On the Quartic Residue Symbol of Totally Positive Quadratic Units

Noburo ISHII

University of Osaka Prefecture (Communicated by Y. Kawada)

Introduction

Let m be a square free positive integer and ε_m the fundamental unit of the quadratic field $Q(\sqrt{m})$. If ε_m is totally positive, then we define the biquadratic symbol $(\varepsilon_m/p)_4$ for the rational prime number p with the condition,

$$(*)$$
 $(-1/p) = (m/p) = (\varepsilon_m/p) = 1.$

We refer to [3] for the definitions of the symbols (ε_m/p) and $(\varepsilon_m/p)_4$. Let K (resp. K') be the Galois extension over the rational number field Q generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_m}$ (resp. $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_m}$). Then the condition (*) is equivalent to say that p splits completely in K'. Further the symbol $(\varepsilon_m/p)_4$ expresses the decompition law of this prime p between K and K'. Let T_m be the trace of ε_m over Q and denote by f_m (resp. e_m) the square free part of T_m+2 (resp. $m(T_m+2)$). Consider the following three quadratic fields;

(1)
$$F = \mathbf{Q}(\sqrt{f_m}), \quad E = \mathbf{Q}(\sqrt{-e_m}), \quad k = \mathbf{Q}(\sqrt{-m}).$$

Then K contains all these quadratic fields and is abelian over each of them. If the ideal class groups corresponding to K and K' in each field of (1) are determined explicitly, then we obtain three sorts of expressions of $(\varepsilon_m/p)_4$ in view of the representation of a power of p by the norm form of each quadratic field. In the present paper, we offer explicit expressions of this symbol for the integers m of following types:

$$m = qq': \quad q \equiv 5, 3 \mod 8 , \quad q' \equiv 3 \mod 4 , \quad (q/q') = -1 ;$$

$$(2) \qquad m = 2q: \quad q \equiv 3 \mod 8 ;$$

$$m = q: \quad q \equiv 3, 7, 11 \mod 16 . \quad (q, q': prime numbers.)$$

This restriction imposed on m assures us that the narrow class number of each field in (1) is not divided by 8. The case m is prime is treated, in our previous paper [2], in a different point of view. Therefore we shall state only the results for this case. Finally it is remarked that the results for the values of the symbol $(\varepsilon_m/p)_4$ in [1] and [3] correspond to ours obtained from the field k.

§ 1. Preliminaries.

Let m be any positive square free integer and let the notation be as above. If p is a prime number such that (-1/p)=(m/p)=1, then it is easy to see

$$(\varepsilon_m/p) = 1 \iff p$$
 splits completely in K' .

Let \mathfrak{p} be a prime ideal of K' lying over p. Then

$$(\varepsilon_{\scriptscriptstyle m}/p)_{\scriptscriptstyle 4} = \left\{ egin{array}{ll} 1 & {
m if} \ {
m p} \ {
m splits} \ {
m in} \ K \ , \ -1 & {
m if} \ {
m p} \ {
m remains} \ {
m prime} \ {
m in} \ K \ . \end{array}
ight.$$

Let G = G(K/Q) be the Galois group of K over Q. Then G is of order 16 and is generated by three elements σ , φ and ρ defined by

$$\begin{cases} \sigma(\sqrt[4]{\varepsilon_m}) = \sqrt{-1}\sqrt[4]{\varepsilon_m} ,\\ \varphi(\sqrt[4]{\varepsilon_m}) = \sqrt[4]{\varepsilon_m}^{-1} ,\\ \rho(\sqrt{-1}) = -\sqrt{-1} . \end{cases}$$

Let $\lambda_{\pm} = \sqrt[4]{\varepsilon_m} \pm \sqrt[4]{\varepsilon_m}^{-1}$ and put

$$K^{+} = Q(\sqrt{-e_{m}}, \lambda_{+}), \qquad K^{-} = Q(\sqrt{-e_{m}}, \lambda_{-}),$$
 $L = Q(\sqrt{-1}, \sqrt{-m}), \qquad L' = Q(\sqrt{-m}, \sqrt{f_{m}}), \qquad L'' = Q(\sqrt{-m}, \sqrt{e_{m}}).$

Then we have the following diagram:

From this diagram we obtain

(3) a prime number p splits completely in K'
$$\iff (-1/p) = (m/p) = (f_m/p) = 1.$$

In particular this shows, for a prime p such that (-1/p) = (m/p) = 1,

$$(\varepsilon_m/p) = (f_m/p)$$
.

Further we have:

LEMMA 1. Let p be an odd prime divisor of m and P the prime ideal of k over p. Assume that P splits in L'. Then we obtain

P splits completely in $K' \iff p \equiv 1 \mod 4$;

 $P \ splits \ completely \ in \ K^+ \longleftrightarrow p \,|\, e_m \ or \ (2/p) \!=\! 1$;

$$P \ splits \ completely \ in \ K^- \Longleftrightarrow egin{cases} (-2/p) = 1 & if & p \mid f_{\mathtt{m}} \ , \\ (-1/p) = 1 & if & p \mid e_{\mathtt{m}} \ . \end{cases}$$

Furthermore

$$P \text{ splits completely in } K \longleftrightarrow \begin{cases} p \equiv 1 \mod 8 & \text{if } p \mid f_m \text{ ,} \\ p \equiv 1 \mod 4 & \text{if } p \mid e_m \text{ .} \end{cases}$$

PROOF. It is easy to see that

P splits in
$$L' \iff (f_m/p) = 1$$
 or $(-e_m/p) = 1$.

Therefore

$$P$$
 splits completely in $K' \longleftrightarrow P$ splits in each of L , L' and L'' $\longleftrightarrow (f_m/p) = (-f_m/p) = 1$ or $(e_m/p) = (-e_m/p) = 1 \longleftrightarrow p \equiv 1 \mod 4$.

Let $P=P_1P_2$ be the prime ideal decomposition of P in L'. We can take a defining equation $f^+(x)$ (resp. $f^-(x)$) of K^+ (resp. K^-) over L' as

$$f^{\pm}(x) = x^2 - \lambda_{\pm}^2 = x^2 - (u_m \sqrt{f_m} \pm 2)$$
 ,

where u_m is the positive integer such that $u_m^2 f_m = T_m + 2$. Let $p \mid f_m$. Then

$$f^{\pm}(x) \equiv x^2 \mp 2 \mod P_i$$
.

This shows

P splits completely in K^+ (resp. K^-) \Longleftrightarrow (2/p)=1 (resp. (-2/p)=1).

Let $p \mid e_m$. Then we know only one of P_1 and P_2 divides λ_+^2 . Assume

that P_1 divides λ_+^2 and P_2 divides λ_-^2 . Then

$$f^+(x) = x^2 - 4 - \lambda_-^2 \equiv x^2 - 4 \mod P_2$$
.

Therefore P splits completely in K^+ . Similarly we obtain

P splits completely in
$$K^- \longleftrightarrow (-1/p)=1$$
.

By the way

P splits completely in $K \longleftrightarrow P$ splits completely in K', K^+ , K^- respectively. Therefore we have our assertions. Q.E.D.

LEMMA 2. Let m = qq' be the integers given by (2). Then the integers e_m and f_m are as follows.

$$(e_m, f_m) = \begin{cases} (2q', 2q) & \text{if} \quad q \equiv 5 \mod 8 & \text{and} \quad q' \equiv 3 \mod 8 \text{,} \\ (2q, 2q') & \text{if} \quad q \equiv 5 \mod 8 & \text{and} \quad q' \equiv 7 \mod 8 \text{,} \\ (q, q') & \text{if} \quad q \equiv 3 \mod 8 & \text{and} \quad q' \equiv 3 \mod 4 \text{,} \\ (2, q) & \text{if} \quad q \equiv 3 \mod 8 & \text{and} \quad q' \equiv 2 \text{.} \end{cases}$$

PROOF. Let $q \equiv 5 \mod 8$, $q' \equiv 3 \mod 4$ and (q/q') = -1. Put $\varepsilon_m = A + B\sqrt{m}$. First of all we shall show that A is even. Let $C + D\sqrt{m}$ be the smallest positive unit of $Q(\sqrt{m})$ such that C is odd and D is positive. Since $C^2 - D^2m = 1$, we can put

$$C-1=2r^2u$$
, $C+1=2s^2v$,

where u, v, r and s are positive integers such that uv=m, 2rs=D and (ru, sv)=1. From this we have

$$1=s^2v-r^2u$$
.

Since (-1/q') = -1 and (q/q') = -1, it follows that u = m and v = 1. This shows that $s + r\sqrt{m}$ is a positive unit of $Q(\sqrt{m})$ smaller than $C + D\sqrt{m}$. Therefore s is even and A is even. Put

$$A-1=R^2U$$
, $A+1=S^2V$.

where R, S, U and V are positive integers and UV=m. Then

$$2 = S^2V - R^2U \equiv V - U \mod 8$$
.

From this we have (U, V) = (q', q) (resp. (q, q')) if $q' \equiv 3 \mod 8$ (resp. if $q' \equiv 7 \mod 8$). Since $e_m = 2U$ and $f_m = 2V$ we have our assertion in the case $q \equiv 5 \mod 8$. Other assertions can be similarly proved. Q.E.D.

In the following for an abelian extension Ω over a field Λ , we denote by $f(\Omega/\Lambda)$ the finite part of conductor of Ω/Λ . Let \mathcal{K} , \mathcal{L} and \mathcal{F} be fields such that $\mathcal{K} \supset \mathcal{L} \supset \mathcal{F}$ and $[\mathcal{L}:\mathcal{F}]=2$. Assume that \mathcal{K} is abelian over \mathcal{F} . Let P be a prime ideal of \mathcal{L} . Denote by f(P) and g(P) the P-exponent of $f(\mathcal{K}/\mathcal{L})$ and that of the difference $D(\mathcal{L}/\mathcal{F})$ of \mathcal{L} over \mathcal{F} respectively. We define the integer e(P) by

$$e(P) = \max(0, g(P) - f(P))$$
.

Then we know by Lemma 1 of [2]

$$f(\mathscr{K}/\mathscr{F}) = f(\mathscr{K}/\mathscr{L})D(\mathscr{L}/\mathscr{F}) \prod_{p} P^{e(p)}$$
 .

Furthermore assume that \mathscr{K} and \mathscr{L} are normal over Q. Then the P-exponent f(P) is the same for all prime ideals P of \mathscr{L} dividing a prime number p, which we denote by f(p). In particular, if $[\mathscr{K}:\mathscr{L}]=2$, then f(2) is calculated as follows. Let α be an integer of \mathscr{L} such that $\mathscr{K}=\mathscr{L}(\sqrt{\alpha})$. Fix a prime ideal Q of \mathscr{L} dividing 2. Let \hat{o} the completion of the ring of integers of \mathscr{L} with respect to Q and Π a prime element of \hat{o} . Put

$$\alpha = \Pi^{\delta} \beta$$
,

where β is a unit of $\hat{\mathfrak{o}}$. We denote by $S_{\varrho}(\beta)$ the greatest positive integer t such that $\beta \equiv \gamma^2 \mod \Pi^t$ for some unit $\gamma \in \hat{\mathfrak{o}}$ (cf. §63A of [4]). We define the integer $S_{\mathscr{L}}(\alpha)$ by

$$S_{\mathscr{L}}(lpha) = egin{cases} S_{Q}(eta) & ext{if} \quad \delta ext{ is even ,} \ 0 & ext{otherwise .} \end{cases}$$

It is obvious that $S_{\mathscr{L}}(\alpha)$ is determined only by α and is independent of the choice of Q and Π . Let $e_{\mathscr{L}}$ denote the ramification exponent of Q. Then we have by Lemma 4 of [2] and Lemma 2 of [1],

$$f(2) = \begin{cases} 2e_{\mathscr{L}} + 1 - S_{\mathscr{L}}(\alpha) & \text{if} \quad S_{\mathscr{L}}(\alpha) < 2e_{\mathscr{L}}, \\ 0 & \text{otherwise}. \end{cases}$$

Let M be one of the fields (1). By (4) and (5), we can get the conductors f(K/M), f(K'/M) and f(L'/M) from calculating $S_L(\varepsilon_m)$ and $S_{K'}(\sqrt{\varepsilon_m})$. (cf. § 3 of [2].) If m are integers in (2), then the values of $S_L(\varepsilon_m)$ and $S_{K'}(\sqrt{\varepsilon_m})$ are as follows.

m = qq'	$q \equiv 5 \mod 8$ $q' \equiv 3 \mod 4$	$q \equiv 3 \mod 8$ $q' \equiv 3 \mod 4$	$q \equiv 3 \mod 8$ $q' = 2$
e_L	2	2	4
$S_L(\varepsilon_m)$	1 .	≧4	8
$e_{K'}$	4	2	4
$S_{K'}(\sqrt{\overline{\varepsilon_m}})$	1	1	3

§ 2. Criterions.

Let the notation be as in the previous sections. Furthermore we shall use the following notation. Let M be one of the quadratic fields k, F and E. Let a be an integral ideal of M. If M is imaginary (resp. real), then $H_{M}(a)$ denotes the group of ray classes (resp. narrow ray classes) modulo a of M and $P_{M}(a)$ denotes the subgroup of $H_{M}(a)$ generated by principal classes (resp. principal classes represented by totally positive elements). We denote by h(M) the class number (resp. narrow class number) of M. Hereafter we put $H_M = H_M(f(K/M))$ and $P_M = P_M(f(K/M))$. If b is an ideal prime to f(K/M), then [b] denotes the class of H_M represented by b. If b is an element of M and (b) is the principal ideal generated by b, then [(b)] is abbreviated as [b]. If Ω is a subfield of K over M, then $C_{M}(\Omega)$ denotes the subgroup of H_{M} corresponding to Ω . We put $C_{M}(\Omega)^{*} = C_{M}(\Omega) \cap P_{M}$. If c is an integral ideal of M dividing f(K/M), then $K_{M}(c)$ denotes the kernel of the canonical homomorphism of P_{M} to $P_{\mathbf{M}}(\mathbf{c})$.

Let m be one of integers given by (2) and p a prime number such that $(-1/p) = (f_m/p) = (e_m/p) = 1$. Now we shall evaluate the character $(\varepsilon_m/p)_4$. Because the way of our discussion is very similar for each case of m, we shall give the details only for the case m = qq', $q \equiv 5 \mod 8$, $q' \equiv 7 \mod 8$ and (q'/q) = -1.

(I) The criterion by $k = Q(\sqrt{-m})$.

LEMMA 3. Let $\omega = (1+\sqrt{-m})/2$ and let ν be an integer of k prime to 2. If $\nu \equiv 1 \mod 2$, then we can put $\nu = x + y\omega$; $x, y \in \mathbb{Z}$ and we have

$$[\nu] \in C_k(K') \iff x : odd$$
, $y \equiv 0 \mod 8$;
 $[\nu] \in C_k(K) \iff x : odd$, $y \equiv 0 \mod 16$.

If $\nu \not\equiv 1 \mod 2$, then we can put $\nu = (X + Y\nu / -m)/2$, where X and Y are integers. Assume $X \equiv 1 \mod 4$, if necessarily, replacing ν by $-\nu$. Then

$$\label{eq:continuous} \begin{split} [\nu] \in C_k(K') & \Longleftrightarrow N(\nu) \equiv 1 \mod 8 \ ; \\ [\nu] \in C_k(K) & \longleftrightarrow (N(\nu)-1)/8 + (X-1)/4 \equiv 0 \mod 2 \ , \end{split}$$

where $N(\nu)$ denotes the norm of ν over Q.

PROOF. By the argument in the last part of §1, we know that f(K/k)=16, f(K'/k)=8 and f(L/k)=4. From this we see

$$\begin{split} &[P_k:C_k(L)^*] = &[C_k(L)^*:C_k(K')^*] = &[C_k(K')^*:C_k(K)^*] = 2,\\ &C_k(L)^* \supset &K_k((4)), \quad C_k(K')^* \supset &K_k((8)), \quad C_k(K)^* \not\supset &K_k((8)). \end{split}$$

Let ζ be an integer such that $\zeta^3 \equiv 1 \mod 16$. Then

$$P_k = \langle [1+4\omega], [1+2\omega], [\zeta] \rangle$$
, $K_k((4)) = \langle [1+4\omega], [1+2\omega]^2 \rangle$, $K_k((8)) = \langle [1+4\omega]^2, [1+2\omega]^4 \rangle$.

Therefore

$$C_k(L)^*\!=\!\langle [\zeta]
angle\! imes\!K_k((4))$$
 , $C_k(K')^*\!=\!\langle [\zeta],\, [1\!+\!4\omega]^{\scriptscriptstyle 2},\, [1\!+\!2\omega]^{\scriptscriptstyle 2}
angle$.

Since the factor group $P_k/C_k(K)^*$ is of exponent 4 and G(K/Q) is non-abel, we have

$$C_k(K)^* = \langle [\zeta], [1+2\omega]^2 \cdot [1+4\omega]^2 \rangle$$
.

Let $\nu \equiv 1 \mod 2$. Then

$$[\nu] \in C_k(K') \longleftrightarrow [\nu] \in \langle [1+8\omega], [5+8\omega] \rangle \longleftrightarrow x : \text{odd}, \quad y \equiv 0 \mod 8 ;$$

$$[\nu] \in C_k(K) \longleftrightarrow [\nu] \in \langle [5] \rangle \longleftrightarrow x : \text{odd}, \quad y \equiv 0 \mod 16 .$$

Let $\nu \not\equiv 1 \mod 2$. Choose $\alpha = 1$ or 2 such that $\nu \zeta^{\alpha} = u + v\omega \equiv 1 \mod 2$. Since $N(\zeta) \equiv 1 \mod 16$,

$$N(\nu) \equiv u^2 + v(u + vN(\omega)) \mod 16$$
.

Therefore we know that

$$[\nu] \in C_k(K') \iff v \equiv 0 \mod 8 \iff N(\nu) \equiv 1 \mod 8$$
.

Let $v \equiv 0 \mod 8$. Then noting $X^2 \equiv u^2 \mod 16$ we have

$$N(\nu)-1 \equiv X^2-1+v \mod 16$$
.

Thus

$$v/8 \equiv (N(\nu)-1)/8 + (X^2-1)/8 \equiv (N(\nu)-1)/8 + (X-1)/4 \mod 2$$
.

Hence for $[\nu] \in C_k(K')$,

$$[\nu] \in C_k(K) \iff (N(\nu)-1)/8+(X-1)/4 \equiv 0 \mod 2$$
. Q.E.D.

Since $h(k) \equiv 2 \mod 4$, we can put h(k) = 2h, where h is an odd number. Let p be a prime number such that p splits in k and P one of the prime ideals of k lying above p. By (3) we have

$$(-1/p) = (2q/p) = (2q'/p) = 1 \iff [P] \in C_k(K')$$
.

Assume that $[P] \in C_k(K')$, Let Q be the prime ideal of k lying above q. Let r be any odd multiple of h. Then we have

$$[P]^r \in C_k(K')^*$$
 or $[P]^r[Q] \in C_k(K')^*$.

If $[P]^r \in C_k(K')^*$, then by Lemma 3 we can put $P^r = (\eta)$, where

$$\eta = \begin{cases} x + 4y\sqrt{-m} & \text{if} \quad \eta \equiv 1 \mod 2 \text{ ,} \\ (X + Y\sqrt{-m})/2 \text{ ,} \quad X \equiv 1 \mod 4 & \text{otherwise .} \end{cases}$$

Further

$$\begin{split} [P] \in C_k(K) & \longleftrightarrow [\eta] \in C_k(K) \\ & \longleftrightarrow \begin{cases} y \equiv 0 \mod 2 & \text{if} \quad \eta \equiv 1 \mod 2 \text{ ,} \\ (p-1)/8 + (X-1)/4 \equiv 0 \mod 2 & \text{otherwise .} \end{cases} \end{split}$$

If $[P]^r \cdot [Q] \in C_k(K')^*$, then we can put $P^r = Q^{-1}(\eta)$, where

$$\eta = egin{cases} qu + 4v\sqrt{-m} & ext{if} \quad \eta \equiv 1 \mod 2 \; , \ (q\,U + V\sqrt{-m})/2 \; , \quad U \equiv 1 \mod 4 \quad ext{otherwise} \; . \end{cases}$$

By Lemmas 1 and 3 we obtain

$$\begin{split} [P] \in C_k(K) & \longleftrightarrow [\eta] \in C_k(K) \\ & \longleftrightarrow \begin{cases} v \equiv 0 \mod 2 & \text{if} \quad \eta \equiv 1 \mod 2 \text{,} \\ (qp-1)/8 + (U-1)/4 + (r+1)/2 \equiv 0 \mod 2 & \text{otherwise} \text{.} \end{cases} \end{split}$$

Therefore we have the following statements:

(6) If p is a prime such that (-1/p)=(2q/p)=(2q'/p)=1, then p^r can be written in one of the following forms;

$$x^2\!+\!16my^2$$
 , $(X^2\!+\!m\,Y^2)/4$, $qu^2\!+\!16q'v^2$, $(q\,U^2\!+\!q'V^2)/4$,

where x, y, X, Y, u, v, U and V are all integers and $X \equiv U \equiv 1 \mod 4$.

Further we have

$$(arepsilon_{\it m}/p)_4 = egin{cases} (-1)^{\it y} & if & p^r = x^2 + 16my^2 \;, \ (-1)^{(p-1)/8 + (X-1)/4} & if & p^r = (X^2 + mY^2)/4 \;, \ (-1)^{\it v} & if & p^r = qu^2 + 16q'v^2 \;, \ (-1)^{(q_{\it p}-1)/8 + (U-1)/4 + (r+1)/2} & if & p^r = (qU^2 + q'V^2)/4 \;. \end{cases}$$

(II) The criterions by $F = Q(\sqrt{2q'})$ and $E = Q(\sqrt{-2q})$.

LEMMA 4. Put $\omega = \sqrt{2q'}$. Let $\mu = x + y\omega$ be a totally positive integer of F prime to 2q. Then

$$[\mu] \in C_F(K') \iff x : odd, \ y : even, \ (x^2 + 2q'y^2/q) = 1$$
.

Further

$$[\mu] \in C_{\mathbb{F}}(K) \Longleftrightarrow (-2/x)(-1)^{y/2}(x+sy/q) = 1$$
 ,

where $s \in \mathbb{Z}$ such that $s^2 \equiv -2q' \mod q$.

PROOF. Let α , β , γ and λ be totally positive integers of F satisfying the following properties:

$$\left\{egin{array}{lll} lpha\equiv 1+\omega & \mod 4p_2 \;, & egin{array}{lll} eta\equiv 1+2\omega & \mod 4p_2 \;, & eta\equiv 1 & \mod q \;; & eta\equiv 1 & \mod q \;; & egin{array}{lll} eta\equiv 1 & \mod q \;; & egin{array}{lll} \lambda\equiv 1 & \mod 4p_2 \;, & egin{array}{lll} \lambda\equiv r(Q) & \mod Q \;, & egin{array}{lll} \lambda\equiv r(Q) & \mod Q \;, & egin{array}{lll} \lambda\equiv 1 & \mod ar{Q} \;, & \hdown{array}{lll} \lambda\equiv 1 & \mod ar{Q} \;,$$

where Q is a prime ideal of F lying above q, r(Q) is a primitive root mod Q and \bar{Q} denotes the conjugate of Q. We see that

$$egin{aligned} P_F = & \langle [lpha], [eta], [\gamma], [\lambda], [ar{\lambda}]
angle \; , \ K_F & ((q)) = & \langle [lpha], [eta], [\gamma]
angle \; , \ K_F & ((2q)) = & \langle [eta], [\gamma], [lpha]^2
angle \; , \end{aligned}$$

where $\bar{\lambda}$ denotes the conjugate of λ . By the values of conductors $f(k/F) = 4p_2q$, f(k'/F) = 2q, f(L'/F) = q, we know

$$C_F(L')^* = \langle [lpha], [eta], [\gamma], [\lambda]^2, [\overline{\lambda}]^2, [\lambda][\overline{\lambda}]
angle \; , \ C_F(K')^* = \langle [lpha]^2, [eta], [\gamma], [\lambda]^2, [\overline{\lambda}]^2, [\lambda][\overline{\lambda}]
angle \; , \ C_F(K)^* \supset \langle [eta][\lambda][\overline{\lambda}], [\lambda]^2, [\overline{\lambda}]^2, [lpha]^2
angle \; .$$

Let \angle be a prime number such that $\angle \equiv 3 \mod 8$ and $(2q'/\angle) = -1$. Then $[\angle] = [\gamma]([\lambda][\overline{\lambda}]) \mod C_F(K)$ and \angle remains prime in k. By Lemma 3 we know that \angle splits completely between K and k. Therefore

$$[\mathscr{E}] \in C_{\mathbb{F}}(K)^*$$
.

Thus

$$C_{\mathbb{F}}(K)^* = \langle [\alpha]^2, [\beta][\lambda][\overline{\lambda}], [\gamma][\lambda][\overline{\lambda}], [\lambda]^2, [\overline{\lambda}]^2 \rangle$$
.

From this we easily deduce our statements.

Q.E.D.

LEMMA 5. Let Q' be the prime ideal of F lying over q'. Let α and β be the elements appeared in the proof of Lemma 4. Then

$$[Q'][\alpha][\beta] \in C_F(K)$$
.

PROOF. By Lemma 1, the Frobenius substitution associated with the class [Q'] is $\varphi \rho$. Consider an element μ of $Q(\lambda_+)$ such that

$$\mu = a + q(\omega + \lambda_+)$$
,

where a is a rational integer with properties:

$$(a, 2q)=1$$
, $a>4qq'u_m$.

Let ν be the norm of μ over F. Then ν is totally positive and

$$[\nu] \equiv [\alpha][\beta] \mod C_F(K)$$
.

Since $[\nu] \in C_F(L')$ and K^+ is the composite field of L' and $Q(\lambda_+)$, we know that $\varphi \rho$ is also the Frobenius substitution associated with the class $[\nu]$. Therefore we obtain $[Q'][\alpha][\beta] \in C_F(K)$.

Since $h(F) \equiv 2 \mod 4$, we can put h(F) = 2h', where h' is odd. Let p be a prime number such that (-1/p) = (2q/p) = (2q'/p) = 1 and P one of the prime ideal of F lying above p. Let ℓ be any odd multiple of h'. Then we have by Lemma 6,

$$[P]^{\prime} \in C_{\mathbb{F}}(K')^*$$
 or $[P]^{\prime} \in [Q'][\alpha][\beta]C_{\mathbb{F}}(K')^*$.

By the similar argument in (I) and by Lemmas 4 and 5, we have

(7) p' can be written in one of the forms:

$$p'=a^2-8q'b^2$$
, $a>0$ or $p'=q'A^2-2B^2$, $A>0$.

Further

$$(\varepsilon_{\rm m}/p)_4 = \begin{cases} (a+2sb/q)(2/a)(-1)^b & if \quad p^{\rm c} = a^2 - 8q'b^2 \ , \\ -(q'A+sB/q)(2/A) & if \quad p^{\rm c} = q'A^2 - 2B^2 \ . \end{cases}$$

The criterion by E is similarly obtained (see next Theorem). Consequently we obtain

THEOREM. Let m be a product of two distinct primes q and q' such that $q \equiv 5 \mod 8$, $q' \equiv 7 \mod 8$ and (q'/q) = -1. Denote by H the product of odd parts of class numbers h(k), h(F) and h(E). Let p be a prime number such that (-1/p) = (2q/p) = (2q'/p) = 1. Then we obtain the following table which offers representations of p^H and evaluation of $(\varepsilon_m/p)_4$ according to each of them.

	representations of p^H	evaluation of $(\varepsilon_m/p)_4$	
m-1	$\begin{cases} x^2 + 16my^2 \\ \frac{1}{4}(X^2 + mY^2), \ X \equiv 1 \bmod 4 \end{cases}$	$(-1)^{y}$ $(-1)^{(p-1)/8+(X-1)/4}$	k
$p\equiv 1 \mod 8$	$a^2-8q'b^2, a>0$	$(a+2sb/q)(2/a)(-1)^b$	F
	$\alpha^2+8q\beta^2$	$(\alpha+2t\beta/q')(-2/\alpha)(-1)^{\beta}$	E
m-F	$qu^2+16q'v^2 \ rac{1}{4}(qU^2+q'V^2),\; U\equiv 1 mod 4$	$(-1)^v$ $(-1)^{(qp-1)/8+(U-1)/4+(H+1)/2}$	k
<i>p</i> ≡5 mod 8	$q'A^2-2B^2, A>0$	-(q'A+sB/q)(2/A)	\boldsymbol{F}
	$q^{\gamma^2}+8\delta^2$	$-(q^{\gamma}+2t\delta/q')(-2/7)(-1)^{\delta}$	E

Here s and t are integers such that $s^2 \equiv 2q' \mod q$ and $t^2 \equiv -2q \mod q'$.

Numerical Example. Let q=5 and q'=7. Then $\varepsilon_{85}=6+\sqrt{35}$ and H=1.

(i) Take p=13. Then $\varepsilon_{ss} \equiv 9 \mod 13$ and $(\varepsilon_{ss}/p)_4=1$. We can put s=t=2 and we see

$$U=-3$$
, $V=1$; $A=3$, $B=5$; $\gamma=1$, $\delta=1$.

(ii) Take p=281. Then $\varepsilon_{35}\equiv 69 \mod 281$ and $(\varepsilon_{35}/p)_4=-1$. Let s=t=2. We have

$$X=33$$
, $Y=1$; $a=41$, $b=5$; $\alpha=11$, $\beta=2$.

For the integers m of other type in (2), we shall only state the results. Let H be the product of odd parts of narrow class numbers of k, F and E. Let p be a prime number such that $(-1/p) = (e_m/p) = (f_m/p) = 1$. Then we have the following tables.

(T-1) m = qq'; $q \equiv 5 \mod 8$, $q' \equiv 3 \mod 8$, (q'/q) = -1. $(e_m = 2q', f_m = 2q)$

	representations of p^H	evaluation of $(\varepsilon_m/p)_4$	
	x^2+16my^2	(-1) ^y	k
$p\equiv 1 \mod 8$	$a^2-8qb^2, a>0$	$(a+2sb/q')(2/a)(-1)^b$	F
-	$\alpha^2+8q'\beta^2$	$(\alpha+2t\beta/q)(2/\alpha)(-1)^{\beta}$	E
p≡5 mod 8	$qX^2+16q'Y^2$	$(-1)^{Y+1}$	k
	$qA^2-8B^2, A>0$	$(qA+2sB/q')(2/A)(-1)^B$	F
	$q'^{\gamma^2}+2\delta^2$	$-(q'^{\gamma}+t\delta/q)(2/7)$	E

Here s and t are integers such that $s^2 \equiv 2q \mod q'$ and $t^2 \equiv -2q' \mod q$. (T-2) m = qq'; $q \equiv 3 \mod 8$, $q' \equiv 3 \mod 4$, (q/q') = -1. $(e_m = q, f_m = q')$.

representations of p^H	evaluation of $(\varepsilon_m/p)_4$	
$x^2 + 4my^2 \ 4X^2 + mY^2$	$(-1)^{y}$ $(-2/q')(-1)^{x+1}$	k
$a^2-4q'b^2, a>0$	$(-1)^b(a+2sb/q)$	F
$\alpha^2 + 4q\beta^2$ $\frac{1}{4}(7^2 + q\delta^2), \ \delta : \text{odd} 7 \equiv \delta \text{ mod } 4$	$(\alpha + 2t\beta/q')(-1)^{(\alpha-1)/2} $ $(2(\gamma + t\delta)/q')(-1)^{(p-1)/4 + (\gamma+1)/2}$	E

Here $s, t \in \mathbb{Z}$ such that $s^2 \equiv q' \mod q$ and $t^2 \equiv -q \mod q'$.

(T-3) m=2q; $q\equiv 3 \mod 8$. $(e_m=2, f_m=q)$

representations of p^H	evaluation of $(\varepsilon_m/p)_4$	
$x^2 + 8qy^2$	$(-1)^{y}$	k
$\begin{array}{ c c c c c c }\hline & (4a+1)^2 - 16qb^2 \\ & a > 0 \\ \hline \end{array}$	$(-1)^{a-b}$	F
$\alpha^2+8\beta^2$	$(-1)^{eta}(lpha\!+\!2teta/q)$	E

Here $t \in \mathbb{Z}$ such that $t^2 \equiv -2 \mod q$.

(T-4) m=q; $q\equiv 3$, 11 mod 16. $(e_m=2, f_m=2q)$.

representations of p^H evaluation of $(\varepsilon_m/p)_4$		
$x^2 + 16qy^2$ $\frac{1}{4}(X^2 + qY^2), X \equiv 1 \mod 4$	$(-1)^{y}$ $(-1)^{(x-1)/4+(p-1)/8}$	k
$a^2 - 8qb^2, \ a \equiv 1 \bmod 4$	$(\operatorname{sgn} a)(-1)^{b+(a-1)/4}$	F
$\alpha^2 + 8\beta^2$, $\alpha \equiv 1 \mod 4$	$(-1)^{\beta+(\alpha-1)/4}(\alpha-2r\beta/q)$	E

Here $r \in \mathbb{Z}$ such that $r^2 \equiv -2 \mod q$.

(T-5) m=q; $q \equiv 7 \mod 16$. $(e_m=2q, f_m=2.)$

representations of p^H	evaluation of $(\varepsilon_m/p)_4$	
x^2+16qy^2	$(-1)^y$	k
a^2-8b^2 , $a\equiv 1 \mod 4$	$(\operatorname{sgn} a)(2rb+a/q)(2/a)(-1)^b$	F
$lpha^2 + 8q\beta^2$, $lpha \equiv 1 \mod 4$ $q\gamma^2 + 2\delta^2$, $\gamma \equiv 3 \mod 4$	$(-1)^{\beta+(\alpha-1)/4} (-1)^{(7+1)/4}$	E

Here $r \in \mathbb{Z}$ such that $r^2 \equiv 2 \mod q$.

REMARK. It is known in [2] that there exists a cusp form of weight one whose p-th Fourier coefficient equals to $(\varepsilon_{\it m}/p)_4$ for every prime number p such that $(-1/p)=(m/p)=(f_{\it m}/p)=1$.

References

- [1] F. HALTER-KOCH, P. KAPLAN and K. S. WILLIAMS, An Artin character and representations of primes by binary quadratic forms II, Manuscripta Math., 37 (1982), 357-381.
- [2] T. HIRAMATSU and N. ISHII, Quartic residuacity and cusp forms of weight one, Comment Math. Univ. St. Paul., 34 (1985), 91-103.
- [3] P. A. LEONARD and K. S. WILLIAMS, The quadratic and quartic character of certain quadratic units II, Rocky Mountain J. Math. (4), 9 (1979), 683-692.
- [4] O. T. O'MERA, Introduction to Quadratic Forms, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

Present Address:
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSAKA PREFECTURE
MOZU-UMEMACHI, SAKAI 591