathered union of intervals of J. In fact for any $k \in K$ and any $x \in R$,

$$\int_{J} k(|x-y|)dy = \sum_{i=1}^{l} \int_{J(S_{i})} k(|x-y|)dy$$

$$\leq \sum_{i=1}^{l} \int_{I^{*}(S_{i})} k(|T_{1}x-y|)dy = \int_{J^{*}} k(|T_{1}x-y|)dy.$$

Thus the lemma follows.

By a step function we mean a linear combination of characteristic functions of open rectangles in \mathbb{R}^n .

LEMMA 7. If f is a nonnegative step function on R, then there exists a nonnegative step function f^* on R such that $||f^*||_p \le ||f||_p$ for all $p \ge 1$ and

(22)
$$\int k(|x-y|)f(y)dy \leq \int k(|T_1x-y|)f^*(y)dy$$

for all $k \in K$ and all $x \in R$.

PROOF. Let f be a nonnegative step function on R. We can write $f = \sum_{i=1}^{m} \alpha_i \chi_{J_i}$ such that $J_1 \supset \cdots \supset J_m$ and $\alpha_i > 0$. By the aid of Lemma 6, every J_i has a gathered union J_i^* of intervals. Letting $f^* = \sum_{i=1}^{m} \alpha_i \chi_{J_i^*}$, we observe that f^* satisfies (22).

Now we prove $||f^*||_p \le ||f||_p$ by induction on m. The case m=1 is obvious. We assume that

$$\left\| \sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*} \right\|_p \leq \left\| \sum_{i=1}^{m-1} \alpha_i \chi_{J_i} \right\|_p.$$

Noting that if $p \ge 1$ and $v \ge 0$, then $(u+v)^p - u^p$ is a nondecreasing function of $u \ge 0$, we have

$$||f^*||_p^p = \int_{J_m^*} \left(\alpha_m + \sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*}\right)^p dx + \int_{R \setminus J_m^*} \left(\sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*}\right)^p dx$$

$$= \int_{J_m^*} \left\{ \left(\alpha_m + \sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*}\right)^p - \left(\sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*}\right)^p \right\} dx + \left\|\sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*}\right\|_p^p$$

$$\leq \left\{ (\alpha_1 + \dots + \alpha_m)^p - (\alpha_1 + \dots + \alpha_{m-1})^p \right\} |J_m| + \left\|\sum_{i=1}^{m-1} \alpha_i \chi_{J_i^*}\right\|_p^p.$$

On the other hand,

$$||f||_p^p = \{(\alpha_1 + \cdots + \alpha_m)^p - (\alpha_1 + \cdots + \alpha_{m-1})^p\} |J_m| + \left|\left|\sum_{i=1}^{m-1} \alpha_i \chi_{J_i}\right|\right|_p^p,$$

so that $||f^*||_p \leq ||f||_p$.

PROOF OF THEOREM 2. We may assume that every T_i $(2 \le i \le n)$ is

the identity, because the general case can be proved by iteration. First suppose that E is a compact set. In the same way as in [4; Lemma 2], we can prove

$$C_{k,p}(E)\!=\!\inf\!\left\{\|f\|_p^x;\int k(|x\!-\!y|)f(y)dy\!\ge\!1\ \ \text{on}\ \ E,\right.$$
 f is a nonnegative step function

by using [1; Lemma 2.2.1]. Given $\varepsilon > 0$, we take a nonnegative step function on R^n such that $\int k(|x-y|)f(y)dy \ge 1$ on E and $||f||_p^p < C_{k,p}(E) + \varepsilon$. We write $x=(x_1, x'')$, $f_{x''}(\cdot) = f((\cdot, x''))$ and $k_{x''}(t) = k((t^2 + |x''|^2)^{1/2})$. Obviously $k_{x''} \in K$ for every $x'' \in R^{n-1}$. By the aid of Lemma 7 we can find nonnegative step functions $f_{y''}^*$ on R such that $||f_{y''}^*||_p^p \le ||f_{y''}||_p^p$, $f^*((y_1, y'')) = f_{y''}^*(y_1)$ is a step function on R^n , and

$$\int k_{x''-y''}(|x_1-y_1|)f_{y''}(y_1)dy_1 \leq \int k_{x''-y''}(|T_1x_1-y_1|)f_{y''}^*(y_1)dy_1$$

for all $x_1 \in \mathbb{R}$ and all x'', $y'' \in \mathbb{R}^{n-1}$. Integrating the above quantities with respect to dy'', we have $||f^*||_p^p \le ||f||_p^p$ and

$$\int k(|x-y|)f(y)dy \leq \int k(|Tx-y|)f^*(y)dy$$

on \mathbb{R}^n ; in particular, $\int k(|Tx-y|)f^*(y)dy \ge 1$ on TE. Hence

$$C_{k,p}(TE) \leq ||f^*||_p^p \leq ||f||_p^p < C_{k,p}(E) + \varepsilon$$
.

Since $\varepsilon > 0$ is arbitrary, we have $C_{k,p}(TE) \leq C_{k,p}(E)$.

Let V be an open set. Then there is a sequence of compact sets E_j such that $E_j \uparrow V$. On account of [4; Theorem 6], we have

$$C_{k,p}(TV)\!=\!\lim_{j\to\infty}C_{k,p}(TE_j)\!\leqq\!\lim_{j\to\infty}C_{k,p}(E_j)\!=\!C_{k,p}(V)\;.$$

Since $C_{k,p}$ is an outer capacity ([4; Theorem 1]), for any set E with $C_{k,p}(E) < \infty$ and $\varepsilon > 0$, there is an open set V containing E and $C_{k,p}(V) < C_{k,p}(E) + \varepsilon$. Hence

$$C_{k,p}(TE) {\leq} C_{k,p}(TV) {\leq} C_{k,p}(V) {<} C_{k,p}(E) {+} arepsilon$$
 ,

so that $C_{k,p}(TE) \leq C_{k,p}(E)$. The proof is complete.

§2. Proof of Theorem 1.

We may assume that $1 and <math>2p-n < \beta < 2p-1$, because if p=1, then Theorem 1 follows from Theorem A (iii), and if $\beta = 2p-1$, then $\gamma = 1$ and Theorem 1 is nothing but a known radial limit theorem of Green potentials (see e.g. [7; Theorem 6]). Note $n \ge 3$. The following estimate of Green function for H is well known:

$$(23) A^{-1}x_ny_n|x-y|^{2-n}|x-\bar{y}|^{-2} \leq G(x, y) \leq Ax_ny_n|x-y|^{2-n}|x-\bar{y}|^{-2},$$

where $\bar{y} = (y_1, \dots, y_{n-1}, -y_n)$ for $y = (y_1, \dots, y_n)$ and A is a positive constant depending only on the dimension n. We shall use the following notation:

$$I_j = \{x \in H; 2^{-j-1} \le |x| < 2^{-j}\}$$
, $J_j = \{x \in H; 2^{-j-1} \le x_n < 2^{-j}\}$,

 $I_j^* = I_{j-1} \cup I_j \cup I_{j+1}$ and $J_j^* = J_{j-1} \cup J_j \cup J_{j+1}$. Unless otherwise specified, A will denote a positive constant depending only on n, p, β and γ , possibly changing from one occurrence to the next.

We take a constant c, 0 < c < 1/8, satisfying $(2m)^{-1/7} + 4c \le \{(1-4c)/m\}^{1/7}$. We observe that if $x \in R(\gamma, a, 2m)$, $x_n < 1/2$ and $y \in B(x, 4cx_n)$, then

$$|y'-a'| < |x'-a'| + 4cx_n < \{x/(2m)\}^{1/7} + 4cx_n$$

$$\leq \{(1-4c)x_n/m\}^{1/7} < (y_n/m)^{1/7},$$

and $y_n < x_n + 4cx_n < 1$. Hence

(24) if
$$x \in R(\gamma, a, 2m)$$
 and $x_n < 1/2$, then $B(x, 4cx_n) \subset R(\gamma, a, m)$.

We decompose u into the sum of v, w, and z so that u(x) = v(x) + w(x) + z(x), where

$$v(x) = \int_{B(x,\sigma x_n)} G(x, y) \lambda(y) dy$$
, $w(x) = \int_{B(T,a,m) \setminus B(x,\sigma x_n)} G(x, y) \lambda(y) dy$, $z(x) = \int_{H \setminus B(T,a,m)} G(x, y) \lambda(y) dy$.

We shall examine v, w and z separately. Wu [10; Proposition 3] proved

LEMMA 8. If

(25)
$$\int_{R(7,a,m)} \lambda(y)^p y_n^{2p-n} dy < \infty ,$$

then $w(x) \rightarrow 0$ as x approaches a inside $R(\gamma, a, m)$.

She also stated that $z(x) \to 0$ as x approaches a under a certain condition on λ . Nevertheless her proof is not complete. The inequality on the 8-th line from the bottom in [10; p. 905] is not always valid. In fact, $x^j = (j^{-1}, 0, \cdots, 0, 10mj^{-r}) \in R(\gamma, 0, 5m)$ and $y^j = (j^{-1}, 0, \cdots, 0, mj^{-r}) \in H\backslash R(\gamma, 0, m)$, but $|x^j - y^j|/|y^{j'}| = 9mj^{1-r}$, which tends to 0 as $j \to \infty$ if $\gamma > 1$. By using a different decomposition, Mizuta [8; Theorem 7] showed that w+z has T_r -limit zero at all points $a \in P$ apart from an exceptional set whose $\gamma(\beta+n-2p)$ -dimensional Hausdorff measure zero. For reader's convenience we give

LEMMA 9. If $z \not\equiv \infty$ and

(26)
$$\lim_{t\to 0} t^{r(2p-n-\beta)} \int_{B(a,t)\cap H} \lambda(y)^p y_n^{\beta} dy = 0,$$

then z(x) has limit zero as $x \rightarrow a$ inside $R(\gamma, a, 2m)$.

PROOF. We may assume a=0 and supp $\lambda \subset B(0, 1/2)$. For $j \ge 1$ we let

$$\varphi(j) = 2^{j\gamma(\beta+n-2p)/p} \left(\int_{I_{\delta} \setminus R(7,0,m)} \lambda(y)^p y_n^{\beta} dy \right)^{1/p}$$

We infer from (26) that

$$\lim_{j\to\infty}\varphi(j)=0.$$

Since $\beta < 2p-1$, it follows that

(28)
$$\int_0^t s^{(p-\beta)/(p-1)} ds = At^{(2p-\beta-1)/(p-1)},$$

so that

(29)
$$\int_{I_{j}\backslash R(7,0,m)} \lambda(y) y_{n} dy$$

$$\leq \left\{ \int_{I_{j}\backslash R(7,0,m)} y_{n}^{(p-\beta)/(p-1)} dy \right\}^{(p-1)/p} 2^{-j\gamma(\beta+n-2p)/p} \varphi(j)$$

$$\leq \left\{ \int_{|y'|<2^{-j}} \int_{0}^{m2^{-\gamma j}} y_{n}^{(p-\beta)/(p-1)} dy_{n} dy' \right\}^{(p-1)/p} 2^{-j\gamma(\beta+n-2p)/p} \varphi(j)$$

$$\leq A2^{-j\{(n-1)(p-1)/p+\gamma(2p-\beta-1)/p+\gamma(\beta+n-2p)/p\}} \varphi(j)$$

$$= A2^{-j(n-1)(p-1+\gamma)/p} \varphi(j) .$$

If $x \in I_j$, $y \in I_{j-i}$ and $i \ge 2$, then we have by (23)

$$G(x, y) \leq A2^{n(j-i)}2^{-j}y_n$$
.

Hence (29) leads to

$$\sup_{x \in I_{j}} \int_{I_{j-i} \setminus R(\gamma,0,m)} G(x, y) \lambda(y) dy \\
\leq A 2^{n(j-i)} 2^{-j} 2^{(i-j)(n-1)(p-1+\gamma)/p} \varphi(j-i) \\
\leq A 2^{-i} 2^{(i-j)(n-1)(\gamma-1)/p} \varphi(j-i) \leq A 2^{-i} \varphi(j-i) ,$$

if $2 \le i \le j-1$. Therefore

$$\sup_{x \in I_j} \int_{\substack{i=1 \ i=2}}^{j-1} I_{j-i} \setminus \mathbb{R}^{(i,0,m)} G(x, y) \lambda(y) dy \leq A \sum_{i=2}^{j-1} 2^{-i} \varphi(j-i) .$$

We infer from (27) that the last term tends to zero as $j \to \infty$. Similarly it follows from $G(x, y) \leq A2^{(n-1)j}y_n$ for $x \in I_j$, $y \in I_{j+i}$ and $i \geq 2$ that

$$\begin{split} \sup_{x \in I_j} \int_{\substack{0 \\ j=2}}^{\infty} I_{j+i} \setminus R(I,0,m)} G(x, y) \lambda(y) dy \\ & \leq A \sum_{i=2}^{\infty} 2^{(n-1)j} 2^{-(i+j)(n-1)(p-1+j)/p} \varphi(j+i) \\ & \leq A \sum_{j=2}^{\infty} 2^{(1-n)i} \varphi(j+i) . \end{split}$$

The last term has limit zero as $j \rightarrow \infty$.

Now let c be the constant taken at the beginning of this section. We observe from (24) that if $x \in R(\gamma, 0, 2m)$, $x_n < 1/2$, $y \in H \setminus R(\gamma, 0, m)$ and $|y'-x'| < cx_n$, then $|x_n-y_n| \ge 3cx_n$. Put $S_x = \{y \in I_j^* \setminus R(\gamma, 0, m); |y'-x'| < cx_n\}$ and $S_x' = I_j^* \setminus (R(\gamma, 0, m) \cup S_x)$ for $x \in I_j \cap R(\gamma, 0, 2m)$. It follows from (23) that if $x \in R(\gamma, 0, 2m)$ and $y \in S_x$, then $G(x, y) \le Ax_n^{1-n}y_n$. Hence we have by (28)

$$\begin{split} \sup_{x \in I_j \cap R(\gamma,0,2m)} & \int_{S_x} G(x,y) \lambda(y) dy \\ & \leq A \{ \varphi(j-1) + \varphi(j) + \varphi(j+1) \} 2^{j\gamma(2p-\beta-n)/p} \\ & \times \sup_{x \in I_j \cap R(\gamma,0,2m)} x_n^{1-n} \Big(\int_{S_x} y_n^{(p-\beta)/(p-1)} dy \Big)^{1/p'} \\ & \leq A \{ \varphi(j-1) + \varphi(j) + \varphi(j+1) \} 2^{j\gamma(2p-\beta-n)/p} \\ & \times \sup_{x \in I_j \cap R(\gamma,0,2m)} x_n^{1-n} \Big\{ \int_{|y'-x'| < \sigma x_n} dy' \int_0^{m2^{-\gamma(j-1)}} y_n^{(p-\beta)/(p-1)} dy_n \Big\}^{1/p'} \\ & = A \{ \varphi(j-1) + \varphi(j) + \varphi(j+1) \} \;, \end{split}$$

where p'=p/(p-1). Using $G(x, y) \leq Ax_n y_n |x'-y'|^{-n}$, we have

$$\begin{split} \sup_{x \in I_j \cap R(\gamma,0,2m)} \int_{S_x'} G(x,\,y) \lambda(y) dy \\ & \leq A \{ \varphi(j-1) + \varphi(j) + \varphi(j+1) \} 2^{j\gamma(2p-\beta-n)/p} \\ & \times \sup_{x \in I_j \cap R(\gamma,0,2m)} x_n \Big\{ \int_{|y'-x'| \geq \sigma x_n} |x'-y'|^{-np'} dy' \int_0^{m2-\gamma(j-1)} y_n^{(p-\beta)/(p-1)} dy_n \Big\}^{1/p'} \\ & \leq A \{ \varphi(j-1) + \varphi(j) + \varphi(j+1) \} \; . \end{split}$$

Therefore the lemma follows from (27).

REMARK 1. The assumption (26) can be replaced by

(26')
$$\int_{B(a,t)\cap H} \lambda(y)^p y_n^{2p-n} dy < \infty \quad \text{for some} \quad t>0 .$$

In fact, letting $\beta = 2p - n$ and

$$\varphi(j) = \left(\int_{I_j \setminus R(7,0,m)} \lambda(y)^p y_n^{2p-n} dy\right)^{1/p}$$
 ,

we observe that (27) and (28) hold, and that the same argument as above is applicable.

We refer a proof of the following covering lemma to [2; Lemma 3.2]. Let C(x, r) be the closed ball with center at x and radius r.

LEMMA 10. Suppose that a set $E \subset \mathbb{R}^n$ is covered by closed balls C(x, r(x)) such that $x \in E$ and $\sup_{x \in E} r(x) < \infty$. Then there exists a covering $\{C(x_j, r(x_j))\}_j$ of E whose multiplicity is not larger than a certain constant N_0 depending only on the dimension n.

Let $V = \{a \in P; (25) \text{ does not hold for some } m > 0\}$ and $V' = \{a \in P; (26) \text{ does not hold for some } m > 0\}$. On account of Lemmas 8 and 9, if $a \in P \setminus (V \cup V')$, then

(30)
$$\lim_{x \to a, x \in R(\gamma, a, m)} \{w(x) + z(x)\} = 0 \quad \text{for } m > 0.$$

Hence it is natural to ask if we can take $V \cup V'$ as V_r in Theorem 1. We shall show that this is true. First we see

LEMMA 11. Let V and V' be as above and let λ satisfy (1). Then the $(\beta-2p+n)\gamma$ -dimensional Hausdorff measure of $V \cup V'$ is zero.

PROOF. Suppose that λ satisfies (1). Wu [10; Proposition 6] proved that V has $(\beta-2p+n)\gamma$ -dimensional Hausdorff measure zero. Note $V'=\bigcup_{\epsilon>0}V'_{\epsilon}$ with

$$V_{\epsilon}' = \left\{ a \in P; \limsup_{t \to 0} t^{r(2p-\beta-n)} \int_{B(a,t) \cap H} \lambda(y)^p y_n^{\beta} dy > \epsilon \right\}.$$

It is sufficient to prove that the $(\beta-2p+n)\gamma$ -dimensional Hausdorff measure of V'_{\bullet} is zero. On account of (1), there is $\rho>0$ such that

$$\int_{\{y:0< y_m \le \rho\}} \lambda(y)^p y_m^{\beta} dy < \eta.$$

For each $a \in V'_{\epsilon}$ find r(a), $0 < r(a) \le \rho$, such that

$$r(a)^{r(2p-\beta-n)}\int_{C(a,r(a))\cap H}\lambda(y)^py_n^{\beta}dy>\varepsilon$$
.

By Lemma 10 we can choose $\{a_i\}_i \subset V'_i$ such that

$$V'_{\epsilon} \subset \bigcup_{j} C(a_{j}, r(a_{j}))$$
 ,

$$arepsilon^{-1}\int_{C(a_i,r(a_i))\cap H} \lambda(y)^p y_n^{\beta} dy > r(a_j)^{\gamma(\beta-2p+n)}$$
 ,

the multiplicity of $\{C(a_i, r(a_i))\}_i \leq N_0$.

Since $0 < r(a_i) \le \rho$,

$$\sum_{j} r(a_{j})^{r(\beta-2p+n)} \leq N_{0} \varepsilon^{-1} \int_{\{y:0 < y_{n} \leq \rho\}} \lambda(y)^{p} y_{n}^{\beta} dy < N_{0} \varepsilon^{-1} \eta.$$

From the arbitrariness of η we obtain that V'_i has $(\beta-2p+n)\gamma$ -dimensional Hausdorff measure zero. The lemma follows.

Next we show that if $a \in P \setminus (V \cup V')$, then there is a certain exceptional set F such that

$$\lim_{x\to a, x\in R(7,a,m)\backslash F} u(x) = 0 \quad \text{for} \quad m>0.$$

To make it precise, we introduce

DEFINITION 1 (cf. [8; §1]). A set $F \subset H$ is called (2, p)-thin on P if

$$\sum_{j=1}^{\infty} B_{2,p}(S_j(F \cap J_j)) < \infty$$
 ,

where $S_j x = 2^j x$. A function f on H is said to have (2, p)-fine T_r -limit l at a if there is a set F (2, p)-thin on P for which

$$\lim_{x\to a, x\in R(r,a,m)\backslash F} f(x) = l \quad \text{for} \quad m>0.$$

REMARK 2. Let 2p > n. It is known that there is a positive constant κ such that $B_{2,p}(E) \ge \kappa$ for $E \ne \emptyset$ ([4; Theorem 20]). Hence if F is (2, p)-thin on P, then $\overline{F} \cap P = \emptyset$; the (2, p)-fine T_r -limit and T_r -limit are equivalent.

LEMMA 12 (cf. [8; Theorem 7]). Let V and V' be as in Lemma 11. If $a \in P \setminus V$, then v has (2, p)-fine T_r -limit zero at a. Moreover if $a \in P \setminus (V \cup V')$, then u has (2, p)-fine T_r -limit zero at a.

PROOF. Let $a \in P \setminus V$ and m > 0. Without loss of generality we may assume that a = 0. Let c be the constant taken at the beginning of this section. We observe from (24) that if $x \in J_j \cap R(\gamma, 0, 2m)$, then

(31)
$$\bigcup_{y \in C(x,2^{-1-j}c) \cap J_{j}} B(y, cy_{n}) \subset B(x, 2^{-1-j}c + 2^{-j}c)$$
$$\subset B(x, 2^{1-j}c) \subset J_{i}^{*} \cap B(x, 4cx_{n}) \subset J_{i}^{*} \cap R(\gamma, 0, m).$$

By Lemma 10 we can choose $\{x_i^{(j)}\}_{i=1}^{N(j)} \subset J_i \cap R(\gamma, 0, 2m)$ such that

(32)
$$J_{j} \cap R(\gamma, 0, 2m) \subset \bigcup_{i=1}^{N(j)} C(x_{i}^{(j)}, 2^{-1-j}c) \\ \subset \bigcup_{i=1}^{N(j)} B(x_{i}^{(j)}, 2^{1-j}c) \subset J_{j}^{*} \cap R(\gamma, 0, m),$$

and the multiplicity of $\{C(x_i^{(j)}, 2^{-1-j}c)\}_{i=1}^{N(j)}$ is not greater than N_0 . Hence the multiplicity of $\{B(x_i^{(j)}, 2^{1-j}c)\}_{i=1}^{N(j)}$ is not greater than a constant depending only on the dimension n.

Let $F_{m,t} = \{x \in R(\gamma, 0, 2m); \ v(x) \ge t\}$ for t > 0. Since $G(x, y) \le |x - y|^{2-n}$, we have from (31)

$$\begin{split} F_{m,t} \cap C(x_i^{(j)}, \, 2^{-1-j}c) \cap J_j \\ \subset & \Big\{ x \in C(x_i^{(j)}, \, 2^{-1-j}c) \cap J_j; \, \int_{B(x_i^{(j)}, 2^{1-j}o)} |x-y|^{2-n} \lambda(y) dy \! \ge \! t \Big\} \ , \end{split}$$

so that

$$\begin{split} R_{2,p}(F_{m,t} \cap C(x_i^{(j)}, \, 2^{-1-j}c) \cap J_j; \, B(x_i^{(j)}, \, 2^{1-j}c)) \\ \leq & t^{-p} \int_{B(x_i^{(j)}, 2^{1-j}o)} \lambda(y)^p dy \, \, , \end{split}$$

where $R_{2,p}(E; U)$ denotes the Riesz capacity relative to an open set U defined by $R_{2,p}(E; U) = \inf \left\{ ||f||_p^p; \int k_2(|x-y|)f(y)dy \ge 1 \text{ on } E, f \text{ is a non-negative measurable function vanishing on } R^n \setminus U \right\}$ with $k_2(t) = t^{2-n}$ (see [7; p. 116]). Since the multiplicity of the covering $\{B(x_i^{(j)}, 2^{1-j}c)\}_{i=1}^{N(j)}$ is independent of j, it follows from (32) that

$$\begin{split} \sum_{i=1}^{N(j)} R_{2,p}(F_{m,i} \cap C(x_i^{(j)}, \, 2^{-1-j}c) \cap J_j; \, B(x_i^{(j)}, \, 2^{1-j}c)) \\ \leq & At^{-p} \int_{J_j^* \cap R(I,0,m)} \lambda(y)^p dy \end{split}.$$

On account of (25), we have

$$\sum_{j=1}^{\infty} 2^{j(n-2p)} \sum_{i=1}^{N(j)} R_{2,p}(F_{m,i} \cap C(x_i^{(j)}, 2^{-1-j}c) \cap J_j; B(x_i^{(j)}, 2^{1-j}c)) < \infty.$$

It is well known that $R_{2,p}(rE;rU)=r^{n-2p}R_{2,p}(E;U)$ (see [7; p. 116]), so that

$$\sum_{j=1}^{\infty} \sum_{i=1}^{N(j)} R_{2,p}(S_j(F_{m,t} \cap C(x_i^{(j)}, 2^{-1-j}c) \cap J_j); S_j(B(x_i^{(j)}, 2^{1-j}c))) < \infty.$$

Since the radius of $S_j(B(x_i^{(j)}, 2^{1-j}c))$ is 2c, independent of j and i, there is a positive constant A independent of j and i such that $g_2(|x-y|) \ge A|x-y|^{2-n}$ for $x \in S_j(C(x_i^{(j)}, 2^{1-j}c))$ and $y \in S_j(B(x_i^{(j)}, 2^{1-j}c))$, where g_2 is the Bessel kernel as was defined in the introduction. From the definition of L^p -capacities it follows that

$$\begin{split} B_{2,p}(S_j(F_{m,t} \cap C(x_i^{(j)}, \, 2^{-1-j}c) \cap J_j)) \\ &\leq AR_{2,p}(S_i(F_{m,t} \cap C(x_i^{(j)}, \, 2^{-1-j}c) \cap J_i); \, S_i(B(x_i^{(j)}, \, 2^{1-j}c))) \,\,, \end{split}$$

and hence

$$\sum_{i=1}^{\infty} \sum_{i=1}^{N(j)} B_{2,p}(S_j(F_{m,t} \cap C(x_i^{(j)}, 2^{-1-j}c) \cap J_j)) < \infty.$$

Since $B_{2,p}$ is countably subadditive, we have

$$\sum_{j=1}^{\infty}B_{2,p}(S_{j}(F_{m,t}\cap J_{j}))\!<\!\infty$$
 ,

so that $F_{m,t}$ is (2, p)-thin on P.

For positive integers k and l we find j(k, l) such that

$$\sum_{j=i(k,l)}^{\infty} B_{2,p}(S_j(F_{1/k,1/l}\cap J_j)) < 2^{-k-l}$$
 .

Let

$$F = \bigcup_{k=1}^{\infty} \bigcup_{l=1}^{\infty} \bigcup_{i=i(k,l)}^{\infty} F_{1/k,1/l} \cap J_j$$
.

Since $B_{2,p}$ is countably subadditive,

$$\begin{split} \sum_{j=1}^{\infty} B_{2,p}(S_{j}(F \cap J_{j})) & \leqq \sum_{j=1}^{\infty} \sum_{j < k, l > \leqq j} B_{2,p}(S_{j}(F_{1/k, 1/l} \cap J_{j})) \\ & \leqq \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \sum_{j=j < k, l > l} B_{2,p}(S_{j}(F_{1/k, 1/l} \cap J_{j})) \\ & \leqq \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k-l} < \infty \end{split},$$

so that F is (2, p)-thin on P. From the construction of F it is easy to see that

$$\lim_{x\to 0, x\in R(\gamma,0,m)\setminus F} v(x) = 0 \quad \text{for} \quad m>0.$$

Hence v has (2, p)-fine T_r -limit zero at 0. The second assertion immediately follows from Lemmas 8 and 9. The proof is complete.

REMARK 3. Let 2p > n. It follows from Remark 2 that if $a \in P \setminus (V \cup V')$, then u has T_r -limit zero.

We consider a relation between (2, p)-fine T_r -limits and limits along curves $\Gamma(\gamma, a, b)$. We have

LEMMA 13. Let $1 \le p \le n/2$. If f has (2, p)-fine T_r -limit l at a, then $\{b \in Q; f(x) \text{ does not approach } l$ as $x \to a$ along $\Gamma(\gamma, a, b)\}$ has $B_{2,p}$ -capacity zero.

PROOF. We may assume a=0. Let F be (2, p)-thin on P and

$$\lim_{x\to 0, x\in R(r,0,m)\setminus F} f(x) = l \quad \text{for} \quad m>0.$$

It is sufficient to show

$$E' = \{b \in Q; \ \Gamma(\gamma, 0, b) \subset R(\gamma, 0, 2m), \ f(x) \text{ does not approach } l \text{ as } x \to a \text{ along } \Gamma(\gamma, 0, b)\}$$

has $B_{2,p}$ -capacity zero for each m>0.

Let $T_j x = (2^{-j(1-1/7)}x', x_n)$, $Ux = (x_n^{-1/7}x', x_n)$ and $\pi x = (x', 1)$. Since $x \in \Gamma(\gamma, 0, b)$ if and only if $x' = x_n^{1/7}b'$, we have

$$F \cap \Gamma(\gamma, 0, b) \cap J_j \neq \emptyset \Leftrightarrow \pi U T_j S_j (F \cap \Gamma(\gamma, 0, b) \cap J_j) = \{b\}$$
.

Hence $E' \subset \limsup_{j\to\infty} \pi U T_j S_j(F \cap J_j)$. We observe that π and T_j are affine contraction mappings and U is a bi-Lipschitz mapping on $R(\gamma, 0, m) \cap J_0$. Hence Corollary 2 and [6; Lemma 3] yield

$$B_{2,p}(\pi UT_iS_i(F\cap J_i)) \leq AB_{2,p}(S_i(F\cap J_i))$$

so that

$$\sum_{j=1}^{\infty}B_{2,p}(\pi UT_{j}S_{j}(F\cap J_{j}))<\infty$$
 ,

which implies that

$$B_{2,p}(\limsup_{j\to\infty} \pi UT_jS_j(F\cap J_j)) = B_{2,p}(E') = 0$$
.

The proof is complete.

PROOF OF THEOREM 1 AND COROLLARY 1. Combining Lemma 11, 12 and 13, we obtain the theorem. Suppose that λ satisfies (1) with $\beta \leq 2p-n$. Then

$$\int_{\mathbb{R}(a,t)\cap H} \lambda(y)^p y_n^{2p-n} dy < \infty \qquad \text{for} \quad a \in P, \ 0 < t < 1 \ ,$$

and in particular (25) for all $\gamma \ge 1$ holds at any point a on P. Hence by Lemma 8 and Remark 1 we have (30) for any $a \in P$ and $\gamma \ge 1$. This with Lemmas 12, 13 and Remark 3 yields the corollary.

§3. Remarks.

We shall show that the size of each of V_{τ} and E_a in Theorem 1 is best possible. We give

PROPOSITION 1. Let $p \ge 1$, $2p - n < \beta \le 2p - 1$ and $1 \le \gamma \le (n - 1)/(\beta - 2p + n)$. Suppose that $V \subset P$ and $(\beta - 2p + n)\gamma$ -dimensional Hausdorff measure of V is zero. Then there exists a nonnegative measurable function λ on H satisfying (1) such that $G(x, \lambda)$ fails to have (2, p)-fine T_r -limit zero at any $\xi \in V$.

In order to prove the proposition, we give a necessary condition for a set to be (2, p)-thin on P. Let $\delta(x) = \operatorname{dist}(x, P)$.

LEMMA 14. Let $F \subset H$. If there are l, 0 < l < 1/4, and $\{x^i\}_i \subset F$ such that $B(x^i, l\delta(x^i)) \subset F$ and $\liminf_{i \to \infty} \delta(x^i) = 0$, then F is not (2, p)-thin on P.

PROOF. Let j(i) be the integer such that $2^{-j(i)-1} \leq \delta(x^i) < 2^{-j(i)}$. Taking a subsequence of $\{x^i\}$, if necessary, we may assume that $\lim_{i\to\infty} j(i) = \infty$. Since 0 < l < 1/4 and $B(x^i, l\delta(x^i)) \subset F$, it follows that $F \cap J_{j(i)}$ includes a ball with radius $l2^{-j(i)-2}$, so that $S_{j(i)}(F \cap J_{j(i)})$ includes a ball with radius l/4. Hence $B_{2,p}(S_{j(i)}(F \cap J_{j(i)})) \geq A$ with A independent of i, so that F is not (2, p)-thin on P.

PROOF OF PROPOSITION 1. Let m>0. We shall find a nonnegative measurable function λ satisfying (1) such that $G(\cdot, \lambda) \not\equiv \infty$ and $\{x \in R(\gamma, \xi, m); G(x, \lambda) \geq 1\}$ is not (2, p)-thin on P for every $\xi \in V$. Obviously $G(\cdot, \lambda)$ fails to have (2, p)-fine T_r -limit zero at $\xi \in V$.

Take a constant k>m. We find a constant l, 0< l<1/4, such that

$$m(kl+1)^r \leq (1-l)k.$$

Let $i \ge 2$ and $ki^{-\gamma} \le 1$. Since the $(\beta - 2p + n)\gamma$ -dimensional Hausdorff measure of V is zero, there are $\xi^{ij} = (\xi_1^{ij}, \dots, \xi_{n-1}^{ij}, 0) \in P$ and r_{ij} , $0 < r_{ij} < 1/i$, such that

(34)
$$V \subset \bigcup_{i} B(\xi^{ij}, r_{ij}), \qquad \sum_{i} r_{ij}^{(\beta-2p+n)\gamma} < 2^{-i}.$$

Put $x^{ij} = (\xi_1^{ij}, \dots, \xi_{n-1}^{ij}, kr_{ij}^{\gamma})$, $\lambda_{ij}(x) = \delta(x^{ij})^{-2}$ on $B(x^{ij}, 2l\delta(x^{ij}))$ and $\lambda_{ij}(x) = 0$ elsewhere. We obtain from (23) that if $x \in B(x_i^j, l\delta(x^{ij}))$ and $y \in B(x^{ij}, 2l\delta(x^{ij}))$, then $G(x, y) \ge A\delta(x^{ij})^{2-n}$, so that

$$G(x, \lambda_{ij}) \ge A\delta(x^{ij})^{2-n} \|\lambda_{ij}\|_1 = A$$
 on $B(x^{ij}, l\delta(x^{ij}))$,

where A is independent of i and j. Hence we can find a constant A_0 such that $\lambda_i = A_0 \sup_j \lambda_{ij}$ satisfies

$$G(x, \lambda_i) \ge 1$$
 on $\bigcup_i B(x^{ij}, l\delta(x^{ij}))$.

Since $\delta(x^{ij}) = kr_{ij}^{r}$, it follows from (34) that

$$\int \lambda_i(y)^p \delta(y)^\beta dy \leq A_0^p \sum_j \int \lambda_{ij}(y)^p \delta(y)^\beta dy \leq A \sum_j \delta(x^{ij})^{\beta-2p+n} < A2^{-i} \ .$$

Noting $n-1 \ge \beta -2p+n$ and $\delta(x^{ij}) = kr_{ij}^{\gamma} < ki^{-\gamma} \le 1$, we have

$$\int \lambda_i(y)\delta(y)dy \leq A_0 \sum_j \int \lambda_{ij}(y)\delta(y)dy \leq A \sum_j \delta(x^{ij})^{n-1} < A2^{-i}.$$

Let $\lambda = \sum_{i=2}^{\infty} \lambda_i$. Then

(35)
$$G(x, \lambda) \ge 1$$
 on $\bigcup_{i,j} B(x^{ij}, l\delta(x^{ij}))$

and λ satisfies (1). Since $\int \lambda(y)\delta(y)dy < \infty$, $G(\cdot, \lambda) \not\equiv \infty$.

Let $\xi \in V$. We shall show that $F = \{x \in R(\gamma, \xi, m); G(x, \lambda) \ge 1\}$ is not (2, p)-thin on P. Let $i \ge 2$ and $ki^{-\gamma} \le 1$. From (34) we find ξ^{ij} and r_{ij} such that $\xi \in B(\xi^{ij}, r_{ij})$ and $0 < r_{ij} < 1/i$. For simplicity we put $\xi(i) = \xi^{ij}$, $r(i) = r_{ij}$ and $x(i) = x^{ij} = (\xi_1^{ij}, \dots, \xi_{n-1}^{ij}, kr_{ij}^{\gamma})$. Take $x \in B(x(i), l\delta(x(i)))$ and

observe that

$$|x'-\xi'| \leq |x-x(i)| + |\xi(i)-\xi| < l\delta(x(i)) + r(i)$$

$$= (lkr(i)^{r-1} + 1)r(i) \leq (lk+1)r(i),$$

and that

$$(1-l)kr(i)^{\gamma} = (1-l)\delta(x(i)) < \delta(x) < (1+l)kr(i)^{\gamma} < (1+l)ki^{-\gamma}$$
.

On account of (33), we have

$$m |x' - \xi'|^{\gamma} < m(lk+1)^{\gamma} r(i)^{\gamma} \le (1-l)kr(i)^{\gamma} < \delta(x) < (1+l)ki^{-\gamma}$$
 ,

so that

$$B(x(i), l\delta(x(i))) \subset R(\gamma, \xi, m)$$
 for $i, (1+l)ki^{-\gamma} < 1$.

Hence (35) leads to $B(x(i), l\delta(x(i))) \subset F$ if i is large. Since $\lim_{i \to \infty} \delta(x(i)) = 0$, we infer from Lemma 14 that F is not (2, p)-thin on P. The proof is complete.

Let us see that the size of E_a is best possible.

PROPOSITION 2. Let $1 \le p \le n/2$ and $\gamma \ge 1$. If $E \subset Q$ and $B_{2,p}(E) = 0$, then there is a nonnegative measurable function λ on H such that $G(\cdot, \lambda)$ has (2, p)-fine T_r -limit zero at 0, but

(36)
$$\lim_{x\to 0, x\in \Gamma(\gamma,0,b)} G(x,\lambda) = \infty$$

for any $b \in E$.

PROOF. Let $E_j = \{(2^{-j/7}x', 2^{-j}); x \in E\}$. Note that $B_{2,p}(E_j) = 0$. We recall that the Bessel kernel $g_2(t)$ is comparable to t^{2-n} as $t \to 0$. On account of (23), we find a nonnegative measurable function λ_j such that

$$\operatorname{supp} \lambda_j \subset J_{j-1} \cup J_j \cup J_{j+1}$$
 , $\int \lambda_j(y)^p dy < \infty$, $G(x, \lambda_j) = \infty$ on E_j , $G(x, \lambda_j) \not\equiv \infty$.

Let $\eta \leq 2p-n$. We choose positive numbers α_j such that the function λ defined by $\sum_j \alpha_j \lambda_j$ satisfies $\int_H \lambda(y)^p y_n^{\eta} dy < \infty$ and $G(x, \lambda) \not\equiv \infty$. It is clear that (25) for any m>0 and (26') hold at any $a \in P$, so that Lemma 8, 12

and Remark 1 yield that $G(\cdot, \lambda)$ has (2, p)-fine T_r -limit zero at any $a \in P$. If $b \in E$, then $b^j = (2^{-j/r}b', 2^{-j}) \in \Gamma(\gamma, 0, b) \cap \{x \in H; \delta(x) = 2^{-j}\} \subset E_j$, so that $G(b^j, \lambda) = \infty$. Hence (36) holds.

References

- [1] B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math., 103 (1960), 139-215.
- [2] N.S. LANDKOF, Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.
- [3] N. G. MEYERS, Continuity of Bessel potentials, Israel Math. J., 11 (1972), 271-283.
- [4] N.G. MEYERS, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
- [5] Y. MIZUTA, On the limits of p-precise functions along lines parallel to the coordinate axes of \mathbb{R}^n , Hiroshima Math. J., 6 (1976), 353-357.
- [6] Y. MIZUTA, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J., 8 (1978), 415-437.
- [7] Y. MIZUTA, Boundary limits of Green potentials of order α , Hiroshima Math. J., 11 (1981), 111-123.
- [8] Y. MIZUTA, On the behavior of potentials near a hyperplane, Hiroshima Math. J., 13 (1983), 529-542.
- [9] T. Parthasarathy, Selection theorems and their applications, Lecture Notes in Math., 263, Springer-Verlag, Berlin, 1972.
- [10] J.-M. G. Wu, L^p-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J., 28 (1979), 895-911.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
GAKUSHUIN UNIVERSITY
MEJIRO, TOSHIMA-KU, TOKYO 171