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Introduction

Let m be a square free positive integer and ¢, the fundamental unit
of the quadratic field Q1 m). If ¢, is totally positive, then we define
the biquadratic symbol (¢, /p), for the rational prime number p with the
condition,

(%) (=1/p)=(m/p)=(en/D)=1.

We refer to [3] for the definitions of the symbols (c,/p) and (c,/p).. Let
K (resp. K') be the Galois extension over the rational number field Q
generated by 1 —1 and Ve, (resp. 1“—1 and 17¢,). Then the condition
(x) is equivalent to say that p splits completely in K’. Further the symbol
(en/D), expresses the decompition law of this prime p between K and K'.
Let T, be the trace of ¢, over Q and denote by f, (resp. e,) the square
free part of T,+2 (resp. m(T,+2)). Consider the following three quad-
ratic fields;

(1) F=QWf.), E=Q1—e,), k=Q(W —m).

Then K contains all these quadratic fields and is abelian over each of
them. If the ideal class groups corresponding to K and K’ in each field
of (1) are determined explicitly, then we obtain three sorts of expressions
of (¢,/p). in view of the representation of a power of p» by the norm
form of each quadratic field. In the present paper, we offer explicit
expressions of this symbol for the integers m of following types:

m=qq": ¢=5,83 mod8, ¢=8 mod4, (q/¢)=-—1;
(2) m=2q: ¢q=83 mod8;

m=q: ¢=3,7,11 mod16. (g, ¢": prime numbers.)
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This restriction imposed on m assures us that the narrow class number
of each field in (1) is not divided by 8. The case m is prime is treated,
in our previous paper [2], in a different point of view. Therefore we
shall state only the results for this case. Finally it is remarked that
the results for the values of the symbol (¢,./p), in [1] and [3] correspond
to ours obtained from the field k.

§1. Preliminaries.

Let m be any positive square free integer and let the notation be
as above. If p is a prime number such that (—1/p)=(m/p)=1, then it
is easy to see

(ea/P)=1 — p splits completely in K'.
Let p be a prime ideal of K’ lying over p. Then
1 if p splits in K,
1 if p remains prime in K.

(en/P)i= {_

Let G=G(K/Q) be the Galois group of K over @. Then G is of order
16 and is generated by three elements o, @ and p defined by

o(¥e) =V —1¥e,, ,
Pp(Ve,)=Ve, ™,
oV =I)=—v—1.

Let n.=¥e,+#¢e," and put

K+=Q(V —em, M), K =Q0V —en ),
L=QW=1,vV=m), L=Q0/—m,V'fy), L'=QV —m,Ve,).

Then we have the following diag'ram'

: /sv > 1,
S <0’¢N P/<a'\

Q(1,)
<olgp,p> <@, p> <o’ pp> <o> <o cpp>

<L g,p> <d'op,0p> <o, pp>

Q
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From this diagram we obtain

(3) a prime number p splits completely in K’
= (—1/p)=(m/p)=(fa/D)=1.

In particular this shows, for a prime p such that (—1/p)=(m/p)=1,
(en/D)=(FulD) -
Further we have:

LEMMA 1. Let p be an odd prime divisor of m and P the prime
ideal of k over p. Assume that P splits in L’'. Then we obtain

P splits completely in K' = p=1 mod 4 ;
P splits completely in K+ < ple, or 2/p)=1;

P splits completely in K~ —— { .
(=1/p)=1 if plen -

Furthermore

P splits completely in K —— {zii Zzgi Z; i:::" "
PrROOF. It is easy to see that
P splits in L' — (f,/p)=1 or (—e,/p)=1.
Therefore

P splits completely in K’ —= P splits in each of L, L’ and L”
— (fu/D)=(—fa/D)=1 or (e./p)=(—€./p)=1——p=1 mod 4.

Let P=P,P, be the prime ideal decomposition of P in L’. We can take
a defining equation f*(x) (resp. f~(x)) of K* (resp. K~) over L’ as

fE@) =2\ =2"— (Un} [ £2) ,
where u,, is the positive integer such that 42, f,=T,+2. Let p|f,. Then
fE@)=2>F2 mod P, .
This shows
P splits completely in K* (resp. K~) —= (2/p)=1 (resp. (—2/p)=1) .

Let ple,. Then we know only one of P, and P, divides \%. Assume
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that P, divides A2 and P, divides A2. Then
ff@)=2*—4—\ =2—-4 mod P,.
Therefore P splits completely in K*. Similarly we obtain

P splits completely in K~ —— (—1/p)=1.
By the way

P splits completely in K <= P splits completely in K’, K+, K~
respectively. Therefore we have our assertions. Q.E.D.

LEMMA 2. Let m=qq' be the integers given by (2). Then the integers
e. and f, are as follows.

2¢,29) if gq=5 mod8 and ¢=3 mod$8,
(2q9,2¢") #f q=5 mod8 and ¢=7 modS8,
(g, 9") tf ¢g=3 mod8 and ¢'=8 mod4,
2, q9) tf ¢=83 mod8 and ¢=2.

(mr Sm)=

PrROOF. Let ¢g=5 mod8, ¢'=3 mod4 and (¢/¢')=—1. Put ¢,=A+
By'm. First of all we shall show that A is even. Let C+Dv'm be the

smallest positive unit of Q(1Vm) such that C is odd and D is positive.
Since C*—D*m=1, we can put

C—-1=2ru, C+1=2s%,

where %, v, » and s are positive integers such that wv=m, 2rs=D and
(ru, sv)=1. From this we have

l1=sv—7ru .

Since (—1/¢")=—1 and (¢/¢')=—1, it follows that u=m and v=1. This
shows that s+71"m is a positive unit of Q(Vm) smaller than C+Dv'm.
Therefore s is even and A is even. Put

A—1=RU, A+1=8*¥V,
where R, S, U and V are positive integers and UV=m. Then
2=SV—-R:U=V—-U modS§.

From this we have (U, V)=(q, @) (resp. (g, q")) if ¢'=8 mod8 (resp. if
q'=7 mod 8). Since ¢,=2U and f,,=2V we have our assertion in the case
¢=5 mod 8. Other assertions can be similarly proved. Q.E.D.
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In the following for an abelian extension £ over a field 4, we denote
by f(2/4) the finite part of conductor of 2/4. Let 5%, & and & be
fields such that ¥ D> % and [&: #]=2. Assume that 9% is
abelian over &#. Let P be a prime ideal of & Denote by f(P) and
g(P) the P-exponent of f(.#° /") and that of the difference D(¥/ &)
of & over & respectively. We define the integer e(P) by

e(P)=max(0, g(P)—f(P)) .
Then we know by Lemma 1 of [2]

(4) A | Z )= | )D& ) [T P7 .

Furthermore assume that .2 and & are normal over Q. Then the P-
exponent f(P) is the same for all prime ideals P of & dividing a prime
number p, which we denote by f(p). In particular, if [.9%": &]=2, then
J(2) is calculated as follows. Let a be an integer of & such that .9 =
<1 a). Fix a prime ideal Q of &~ dividing 2. Let 5 the completion
of the ring of integers of & with respect to @ and I a prime element
of 0. Put

a=II°g,

where 8 is a unit of 5. We denote by So(8) the greatest positive integer
t such that 8=7* mod IT* for some unit ve€d (cf. §63A of [4]). We define
the integer S.(a) by

Se(B) if o is even,

S =
(@) {0 otherwise .

It is obvious that S.(a) is determined only by a and is independent of
the choice of @ and /7. Let ¢. denote the ramification exponent of Q.
Then we have by Lemma 4 of [2] and Lemma 2 of [1],

2e.+1—S(a) if So(a)<2e.,
0 otherwise .

(5) f(2)={

Let M be one of the fields (1). By (4) and (5), we can get the con-
ductors f(K/M), f(K'/M) and f(L'/M) from caleculating S;(¢,.) and Sg.(1¢,.).
(cf. §3 of [2].) If m are integers in (2), then the values of S,(¢,) and
Sx-(V'e,) are as follows.
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mew | gimdt | goimdt | ey
er 2 2 4
Si(em) 1 =4 8
ex 4 2 4
Sr(Vem) 1 1 3

§ 2. Criterions.

Let the notation be as in the previous sections. Furthermore we
shall use the following notation. Let M be one of the quadratic fields
k, F and E. Let a be an integral ideal of M. If M is imaginary (resp.
real), then H,(a) denotes the group of ray classes (resp. narrow ray
classes) modulo a of M and P,(a) denotes the subgroup of H,(a) generated
by principal classes (resp. principal classes represented by totally positive
elements). We denote by h(M) the class number (resp. narrow class
number) of M. Hereafter we put H,=H,(f(K/M)) and P,=P,(f(K/M)).
If b is an ideal prime to f(K/M), then [b] denotes the class of H, repre-
sented by b. If b is an element of M and (b) is the principal ideal
generated by b, then [(b)] is abbreviated as [b]. If £ is a subfield of K
over M, then C,(2) denotes the subgroup of H, corresponding to 2. We
put Cu(@)*=Cy(2)NPy. If c is an integral ideal of M dividing f(K/M),
then K,(c) denotes the kernel of the canonical homomorphism of P, to
Py(c).

Let m be one of integers given by (2) and p a prime number such
that (—1/p)=(f./p)=(e./P)=1. Now we shall evaluate the character
(en/?)s» Because the way of our discussion is very similar for each case
of m, we shall give the details only for the case m=qq¢’, ¢=5 mod 8,
¢'=7 mod 8 and (¢’/q)=—1.

(I) The criterion by k=Q(V —m).

LEMMA 8. Let w=0+1v"—m)/2 and let v be an integer of k prime
to 2. If y=1 mod2, then we can put v=x+yw; x, Yy € Z and we have

»1€eC(K") == x:0dd, y=0 modS8 ;
[v]€eC(K) == 2x:0dd, ¥=0 mod16.
If v1 mod2, then we can put v=(X+ YV —m)/2, where X and Y

are integers. Assume X=1 mod4, if mecessarily, replacing v by —v.
Then
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[¥]1eC(K') == N()=1 mod38 ;
1€ Cu(K) &= (N(»)—1)/8+(X—1)/4=0 mod 2,
where N(v) denotes the morm of v over Q.

ProOOF. By the argument in the last part of §1, we know that
f(K/k)=16, f(K'/[k)=8 and f(L/k)=4. From this we see

[Pe: Ci(L)*]=[CuIn*: C(K")*]=[CWi(K")*: C(K)*]=2,
CL)*DK((4), CuK)*'DKL®), CUK)*DKi((®) .

Let { be an integer such that *=1 mod 16. Then

Po={1+40], [1+20], [}, K.(4)=<(1+4w], [1+20],
K,.((8)={[1+40], [1+2w]) .

Therefore

C(L)*=<[C]> x Ki((4) ,
Cu(KN*=<[¢], [1+4w], [1+20]") .

Since the factor group P,/C.(K)* is of exponent 4 and G(K/Q) is non-abel,
we have

C.(K)*=([¢], 1+2w]-[1+4w]) .
Let v=1 mod2. Then

V] e Cu(K'") &= [v] e([14+8w], [6+8w]) == 2x:0dd, y=0 mod8;
PleCu(K) = [v]e([5]) == 2x:0dd, ¥=0 mod16.

Let v#%1 mod 2. Choose a=1 or 2 such that v(*=u+vw=1 mod 2. Since
N({)=1 mod 16,

N)=uw*4+v(u+vN(w)) mod 16 .
Therefore we know that
[v1eC(K") == v=0 mod 8 == N(¥)=1 mod 8 .
Let v=0 mod8. Then noting X*=u* mod 16 we have
Np)—1=X?—14+v mod16.
Thus
v/8=(N(¥)—1)/8+(X2—1)/8=(N(»)—1)/8+(X—1)/4 mod 2.
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Hence for [v] e C,(K),
[v] € Cy(K) — (N(®»)—1)/8+(X—1)/4=0 mod 2. Q.E.D.

Since h(k)=2 mod 4, we can put h(k)=2h, where k is an odd number.
Let p be a prime number such that p splits in & and P one of the prime
ideals of k lying above p. By (3) we have

(—1/p)=(29/p)=(2¢'/p)=1 — [P] e C,(K") .

Assume that [P]eC,(K’), Let Q be the prime ideal of % lying above q.
Let » be any odd multiple of 2. Then we have

[P] e Ci(K")* or [P][Q]ecC.(K"*.
If [P])" e C(K')*, then by Lemma 3 we can put Pr=(7n), where

_ {a;+4yl/—m if 7=1 mod2,
X+ YV —m)/2, X=1 mod4 otherwise.
Further
[P] e C(K) = [7] € Ci(K)

{ys 0 mod2 if 7=1 mod2,
(p—1)/8+(X—1)/4=0 mod2 otherwise.

If [P]-[Q] e C,(K")*, then we can put P"=Q7 (), where

{qu+4vl/——m if =1 mod2,
@U4+VV =m)/2, U=1 mod4 otherwise.

By Lemmas 1 and 3 we obtain

[P]le Ci(K) — [7] € Ci(K)
{’I)EO mod 2 if =1 mod2,
(gp—1)/8+(U—-1)/4+(r+1)/2=0 mod 2 otherwise .

Therefore we have the following statements:

(6) If p is a prime such that (—1/p)=(2q/p)=2q /p)=1, then p* can
be written in ome of the following forms;
*+16my? , X*+mY?/4,
qu*+16q'v?, QU*+q'VyH/4,
where x, ¥, X, Y, u, v, U and V are all integers and X= U=1 mod 4.
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Further we have

(—1) of pT=2+16my*,
(8 /p) _ (_1)(p—1)/8+(X—1)/4 %f pr=(X2+mY2)/4 ,
mEET(=1)e if P =qul+16q'v*,

(_1)(qp—l)/8+(U—1)/4+(1'+1)/2 ,I:f p‘r:(q U2+qIV2)/4 .
(II) The criterions by F=Q(1 2¢") and E=Q(1 —29q).

LEMMA 4. Put w=1"2¢". Let pt=x+yw be a totally positive integer
of F prime to 2q. Then

[#] € Co(K') = x: 0dd, y: even, (x*+2¢'y*/q)=1 .
Further
[#] € Cp(K) = (—2/x)(—1)"*(x+sy/q)=1,
where s € Z such that s*= —2q’ mod q.

PROOF. Let a, B, 7 and X\ he totally positive integers of F' satisfying
the following properties:

a=14+w mod4p,, B=14+2w mod 4p, ,
{asl mod q ; i,ezl mod q ;
7Y=3 mod4p,, Av=1 mod 4p, ,
{'751 mod q ; {)\,ET(Q) mod @ ,
=1 mod @ ,

where @ is__a prime ideal of F' lying above ¢, r(Q) is a primitive root
mod @ and @ denotes the conjugate of Q. We see that

Pr=([a], (8], [V}, I\, M)

Ko((@)=[lal, [8], [7D »

K(29)=[[8], [7], [a]> ,

K((49)=|[Blla] ,
where X denotes the conjugate of A. By the values of conductors
Sk/F)=4p.,q, f(K'|F)=2q, (L'/|F)=q, we know

Cr(L)*=(lal, [8], [7], I\, INF, IMIXD
Cr(K)*=(lal’, [8], ["], I\F, INF, IMIRD
Cr(K)* O<IBININL NP, [XE, [l .
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Let ~ be a prime number such that ~=8 mod 8 and (2¢’/¢)=—1. Then
[21=["I(IMJ[X]) mod Cx(K) and < remains prime in k. By Lemma 3 we
know that < splits completely between K and k. Therefore

[7]1e Cx(K)* .
Thus
C(K)*={[al, [BININ] [YIMIX, INF, [N -
From this we easily deduce our statements. Q.E.D.

LEMMA 5. Let Q be the prime ideal of F lying over ¢'. Let a and
B be the elements appeared in the proof of Lemma 4. Then

[Q[a]l8] € Cx(K) .

PrROOF. By Lemma 1, the Frobenius substitution associated with the
class [Q'] is ppo. Consider an element g of Q(\,) such that

p=a+g@+x,) ,
where a is a rational integer with properties:
(@, 29)=1, a>4qq'u, .
Let v be the norm of ¢ over F. Then v is totally posivive and
=[all8] mod Cx(K) .

Since [v] € Cx(L') and K+ is the composite field of L’ and Q(\,), we know
that @p is also the Frobenius substitution associated with the class [v].
Therefore we obtain [Q'][a][B8] € Cx(K). Q.E.D.

Since A(F)=2 mod 4, we can put h(F)=2h', where A’ is odd. Let p
be a prime number such that (—1/p)=(2q/»)=(2¢/p)=1 and P one of the
prime ideal of F' lying above p. Let ¢ be any odd multiple of #’. Then
we have by Lemma 6,

[P]¥e Cx(K")* or [P) e[QIallBICHK")* .
By the similar argument in (I) and by Lemmas 4 and 5, we have
(7) p? can be written in one of the forms:
p’=a’—8¢'0*, a>0 or p‘=q'A*’-2B*, A>0.
Further
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(a+2sb/q)(2/a)(—1)* if p‘=a’—8q'b*,

DT g a+sB@e) if p=ga-2B.

The criterion by E is similarly obtained (see next Theorem). Consequently
we obtain

THEOREM. Let m be a product of two distinct primes q and q' such
that q=5 mod 8, ¢'=7 mod 8 and (¢'/q)=—1. Denote by H the product
of odd parts of class numbers h(k), h(F') and h(E). Let p be a prime
number such that (—1/p)=(2q/p)=2q /p)=1. Then we obtain the following
table which offers representations of p¥ and evaluation of (e,/p), according
to each of them.

| representations of p¥ evaluation of (s,./p).
X +»r:i21;r“*)1,6 w}‘(; 1 mod 4 (=1) @ohrcrs b
1?1(?118 a?—8¢’b?, a>0 (a+2sb/q)(2/a)(—1)° F
a*+8¢p? (a+2t8/9")(—2/a)(—1)# E
(q Uz+$”'21?%6 Uv—zl mod4 | (-1 ap- e k
mod 8 A —2B%, A>0 — (¢’ A+sBJg)(2/4) F
qr®+86* — (g7 +2t5/q")(—2/T)(—1)° E

Here s and ¢ are integers such that s*=2¢’ mod ¢ and #*= —2q mod ¢'.

NUMERICAL EXAMPLE. Let ¢=5 and ¢’'=7. Then &,=6+1"35 and
H=1.

(i) Take p=13. Then &;=9 mod 18 and (e4/p),=1. We can put
s=t=2 and we see

U=—-3, V=1; A=3, B=5; v=1, é=1.

(ii) Take p=281. Then ¢&,;=69 mod 281 and (e,;/p),=—1. Let s=
t=2. We have

X=383, Y=1; a=41, b=5; a=11, B=2.

For the integers m of other type in (2), we shall only state the results.
Let H be the product of odd parts of narrow class numbers of k, F' and
E. Let p be a prime number such that (—1/p)=(e,/p)=(f./p)=1. Then
we have the following tables.
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(T-1)

Here s and ¢t are integers such that s*=2q mod ¢’ and #*= —2¢’ mod q.
(T-2) m=qq’; ¢=3 mod 8, ¢'=3 mod 4, (¢/¢")=—1.
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m=qq’; ¢g=5 mod 8, ¢=3 mod 8, (¢'/9)=—1. (e.=2¢, fn=2q.)
representations of p¥ evaluation of (en./P)s

22 +16my? (=¥ k

=l a*—8gb?, a>0 (a+2sb/g")(2/a)(— 1) F
a*+8¢'p* (a+2tB/g)(2/a)(—1)8 E

¢X*+16¢'Y? (—pr+t k

i gA*—8B?, A>0 (qA+2sB/q’)@/A)(—1)® F
q'724-20% —(q’T+t3/q)(2[T) E

(en=0, fu=0".)

representations of p¥

evaluation of (e./p)s

2 +4my? -1 ' k
4X*+mY? (—2/g")(—1)x+!
at—4¢’b?%, a>0 (—1)%(a+2sb/q) F
a’+4qB? (a+2tB/g")(—1)@ /2 E
1(*+¢6®, d:0dd T=0mod 4 @I +1t0)/q)(—1) PV arrri/2
Here s, t € Z such that s*=q’ mod q and t*= —q mod ¢’'.
(T-3) m=2q; ¢q=3 mod8. (¢,=2, f.=¢q.)
representations of p¥ evaluation of (en/D)s
2%+ 8qy? (—1¥ k
(4a +;);—0 16(Ib2 (— l)a—-b
a’+8p2 (—DA&(a+2tB/q)
Here t € Z such that 2= —2 mod q.
(T-4) m=q; ¢=38, 11 mod 16. (e,=2, f.=2q.)
representations of p¥ evaluation of (e./P)s
z?+16qy* =1 k
i(X2+qY2), X=1mod 4 (_1)(X—1)/4+(P—1)/8
a’—8¢b?, a=1mod 4 (sgn a)(—1)?+e-D/4 F
a®+88%, a=1mod 4 (—1)B*+ @D/ q—2p8/q) E

Here r € Z such that »*=—2 mod gq.
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(T-8) m=gq; ¢g=7 mod 16. (e,=2q, f,=2.)

representations of p¥ evaluation of (em/p)s
2%*+16qy? (—1)v k
a*—8b%, a=1mod 4 (sgn a)(2rb+a/q)(2/a)(—1)?
a®*+8¢f%, a=1mod 4 (—1)B+Ca-1/s
qr*+26?, r=8 mod 4 (—1)T+1/4

Here r € Z such that »*=2 mod q.

REMARK. It is known in [2] that there exists a cusp form of weight
one whose p-th Fourier coefficient equals to (e,/p), for every prime
number p such that (—1/p)=(m/p)=(f./p)=1.
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