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In the theory of singularity of smooth mapping, finite determinacy
has been studied by many authors [6]. In [4], J. Mather gave a complete
characterization of finite determinacy, but in general it is very difficult to
check whether a given map-germ $f:(R^{n}, 0)\rightarrow(R^{p}, 0)$ is finitely determined
or not except for stable singularities or the case $p=1$ . In this paper
we give some classification of smooth mappings $f:(R^{n}, 0)\rightarrow(R^{2},0)$ by an
elementary method.

In \S 1 we recall J. Mather’s theorem on finite determinacy.
In \S 2 we prove what we call Normal Form Theorem (Theorem 2.1,

Theorem 2.5 and Theorem 2.7). In Theorem 2.1 we give normal forms
of function-germs. As its immediate corollaries we obtain the Morse
lemma (Example 2.3) and the splitting lemma for functions (Example 2.4).
These corollaries are well-known and have nothing new, however from
these examples show how convenient and efficient it will be if we genera-
lize Theorem 2.1 to the case of map-germs. This is what we have done.
(Theorem 2.5, Theorem 2.6).

In \S 3 we prove the Splitting Lemmas for map-germs of corank 1
(Theorem 3.2 and Theorem 3.3) using the normal forms obtained in \S 2.

In \S 4 as an application of our normal forms and splitting lemmas,
we classify finitely determined map-germs of $R^{n}$ into $R^{2}$ of corank 1 whose
3-jets are non-trivial. An estimation of order of their determinacy is
given as well. From the splitting lemmas develloped in \S 3, the classifi.
cation and the estimation of order of determinacy of these map-germs
are reduced to those of map-germs of plane to plane. Then they are
carried out in a rather elementary way.

\S 1. Preliminaries.

In this section we recall Mather’s theorem. Let $g_{n}$ be the ring of
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$C^{\infty}$-function germs $(R^{n}, O)\rightarrow R$ and $\mathfrak{m}$ be the maximal ideal of $g_{n}$ . By
$g(n, p)$ we denote the set of $C^{\infty}$-map germs $f:(R^{n}, 0)\rightarrow(R^{p}, 0)$ . Two
map-germs $f,$ $g\in C(n, p)$ are k-jet equivalent if the all partial derivatives
of order $\leqq k$ at the origin are equal. We denote by $J^{k}(n, p)$ the k-jet
equivalent classes and we call it k-jet space. There is a canonical pro-
jection $j^{k}:g(n, p)\rightarrow J^{k}(n, p)$ .

Let $L(n)$ (resp. $L(p)$ ) be the group of $C^{\infty}$-local diffeomorphisms of
$(R^{n}, 0)$ (resp. $(R^{p},$ $0)$). The group $\ovalbox{\tt\small REJECT}=L(n)\times L(p)$ acts on $g(n, p)$ as
follows; $(\varphi, \psi)f=\psi\circ f\circ\varphi$ where $(\varphi, \psi)e$ SY and $f\in g(n, p)$ .

DEFINITION 1.1. A map-germ $f\in g(n, p)$ is called k-determined if for
any $geg(n, p)$ such that $j^{k}f=j^{k}g,$ $f$ and $g$ are contained in the same
$\mathscr{A}$-orbit. A map-germ $f$ is called finitely determined if there is a
positive integer $k$ such that $f$ is k-determined.

DEFINITION 1.2. A map-germ $f\in g(n, p)$ is called $C^{0}-k$-determined if
for any $g\in g(n, p)$ such that $j^{k}f=j^{k}g$ , there exist homeomorphisms
$h:(R^{n}, 0)\rightarrow(R^{n}, 0)$ and $h$‘: $(R^{p}, 0)\rightarrow(R^{p}, 0)$ such that $g=h‘\circ f\circ h$ .

DEFINITION 1.3. For a $C^{\infty}$-map germ $f$, a vector field along $f$ is a
$C^{\infty}$-map germ $\zeta:(R^{n}, 0)\rightarrow TR^{p}$ such that $\pi\circ\zeta=f$ where $\pi$ is a projection
$TR^{p}\rightarrow R^{p}$ . By $\theta(f)$ we denote the set of all vector fields along $f$. Let
$\theta(n)$ (resp. $\theta(p)$ ) denote the set of all $C^{\infty}$-vector fields germs at $(R^{n}, 0)$

(resp. $(R^{p},$ $0)$). We define $tf:\theta(n)\rightarrow\theta(f)$ and $wf:\theta(p)\rightarrow\theta(f)$ by

$tf(\xi)=Tf(\xi)$ , $(\xi\in\theta(n))$ and
$wf(\eta)=\eta\circ f$ , $(\eta\in\theta(p))$ .

THEOREM 1.4 (Mather [4]). A $C^{\infty}$-map germ $f:(R^{n}, 0)\rightarrow(R^{p}, 0)$ is
finitely determined if and only if there is a positive integer $k$ such
that

$tf(\theta(n))+wf(\theta(p))\supset \mathfrak{m}^{k}\theta(f)$ .
\S 2. Elementary normal form theorem.

From Mather’s theorem, we easily see that the classification of
finitely determined $C^{\infty}$-map germs can be reduced to that of formal
mappings. Thus, in this section we consider formal mappings.

Let $K$ be the field of real numbers $R$ or complex numbers $C$. We
denote by $H_{\dot{f}}$ the vector space of homogeneous polynomials of degree $j$

and by ni the maximal ideal of $K[[x_{1}, \cdots, x_{n}]]$ . For a formal power
series $f\in K[[x_{1}, \cdots, x_{n}]]$ , we represent $f$ as $f=f_{(k)}+f_{(k+1)}+\cdots,$ $f_{(j)}\in H_{\dot{f}}$
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$(j\geqq k)$ . By $\hat{\mathfrak{m}}^{2}\langle\partial f_{(k)}/\partial x\rangle$ we denote the ideal $\hat{\mathfrak{m}}^{2}\langle\partial f_{(k)}/\partial x_{1}, \cdots, \partial f_{(k)}/\partial x_{n}\rangle$ of
$K[[x_{1}, \cdots, x_{n}]]$ . We set $B_{j}=\hat{\mathfrak{m}}^{2}\langle\partial f_{(k)}/\partial x\rangle\cap H_{j}$ and we denote by $G_{j}$ a
complementary linear subspace of $B_{j}$ in $H_{j}(j\geqq k+1)$ .

THEOREM 2.1. Let the notations be as above. Then there exists a
formal diffeomorphism $\varphi$ such that

$ f\circ\varphi=f_{(k)}+g_{(k+1)}+g_{\langle k+2)}+\cdots$

where $g_{(j)}\in G_{j}(j\geqq k+1)$ .
LEMMA 2.2. Let $\varphi_{j}(j\geqq 2)$ be a formal diffeomorphism such that

$\varphi_{j}(x_{i})=x_{i}+h_{i}^{j}$ where $h_{i}^{\dot{f}}\in H_{j}(i=1, \cdots, n)$ . Then

$f_{(k)}\circ\varphi_{j}=f_{(k)}+h_{1}^{j}(\partial f_{(k)}/\partial x_{1})+\cdots+h$‘ $(\partial f_{(k)}/\partial x_{n})+higher$ terms.

PROOF. It is enough to prove the case where $f_{(k)}$ is a monomiaI.
Suppose that $f_{(k)}=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ . Then

$f_{(k)}\circ\varphi_{j}=(x_{1}+h_{1}^{j})^{\alpha_{1}}\cdots(x_{n}+h_{n}^{\dot{f}})^{\alpha_{n}}$

$=$ ( $x_{1}^{\alpha_{1}}+\alpha_{1}x_{1}^{\alpha_{1}-1}h_{1}^{j}+$ higher terms) $\cdots$ ( $x_{n^{n}}^{\alpha}+\alpha_{n}x_{n}^{\alpha_{n}-1}h_{n}^{j}+higher$ terms)
$=f_{(k)}+h_{1}^{\dot{f}}(\partial f_{(k)}/\partial x_{1})+\cdots+h_{n}^{j}(\partial f_{(k)}/\partial x_{n})+higher$ terms. Q.E.D.

PROOF OF THkOREM 2.1. First we decompose $f_{(k+1)}$ into $b_{(k+1)}+g_{(k+1)}$

where $b_{(k+1)}\in B_{k+1}$ and $g_{(k+1)}\in G_{k+1}$ . From the definition of $B_{k+1}$ , there are
$h_{1}^{2},$

$\cdots,$ $h_{n}^{2}\in H_{2}$ such that $b_{(k+1)}=h_{1}^{2}(\partial f_{(k)}/\partial x_{1})+\cdots+h_{n}^{2}(\partial f_{(k)}/\partial x_{n})$ . We take a
formal diffeomorphism $\varphi_{2}$ given by $\varphi_{2}(x_{i})=x_{i}-h_{i}^{2}(i=1, \cdots, n)$ . Then, from
Lemma 2.2 we have

$ f\circ\varphi_{2}=f_{(k)}+g_{(k+1)}+f_{(k+2)}^{\prime}+\cdots$ .
Next we decompose $f_{k(+2)}^{\prime}$ into $b_{(k+2)}+g_{(k+2)}$ where $b_{(k+2)}\in B_{k+2}$ and $g_{(k+2)}\in G_{k+2}$ .
And we take a formal diffeomorphism $\varphi_{3}$ such that

(i) $\varphi_{3}(x_{i})=x_{i}-h_{i}^{3},$ $h_{i}^{3}\in H_{3}(i=1, \cdots, n)$

(ii) $b_{(k+2)}=h_{1}^{3}(\partial f_{(k)}/\partial x_{1})+\cdots+h_{n}^{a}(\partial f_{(k)}/\partial x_{n})$ .
Then $ f\circ\varphi_{2}\circ\varphi_{3}=f_{(k)}+g_{(k+1)}+g_{(k+2)}+f_{(k+3)}^{\prime\prime}+\cdots$ . Thus, inductively we can
take formal diffeomorphisms $\varphi_{2},$ $\varphi_{3},$ $\cdots$ and we define $\varphi$ as the limit of
$\{\varphi_{2}\circ\varphi_{\epsilon}\circ\cdots\circ\varphi_{i}\}$ (this makes sense). Then $ f\circ\varphi=f_{(k)}+g_{(k+1)}+g_{(k+2)}\cdots$ . This
completes the proof.

REMARK. Theorem 2.1 is an analogy of Takens’s normal form theorem
for vector field [5].

EXAMPLE 2.3 (Morse lemma). Let $f$ be in the form $\pm x_{1}^{2}\pm\cdots\pm x_{n}^{2}+$

higher terms. Then $\hat{\mathfrak{m}}^{2}\langle\partial f_{(2)}/\partial x\rangle=\hat{\mathfrak{m}}^{8}$ and $G_{j}=\{0\}(j\geqq 3)$ . Thus the normal
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form of $f$ is $\pm x_{1}^{2}\pm\cdots\pm x_{n}^{2}$ i.e. $f$ is 2-determined.

EXAMPLE 2.4 (Splitting theorem). Let $f$ be in the form $\pm x_{1}^{2}\pm\cdots\pm x_{i}^{2}+$

higher terms. Then $\hat{\mathfrak{m}}^{2}\langle\partial f_{(2)}/\partial x\rangle=\mathfrak{n}\wedge t^{2}\langle x_{1}, \cdots, x_{i}\rangle$ . Thus we can take the
vector space of homogeneous polynomials of degree $j$ of variables $x_{i+1},$ $\cdots,$ $x_{n}$

as $G_{j}(j\geqq 3)$ . Therefore the normal form of $f$ is given by $\pm x_{1}^{2}\pm\cdots\pm x_{i}^{2}+$

$g(x_{i+1}, \cdots, x_{n})$ where order of $g\geqq 3$ .
Now, let $\hat{g}(n, p)$ be the set of formal mappings $f:(K^{n}, 0)\rightarrow(K^{p}, 0)$ .

We identify $\hat{C}(n, p)$ with $\hat{\mathfrak{m}}\oplus\cdots\oplus\iota\hat{\mathfrak{n}}$ and in the natural way we regard
$\overline{p}$

$\hat{g}(n, p)$ as $K[[x_{1}, \cdots, x_{n}]]$-module. We denote by $g(n, p)$ the set of
homogeneous polynomial mappings of degree $i$ , i.e. $g_{i}(n, p)=H_{i}\oplus\cdots\oplus H_{i}$ .

$\overline{p}$

For a formal mapping $f=f_{(k)}+f_{(k+1)}+\cdots(f_{(j)}\in g_{j}(n, p),$ $j\geqq k$), we denote
by $\hat{\mathfrak{m}}^{2}\langle\partial f_{(k)}/\partial x\rangle$ the submodule $\hat{\mathfrak{m}}^{2}\langle\partial f_{(k)}/\partial x_{1}, \cdots, \partial f_{(k)}/\partial x_{n}\rangle$ of $\hat{g}(n, p)$ . We set
$B_{j}=\hat{\mathfrak{m}}^{2}\langle\partial f_{(k)}/\partial x\rangle\cap g_{\dot{f}}(n, p)$ and we denote by $G_{j}$ a complementary linear
subspace of $B_{j}$ in $g_{j}(n, p)(j\geqq k+1)$ .

THEOREM 2.5. Let the notations be as above. Then there exists a
formal diffeomorphism $\varphi$ such that

$ f\circ\varphi=f_{(k)}+g_{(k+1)}+g_{(k+2)}+\cdots$

where $g_{(j)}\in G_{j}(j\geqq k+1)$ .
The proof is quite same as the proof of Theorem 2.1.

EXAMPLE 2.6. For a formal mapping $ f=f_{(2)}+f_{(8)}+\cdots$ : $(K^{n}, 0)\rightarrow(K^{2},0)$ ,
we assume that $f_{(2)}=(\pm x_{1}^{2}\pm\cdots\pm x_{n}^{2}, a_{1}x_{1}^{2}+\cdots+a_{n}x_{n}^{2})$ where $a\pm a_{j}\neq 0$ for
$i\neq j$ . Then, obviously we can take a linear subspace of $(\{0\}\oplus H_{\dot{f}})$ as $G_{j}$ .
Moreover, $x_{i}(\partial f_{(2)}/\partial x_{\dot{f}})\pm x_{j}(\partial f_{(2)}/\partial x_{i})=(0,2(a_{j}\pm a_{i})x_{i}x_{\dot{f}})$ . Thus we can take
$\langle(0, x_{1}^{\dot{f}}), \cdots, (0, x_{n}^{\dot{f}})\rangle_{k}$ as $G_{j}$ . Therefore the normal form of $f$ is given by

$(\pm x_{1}^{2}\pm\cdots\pm x_{n}^{2}, a_{1}x_{1}^{2}+\cdots+a_{n}x_{n}^{2}+\sum_{j\geq\theta}b_{1}^{j}x_{1}^{\dot{f}}+\cdots+\sum_{j\geq 8}b_{n}^{j}x_{n}^{j})$ .
Now, for a formal mapping $f$ of which Jacobian has rank $r$ , from the

implicit function theorem without loss of generality we can assume that
$f$ is in the form $f=(x_{1}, \cdots, x_{r}, f^{r+1}, \cdots, f^{p})$ where $f\in\hat{\mathfrak{m}}^{2}(s=r+1, \cdots, p)$ .
In this case we set $\tilde{f}=(f^{r+1}, \cdots, f^{p})\in\hat{g}(n, p-\gamma)$ . We represent $\tilde{f}$ as
$\tilde{f}_{(k)}+\tilde{f}_{(k+1)}+\cdots$ where $\tilde{f_{(j)}}eg_{j}(n, p-r)(j\geqq k)$ . We set $\tilde{B}_{j}=\hat{\mathfrak{m}}^{2}\langle\partial\tilde{f_{(k)}}/\partial x_{r+1}$ ,.. ., $\partial\tilde{f_{(k)}}/\partial x_{n}\rangle$ $\cap \mathscr{G}_{j}(n, p-r)$ and we denote by $\tilde{G}_{j}$ a complimentary linear
subspace of $\tilde{B}_{j}$ in $g_{j}(n, p-r)$ .

THEOREM 2.7. Let the notations be as above. Then there exists a
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formal diffeomorphism $\varphi$ such that

$f\circ\varphi=(x_{1}, \cdots, x_{r},\tilde{f}_{(k)}+g_{(k+1)}\sim+g_{(k+2)}\sim+\cdots)$

where $g_{(j)}\sim\in\tilde{G}_{j}(j\geqq k+1)$ .
PROOF. It is enough to take formal diffeomorphisms $\varphi_{j}$ such that

$\varphi_{j}(x_{i})=x_{i}(i=1, \cdots, r)$ and $\varphi_{j}(x_{i})=x+h_{i}^{j}(i=\gamma+1, \cdots, n)$ for each $j\geqq 3$ .
The other part of proof is the same as the proof of Theorem 2.1. This
completes the proof.

\S 3. Generalized splitting theorem.

In this section we assume that $n\geqq p$ .
PROPOSITION 3.1. A two-jet $z\in J^{2}(n, p)$ of which Jacobian has rank

$p-1$ is $\ovalbox{\tt\small REJECT}^{2}$-equivalent to the following two-jet;

$(*)$ $(x_{1}, \cdots, x_{p-1}, x_{1}x_{p}+\cdots+x_{i}x_{p+i-1}+Q_{j+1})$

where $Q_{j+1}=\pm x_{\dot{g}+1}^{2}\pm\cdots\pm x_{n}^{2}$ and $0\leqq i\leqq p-1,$ $p-1\leqq j\leqq n,$ $p+i-1\leqq j$ and
$i,$ $j$ are uniquely determined by $z$ .

PROOF. Without loss of generality we can assume that $z=(x_{1},$ $\cdots$ ,
$x_{p-1},$ $f$) where $f$ is a homogeneous polynomial of degree two. By the
right linear transformation we can assume that $f(0, \cdots, 0, x_{p}, \cdots, x_{n})=$

$Q_{j+1}$ . Thus $f$ is in the form $f(x_{1}, \cdots, x_{n})=h(x_{1}, \cdots, x_{p-1})+(\sum_{*=1}^{p-1}a_{a,p}x.)x_{p}+$. . $.+(\sum_{=1}^{p-1}a_{*,i}x_{\ell})x_{j}+(\sum_{\iota=1}^{p-1}a_{\epsilon,j+1}x_{\epsilon})x_{j+1}+\cdots+(\sum_{\epsilon=1}^{p-1}a_{\epsilon,n}x_{\epsilon})x_{n}+Q_{j+1}$ . By the
right transformation $\varphi$ such that $\varphi(x_{t})=x_{t}(t=1, \cdots, j)$ and $\varphi(x_{t})=x_{t}\pm$

$(1/2)(\sum_{\epsilon=1}^{p-1}a_{\epsilon,t}x.)(t=j+1, \cdots, n)$ , we can eliminate the terms $(\sum a_{\iota,j}x_{\epsilon})x_{j},$ $\cdots$ ,
$(\sum a_{\epsilon,n}x_{\epsilon})x_{n}$ . And we can eliminate $h(x_{1}, \cdots, x_{p-1})$ by the left transfor-
mation $\psi$ such that $\psi(y_{t})=y_{t}(t=1, \cdots, p-1)$ and $\psi(y_{p})=y_{p}-h(y_{1}, \cdots, y_{p-1})$

where $(y_{1}, \cdots, y_{p})$ is the local coordinates of $(K^{p}, 0)$ . Next we assume
that in $\dagger\sum a_{\epsilon,p}x.,$

$\cdots,$ $\sum a_{\epsilon,j}x_{\epsilon}$ } the first $i$ functions are linearly independent
and the other functions are written by linear combinations of them. Then
there is a right linear transformation $\varphi^{\prime}$ of $x_{1},$ $\cdots,$ $x_{p-1}$ such that $z$ is
equivalent to

$(\varphi^{\prime}(x_{1}),$
$\cdots,$ $\varphi’(x_{p-1}),$ $x_{1}x_{p}+\cdots+x_{i}x_{p+-1}$

$+(\sum_{=1}^{i}b.,xp+\cdot)x_{p+}+\cdots+(\sum_{=1}^{i}b_{\epsilon.j}x.)x_{j}+Q_{j+1})$ .
By the left linear transformation of $y_{1},$ $\cdots,$ $y_{p-1}$ , the above is equivalent
to
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$(x_{1},$
$\cdots,$ $x_{p-1},$ $x_{1}x_{p}+\cdots+x_{i}x_{p+i-1}$

$+(\sum b.,p+ix.)x_{p+t}+\cdots+(\sum b_{\epsilon,j}x.)x_{j}+Q_{j+1})$ .
We rewrite the above p-th component as follows

$(x_{p}+\sum_{t=p+i}^{j}b_{1,t}x_{t})x_{1}+\cdots+(x_{p+i-1}+\sum_{t=p+1}^{j}b_{i,t}x)x_{i}+Q_{i+1}$ .
Finally, by the right linear transformation $\varphi^{\prime\prime}$ such that $\varphi’(x_{r})=x_{r}$

$(r=1, \cdots, p-1, p+i, \cdots, n)$ and $\varphi^{\prime}’(x_{r})=x_{r}-(\sum_{t=p+i}^{j}b_{r-p+1.t}x_{t})(r=p,$ $\cdots$ ,
$p+i-1)$ , we have the normal form $(^{*})$ . The number $j$ is determined by
the contact class of $z$ and the number $i$ is determined by the codimension
of $\mathscr{A}^{2}$-orbit of $z$ for fixed $j$ (the definition of contact class can be seen
in [4], [6]). This completes the proof.

THEOREM 3.2. Let the two jet of formal mapping $f\in\hat{g}(n, p)$ be in
the form $(^{*})$ . Then there exists a formal diffeomorphism $\varphi$ such that
$(^{**})$ $f\circ\varphi=(x_{1}, \cdots, x_{p-1}, x_{1}x_{p}+\cdots+x_{i}x_{p+i-1}+Q_{J+1}+g(x_{i+1}, \cdots, x_{\dot{f}}))$

where order of $g\geqq 3$ .
PROOF. In Theorem 2.7, we set $r=p-1$ and $k=2$ . Taking the com-

plementary linear subspace of $\hat{\mathfrak{m}}^{2}\langle\partial f_{(2)}/\partial x_{p},$

$\cdots,$ $\partial f_{(2)}/\partial x_{p+i-1},$ $\partial f_{(2)}/\partial x_{j+1},$ $\cdots$ ,
$\partial f_{(2)}/\partial x_{n}\rangle=\hat{\mathfrak{m}}^{2}\langle x_{1}, \cdots x_{i}, x_{j+1}, \cdots, x_{n}\rangle$ , we obtain the normal form $(^{**})$ . This
completes the proof.

The following theorem is an immediate consequence of Theorem 3.2
and the result of du Plessis [1] (3.34).

THEOREM 3.3. Let a formal mapping $f\in\hat{g}(n, p)$ be in the form $(^{**})$ .
We set $\tilde{f}=(x_{1}, \cdots, x_{p-1}, x_{1}x_{p}+\cdots+x_{i}x_{p+i-1}+g(x_{i+1}, \cdots, x_{\dot{f}}))\in\hat{g}(j, p)$ . Then
$f$ is k-determined if and only if $\tilde{f}$ is k-determined.

\S 4. Some normal forms.

In this section we consider a $C^{\infty}$-mapping $f:(R^{n}, 0)\rightarrow(R^{2},0)$ of which
Jacobian has rank one. Thus we assume that $f$ is in the form $(x_{1}, g(x_{1}, \cdots, x_{n}))$

where $g\in \mathfrak{m}^{2}$ . Moreover we assume that two jet of $g(x_{1}, \cdots, x_{n})$ is in the
form $Q_{2},$ $x_{1}x_{2}+Q_{3}$ or $Q_{s}$ . Then from Theorem 3.3, the classification of $f$

is reduced to that of the mappings $(R^{2},0)\rightarrow(R^{2},0)$ .
Let $(x, y)$ (resp. (X, $Y$)) be the local coordinates of the source space

$(R^{2},0)$ (resp. the target space $(R^{2},0)$). Simply we denote by $(h_{1}(x, y),h_{2}(x, y))$

the vector field along $f$ of the form $h_{1}(x, y)((\partial/\partial X)\circ f)+h_{2}(x, y)((\partial/\partial Y)\circ f)$ .
The following proposition is a corolally of Proposition 3.1.



SMOOTH MAP-GERMS 93

PROPOSITION 4.1. A two jet $z\in J^{2}(2,2)$ of which Jacobian has rank
one is $\mathscr{A}^{2}$-equivalent to one of the following:

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} Notation|A|B|CNormalform|(x, y^{2})|(x,xy)|(x, 0)$

In the case $(A)$ , from Theorem 3.2, the normal form is given by
$(x, y^{2}+\sum_{k\geqq 3}a_{k}x^{k})$ . By a left transformation $\psi$ such that $\psi(X)=X$ and
$\psi(Y)=Y-\sum_{k\geqq 3}a_{k}X^{k}$ , this is equivalent to $(x, y^{2})$ i.e. we have a Whitney’s
fold singularity which is 2-determined.

In the case $(B)$ the normal form is given by

$(B^{*})$
$(x, xy+\sum_{k\geqq 3}a_{k}y^{k})$ .

THEOREM 4.2. For a real analytic map germ $f:(R^{2},0)\rightarrow(R^{2},0)$ given
by $(B^{*}),$ $f(x, y)$ is finitely determined if and only if there is a positive inte-
ger $k$ such that $a_{k}\neq 0$ . Moreover for a $C^{\infty}$-map germ with $\infty$ -jet $(B^{*})$ let
$k$ denote the minimum $k$ such that $a_{k}\neq 0$ . Then $f(x, y)$ is $C^{0}- k$-determined.

PROOF. If for any $k\geqq 3,$ $a_{k}$ is zero then $(0, y^{k})\not\in tf(\theta(n))+wf(\theta(p))$ .
Thus $f$ is not finitely determined. For the minimum $k$ such that $a_{k}\neq 0$ ,
by the scalar multiplications of $x,$ $y,$ $X$ and $Y$ we can assume that $a_{k}=1$ .
The singular set $S(f)$ of $f$ is given by $\{x+ky^{k-1}+\sum_{t\geqq k+1}ta_{t}y^{t-1}=0\}$ . The
set $f^{-1}(\{Y=0\})$ is given by $\{y(x+y^{k-1}+\sum_{t\geqq k+1}a_{t}y^{t-1})=0\}$ . Note that from
a theorem on V-sufficiency (cf. [3, 6]) the above sets are determined by
the finite jet. We see the topological picture of $f$ by the Figure 1 and
2. The Figure 1 is the case where $k$ is even. The Figure 2 is the case
where $k$ is odd. In the figures we denote by thick lines the set $f^{-1}(\{Y=0\})$

and by dotted lines the singular set $S(f)$ . From the figures it is obvious
that $f$ is $C^{0}- k$-determined. For the real analytic case, from the figure
we see that the complexification of $f$ is stable in $U\backslash \{0\}$ where $U$ is a

$\underline{F(x,y)}$

FIGURE 1



94 FUMIO ICHIKAWA

$\underline{ftx,y)}$

FIGURE 2

small neighbourhood of $0$ in $C^{n}$ . Thus $f$ is finitely determined (cf. Propo-
sition 1.7 and Theorem 2.1 of [6]). This completes the proof.

REMARK. Even for the map-germ $f=(x, xy+y^{r})$ it is not easy to
determine the minimum number $k$ such that $f$ is k-determined. In [1]
du Plessis proved that when $r=3,4$ and 5, $f$ is respectively 3, 4 and
7-determined. In general by complicated computations it can be proved
that

$tf(\theta(n))+wf(\theta(p))\supset)\mathfrak{n}^{r(r-2)}\theta(f)$ .
Now, we classify the case $(C)$ in the three jet space.

PROPOSITION 4.3. A three jet $z=(x, ax^{S}+bx^{2}y+cxy^{2}+dy^{S})\in J^{8}(2,2)$ is
$\mathscr{A}^{3}$-equivalent to one of the $follow^{\gamma}ing$ :

PROOF. (i) The case $d\neq 0$ . By scalar multiplication of $y$ we assume
that $d=1$ . By the right transformation $\varphi$ such that $\varphi(x)=x$ and $\varphi(y)=$

$y-(c/3)x$ , we can eliminate the term cxy2 and we obtain the form
$(x, ax^{3}+bx^{2}y+y^{3})$ . If $b\neq 0$ , then by the scalar multiplications of $x$ and $X$

we can assume that $b=\pm 1$ . By the left transformation $\psi$ such that
$\psi(X)=X$ and $\psi(Y)=Y-aX^{8}$ , we obtain the normal form $C_{1}^{\pm}$ . If $b=0$ ,
then by the same way, we obtain the normal form $C_{2}$ .

(ii) The case $d=0$ and $c\neq 0$ . By the scalar multiplications of $x$

and $X$, we can assume that $c=1$ , i.e. $(x, ax^{8}+bx^{2}y+xy^{2})$ . By the right
transformation $\varphi$ such that $\varphi(x)=x,$ $\varphi(y)=y-(b/2)x$ , we can eliminate
the term $bx^{2}y$ . Finally by the left transformation we obtained the normal
form $C_{3}$ .
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(iii) The case $d=c=0$ and $b\neq 0$ . In this case it is easy to see that
$z$ is equivalent to $C_{4}$ .

(iv) The case $d=c=b=0$ . Obviously, $z$ is equivalent to $D$ . This
completes the proof.

REMARK. The adiacencies of $C_{1}^{\pm},$ $C_{2},$ $C_{3},$ $C_{4}$ and $D$ are given by

$C_{1}^{-}C_{1}^{+}\leftarrow C_{2}\leftarrow C_{8}\nearrow>C_{4}\leftarrow D$

where $C_{l}\leftarrow C_{j}$ means that the closure of $C_{i}$ contains $C_{j}$ .
The following Propositions 4.4 and 4.5 was proved by du Plessis as

the examples of finitely determined map-germs in [1].

PROPOSITION 4.4. The map-germs $C_{1}^{\pm}=(x, y^{3}\pm x^{2}y)$ are 3-determined.
In the case $(C_{2})$ from Theorem 2.7 the normal form is given by

$(x, y^{3}+\sum_{k\geqq 3}a_{k}x^{k}y+\sum_{k\geqq 4}b_{k}x^{k})$ . However by the left transformation we can
eliminate the term $\sum_{k\geqq 4}b_{k}x^{k}$ . Thus the normal form is given by

$(C_{2}^{*})$

$(x, y^{3}+\sum_{k\geqq 3}a_{k}x^{k}y)$ .

PROPOSITION 4.5. For a $C^{\infty}$-map germ $f$ with $\infty$ -jet $(C_{2}^{*}),$ $f$ is finitely
determined if and only if there is a positive integer $k$ such that $a_{k}\neq 0$ .
Moreover, for the minimum $k$ such that $a_{k}\neq 0,$ $f$ is $(k+1)$-determined.

REMARK. (1) In the case $C_{1}^{+},$ $f=(x, y^{3}+x^{2}y)$ has an isolated singu-
larity at the origin and $f$ is a topological embedding.

(2) In the case $c_{1}-$ , a topological picture of $f=(x, y^{8}-x^{2}y)$ is given
by Figure 3.

(3) For $f=(x, y^{3}\pm a_{k}x^{k}y)$ by the scalar multiplications of $x$ and $X$,
$f$ is $\mathscr{A}$-equivalent to $(x, y^{8}\pm x^{k}y)$ . It is easy to see that if $k$ is odd then

$\underline{f(x,y)}$

FIGURE 3
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$\underline{f(x,y)}$

FIGURE 4

$f$ is $\mathscr{A}$-equivalent to $(x, y^{8}+x^{k}y)$ and the topological picture of $f$ is given
by Figure 4. In the case where $k$ is even and $f=(x, y^{l}+x^{k}y),$ $f$ has an
isolated singularity at the origin. Thus $f$ is a topological embedding.
In the case where $k$ is even and $f=(x, y^{8}-x^{k}y)$ , the topological picture
of $f$ is the same as Figure 3.

In the case $C_{3};(x, xy^{2})$ , from Theorem 2.7 and the left transformation
we obtain the form

$(C_{3}^{*})$
$(x, xy^{2}+\sum_{k\geqq 4}a_{k}y^{k})$

THEOREM 4.6. For the analytic map germ $f(x, y)$ given by $(C_{3}^{*}),$ $f$

is finitely determined if and only if there is a positive odd integer $k$

such that $a_{k}\neq 0$ . For a $C^{\infty}$-map germ $f$ with $\infty$ -jet $(C_{3}^{*})$ let $ k<\infty$ be the
minimum odd integer such that $a_{k}\neq 0$ . Then, $f(x, y)$ is $C^{0}- k$-determined.

PROOF. Let $r$ denote the minimum integer such that $a_{r}\neq 0$ . The
singular set $S(f)$ is given by $\{y(2x+ry^{p-2}+\sum_{t\geqq r+1}a_{t}y^{t-2})=0\}$ . And the set
$f^{-1}(\{Y=0\})$ is given by $\{y^{2}(x+y^{r-2}+\sum_{t\geqq r+1}a_{t}y^{t-2})=0\}$ . If there is an odd in-
teger $k$ such that $a_{k}\neq 0$ , then $f(\{(x, y)\in S(f);y>0\})\cap f(\{(x, y)\in S(f), y<0\})=$

$\emptyset$ in a small neighbourhood of $0$ . We see the topological picture by the
Figure 5 and 6. The Figure 5 is the case where $r$ is even. The Figure
6 is the case where $r$ is odd. From the figures it is obvious that $f$ is $C^{0}-$

k-determined. If for any odd number $k,$ $a_{k}=0$ and $f$ is finitely determined,
then we can assume that $f$ is a polynomial mapping. Then the subsets
of critical values $f(\{(x, y)\in S(f);y>0\})$ and $f(\{x, y)\in S(f);y<0\})$ coincide,
thus $f$ is not finitely determined. The proof of real analytic case is the
same as the proof of Theorem 4.2. This completes the proof.

Finally, we study the case $C_{4}$ . From Theorem 2.7 and the left
transformation we obtain the following normal form

$(C_{4}^{*})$
$(x, x^{2}y+\sum_{r\geqq}a_{r}xy^{r-1}+\sum_{r\geqq t}b_{r}y^{f})$ .
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$\underline{;(x,y)}$

FIGURE 5

$\underline{f(x,y)}$

FIGURE 6

Here we assume that $a_{\epsilon}\neq 0$ and $b_{t}\neq 0(3\leqq s\leqq\infty, 4\leqq t\leqq\infty)$ .
LEMMA 4.7. If a $C^{\infty}$-map germ $f(x, y)$ with $\infty$ -jet $(C_{4}^{*})$ is finitely

determined, then $ t<\infty$ .
PROOF. Suppose that $ t=\infty$ i.e. $f(x, y)=(x, x^{2}y+\sum_{r\geqq\epsilon}a_{r}xy^{r-1})$ . Then

for any positive integer $k$ , $(0, y^{k})\not\in tf(\theta(n))+wf(\theta(p))$ . From Mather’s
theorem reviewed in \S 1 $f(x, y)$ is not finitely determined. This completes
the proof.

For the rest of paper we assume that $ t<\infty$ . We identify a $C^{\infty}$-map
germ $f(x, y)$ with a formal mapping $(C_{4}^{*})$ , but there will be no fear to
confuse.

THEOREM 4.8. For a $C^{\infty}$-map germ $f(x, y)$ with $\infty$ -jet $(C_{4}^{*})$ the follow-
ing holds.

(1) If $s>t$ , then $f(x, y)$ is $C^{0}-t$-determined.
(2) In the case that $2(s-2)<t-1$ , the topological picture of $f(x, y)$

is given by Figure $9\sim Figure13$ .
PROOF. The set $f^{-1}(\{Y=0\})$ is given by
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$\{y=0\}\cup\{x^{2}+\sum_{r\geq}a_{r}xy^{r-2}+\sum_{r\geq t}b,y^{r-1}=0\}$

$=\{y=0\}\cup\{x=(1/2)\{-(\sum_{r\geq}a_{f}y^{t-2})\pm\sqrt{(\sum a,y^{r-2})^{2}-4(\sum b_{r}y^{r-1})}\}\}r\gtrless\cdot r\geq$

We set

$h(y)=\sum_{r\geq}a_{f}y^{r-2}$

$\Delta_{1}(y)=(\sum_{r\geq}a_{r}y^{r-2})^{2}-4(\sum_{\prime\geq t}b,y^{r-1})$ .

The singular set $S(f)$ of $f(x, y)$ is given by

$\{x^{2}+\sum_{r\geq}(r-1)a_{r}y^{r-2}x+\sum_{r\geqq t}rb_{f}y^{t-1}=0\}$

$=\{x=(1/2)\{-(\sum_{r\geqq}(r-1)a_{f}y^{r-2})\pm\sqrt{(\sum(r-1)a_{r}y^{\prime-2})^{2}-4(\sum rb_{f}y^{\prime-1}})\}\}r\geqq\cdot’\geq t$

We set

$\Delta_{2}(y)=(\sum_{r\geq}(r-1)a_{r}y^{r-2})^{2}-4(\sum_{\prime\geq}rb,y^{t-1})$ .

(1) In the case $s>t$ , from $s\geqq 3$ we have that $2(s-2)>t-1$ . Thus

$\Delta_{1}(y)=-4b_{t}y^{t-1}+higher$ terms ,
$\Delta_{2}(y)=-4tb_{t}y^{t-1}+higher$ terms.

(a) If $t$ is odd and $b_{t}>0$ , then $\Delta_{1}(y)<0$ and $\Delta_{2}(y)<0$ for small $y\rightarrow 0$ .
Thus $f^{-1}(\{Y=0\})=\{y=0\}$ and $f(x, y)$ has an isolated singularity at the
origin. Hence $f(x, y)$ is a topological embedding and $C^{0}- t$-determined. If
$t$ is odd and $b_{t}<0$ , then $\Delta_{1}(y)>0$ and $\Delta_{2}(y)>0$ for small $y\neq 0$ . Moreover,

$ f^{-1}(\{Y=0\})=\{y=0\}\cup$ {$x=\pm\sqrt{-4b_{t}}y^{(t-1)/2}+higher$ terms}
and

$S(f)=$ {$x=\pm\sqrt{-4tb_{t}}y^{(t-1)/2}+higher$ terms}.

Thus the topological picture of $f(x, y)$ is given by Figure 7. $C^{0}- t$.
determinacy of $f(x, y)$ is obvious from the figure. In the below figures
we denote by thick lines the set $f^{-1}(\{Y=0\})$ and by dotted lines the
singular set $S(f)$ .

(b) If $t$ is even and $b_{t}>0$ , then $\Delta_{1}(y)>0$ and $\Delta_{2}(y)>0$ for small $y<0$ .
In the same way as above we obtain the topological picture of $f(x, y)$

which is given by Figure 8. The case where $t$ is even and $b_{t}<0$ can be
reduced to the case $b_{t}>0$ by the transformations of coordinates $(x, y)\rightarrow$
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$\underline{f(x,y)}$

FIGURE 8

$(x, -y)$ and (X, $Y$ ) $\rightarrow(X, -Y)$ . From Figure 8 it is obvious that $f(x, y)$

is $C^{0}- t$-determined.
(2) In the case $2(s-2)<t-1,$ .we have that for small $y\neq 0$

$\Delta_{1}(y)=a_{l}^{2}y^{2(\epsilon-2)}+higher$ terms $>0$ ,
$\Delta_{2}(y)=(s-1)^{2}a_{\epsilon}^{2}y^{2(\epsilon-2)}+higher$ terms $>0$ .

By the transformations $(x, y)\rightarrow(-x, y)$ and (X, $Y$ ) $\rightarrow(-X, Y)$ , without
loss of generality we can assume that $a_{\epsilon}>0$ . We consider the following
cases.

$\nearrow$ (a) $s$ is even and $t$ is odd.
(b) $s$ is even and $t$ is even.
(c) $s$ is odd and $t$ is odd.
(d) $s$ is odd and $t$ is even.

In the case (a), if $b_{t}>0$ then $\sum_{r\geqq t}b_{r}y^{r-1}>0$ for small $y\neq 0$ . Hence $\sqrt{\Delta_{1}(y)}<$

$|h(y)|$ and $-h(y)\pm\sqrt{\Delta_{1}(y)}<0$ for small $y\neq 0$ . Note that the functions
$x=-h(y)$ and $x=\sum_{r\geqq t}b_{r}y^{r-1}$ are topologically the same as the functions
respectively $x=-a_{\iota}y^{*-2}$ and $x=b_{t}y^{t-1}$ (cf. [2]). Thus the functions $x=$

$(1/2)(-h(y)\pm\sqrt{\Delta_{1}(y}))$ are locally monotone functions for small $y\neq 0$ . We
can determine the topological picture of the singular set $S(f)$ by the
same argument as above. Hence we obtain the topological picture of
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$f(x, y)$ which is given by Figure 9. In the below figures the thick lines
with $+sign$ (resp. -sign) mean the set $\{x=(1/2)(-h(y)+\sqrt{\Delta_{1}(y)}\}$ (resp.
$\{x=(1/2)(-h(y)-\sqrt{\Delta_{1}(y)})\})$ . If $b_{t}<0$ then $\sum_{r\geq t}b,y^{r-1}<0$ for small $y\fallingdotseq O$ .
Hence $\sqrt{\Delta_{1}(y)}>|h(y)|$ and $-h(y)+\sqrt{\Delta_{1}(y)}>0$ for small $y\neq 0$ . Therefore we
obtain the topological picture of $f(x, y)$ which is given by Figure 10.

$\underline{f(x,y)}$

FIGURE 9

$\underline{f(x,y)}$

FIGURE 10

In the case (b), if $b_{t}>0$ then $\sum_{\geqq t},b_{r}y^{r-1}>0$ for $y>0$ and $\sum_{r\geq t}b_{r}y^{r-1}<0$

for $y<0$ . Thus for small $y>0,$ $\sqrt{\Delta_{1}(y)}<|h(y)|$ and $-h(y)+\sqrt{\Delta_{1}(y)}<0$ . For
small $y<0,$ $\sqrt{\Delta_{1}(y)}>|h(y)|$ and $-h(y)+\sqrt{\Delta_{1}(y)}>0$ . Therefore we obtain

$\underline{f(x,y)}$

FIGURE 11
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the topological picture of $f(x, y)$ which is given by Figure 11. The case
$b_{t}<0$ can be reduced to the case $b_{t}>0$ by the transformations of coordi-
nates such that $(x, y)\rightarrow(x, -y)$ and (X, $Y$) $\rightarrow(X, -Y)$ .

$\underline{f(x,y)}$

FIGURE 12

$\underline{F(x,y)}$

FIGURE 12’

In the case (c), if $b_{t}>0$ then $\sum_{r\geqq t}b_{r}y^{r-1}>0$ for small $y\neq 0$ . Hence,
$\sqrt{\Delta_{1}(y)}<|h(y)|$ and $-h(y)+\sqrt{\Delta_{1}(y)}<0$ for small $y>0$ and $-h(y)-\sqrt{\Delta_{1}(y})>0$

for small $y<0$ . From the facts that $x=-h(y)$ and $x=\sum_{r\geqq t}b_{r}y^{r-1}$ have
the same topological types as $x=-a_{s}y^{\epsilon-2}$ and $x=b_{t}y^{t-1}$ , we obtain Figure
12. If $b_{t}<0$ , then $\sum_{r\geqq t}b_{r}y^{r-1}<0$ for small $y\neq 0$ . Hence $\sqrt{\Delta_{1}(y)}>|h(y)|$

and $-h(y)+\sqrt{\Delta_{1}(y)}>0$ and $-h(y)-\sqrt{\Delta_{1}(y)}<0$ for small $y\neq 0$ . Thus we
obtain Figure 12’.

$\underline{f(x,y)}$

FIGURE 13
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In the case (d), if $b_{t}>0$ then $\sum_{r\geq t}b,y^{r-1}>0$ for $y>0$ and $\sum_{\geq t},b,y^{r-1}<0$

for $y<0$ . Thus for small $y>0,$ $\sqrt{\Delta_{1}(y)}<|h(y)|$ and $-h(y)+\sqrt{\Delta_{1}(y)}<0$ . For
small $y<0,$ $\sqrt{\Delta_{1}(y)}>|h(y)|$ and $-h(y)-\sqrt{\Delta_{1}(y)}<0$ . Therefore we obtain
Figure 13. The case $b<0$ can be reduced to the case $b_{t}>0$ by the
transformations of coordinates such that $(x, y)\rightarrow(-x, -y)$ and (X, $Y$) $\rightarrow$

$(-X, -Y)$ . This completes the proof.
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