# Examples of Simply Connected Compact Complex 3-folds II 

Masahide KATO and Asahiko YAMADA

Sophia University

## Introduction

This note is the continuation of [2]. In [2], the first named author has constructed a series of compact complex manifolds $\left\{M_{n}\right\}_{n=1,2, s, \ldots}$ of dimension 3 which are non-algebraic and non-Kaehler with the properties: $\pi_{1}\left(M_{n}\right)=0, \pi_{2}\left(M_{n}\right)=\boldsymbol{Z}, b_{3}\left(M_{n}\right)=4 n, \operatorname{dim} H^{1}\left(M_{n}, \mathcal{O}\right) \geqq n$, and $\operatorname{dim} H^{1}\left(M_{n}, \Omega^{1}\right) \geqq n$. The present note consists of two sections, §5, §6. In section 5, we shall show how to describe differentiable structures of $\left\{M_{n}\right\}$ in terms of connected sums, using a result of C.T.C. Wall [4]. We note, in particular, that $M_{1}$ is diffeomorphic to the connected sum of twice $S^{3} \times S^{3}$ and $S^{2} \times S^{4}$; $M_{1} \approx 2\left(S^{3} \times S^{3}\right) \#_{t} S^{2} \times S^{4}$ and that $M_{2}$ is diffeomorphic to that of 4 times $S^{3} \times S^{3}$ and $P^{3} ; M_{2} \approx 4\left(S^{3} \times S^{3}\right) \#_{t} P^{3}$. Here $\#_{t}$ indicates the usual connected sum in the category of differentiable topology. In section 6, we shall calculate all of their Hodge invariants. We have $\operatorname{dim} H^{1}\left(M_{n}, \mathcal{O}\right)=n$ and $\operatorname{dim} H^{1}\left(M_{n}, \Omega^{1}\right)=n+1$, while $H_{1}\left(M_{n}, \boldsymbol{Z}\right)=0$ and $H_{2}\left(M_{n}, \boldsymbol{Z}\right)=\boldsymbol{Z}$.

In the following, we shall use the notation in [2].
§5. In this section, we shall study the differentiable structures of the compact complex manifolds of dimension $3\left\{M_{n}\right\}_{n=1,2,3}, \ldots$, which were constructed in [2].

Lemma 11.
(v)

$$
H_{q}\left(M_{n}, \boldsymbol{Z}\right)= \begin{cases}\boldsymbol{Z} & q: \text { even } \\ 0 & q=1,5 \\ \boldsymbol{Z}^{4 n} & q=3\end{cases}
$$

(vi) Let $l$ be a projective line in $\Sigma \subset P^{3}$. Then, for any $n \geqq 1$, $l_{n}:=i_{1}(l)\left(\subset M_{1}^{n-1} \subset M_{n}\right)$ represents a generator of $H_{2}\left(M_{n}, Z\right)$, where $M_{1}^{0}$ is understood to be $M_{1}$.

[^0]Revised November 26, 1984

Proof. By (ii) in Theorem of [2], we have $H_{2}\left(M_{n}, Z\right)=Z$ and $b_{3}\left(M_{n}\right)=4 n$. Hence (v) follows from the Poincare duality and the universal coefficient theorem. (vi) is clear from the proof of (ii) in Theorem of [2].

Lemma 12. The bilinear form

$$
\mu: H^{2}\left(M_{1}, Z\right) \times H^{2}\left(M_{1}, Z\right) \longrightarrow H^{4}\left(M_{1}, Z\right)
$$

defined by taking cup products is zero.
Proof. Let $S$ be a general fibre of $p_{1}: M_{1} \rightarrow P^{1}$. For a section $l^{\prime}$ of $p_{1}$, we have $S \cdot l^{\prime}=1$. Hence the 1st Chern class $c_{1}([S])$ of the line bundle [S] associated to $S$ is a generator of $H^{2}\left(M_{1}, Z\right)$. Since $S$ is a fibre of $p_{1}$, we have $c_{1}([S])^{2}=0$. Thus $\mu=0$ as desired.

Since $H_{2}\left(M_{n}, \boldsymbol{Z}\right)=\boldsymbol{Z}$, we can define the dual element $\hat{l}_{n}$ in $H^{2}\left(M_{n}, \boldsymbol{Z}\right)$ of $l_{n}$ by $\hat{l}_{n}\left(l_{n}\right)=1$. In general, for a complex manifold $M$, we let $c_{i}(M)$ and $p_{1}(M)$ denote the $i$-th Chern class and the 1 st Pontrjagin class, respectively.

PROPOSITION 6. $\quad c_{1}\left(M_{1}\right)=4 \hat{l}_{1}$ and $\hat{l}_{1}^{2}=c_{2}\left(M_{1}\right)=p_{1}\left(M_{1}\right)=0$.
Proof. Let $S$ be a general fibre of $p_{1}$, and $j: S \rightarrow M_{1}$ be the natural inclusion mapping. Let $K_{M_{1}}$ denote the canonical line bundle of $M_{1}$. Since $\operatorname{deg}_{l_{1}} K_{M_{1}}=-4$, we have

$$
c_{1}\left(M_{1}\right)=4 \hat{l}_{1}
$$

Let $\Theta_{M}$ denote the sheaf of germs of holomorphic vector fields on $M$. Since $S$ is a Hopf surface, we have $c_{1}(S)=c_{2}(S)=0$. Therefore, from the exact sequence

$$
0 \longrightarrow \Theta_{s} \longrightarrow j^{*} \Theta_{M_{1}} \longrightarrow O_{s} \longrightarrow 0
$$

it follows that

$$
\begin{equation*}
j^{*} c_{1}\left(M_{1}\right)=j^{*} c_{2}\left(M_{1}\right)=0 \tag{22}
\end{equation*}
$$

Consider the exact sequence

$$
\cdots \longrightarrow H^{4}\left(M_{1}, Z\right) \xrightarrow{j^{*}} H^{4}(S, Z) \longrightarrow H^{5}\left(M_{1} ; S, Z\right) \longrightarrow \cdots
$$

Note that $p_{1}^{-1}(0)$ is simply connected by Proposition 1 and is a deformation retract of $M_{1}-S$. Hence, by the Lefschetz duality, we have

$$
\begin{aligned}
H^{s}\left(M_{1} ; S, Z\right) & =H_{1}\left(M_{1}-S, Z\right) \\
& =H_{1}\left(p_{1}^{-1}(0), \boldsymbol{Z}\right) \\
& =0
\end{aligned}
$$

Therefore the homomorphism

$$
j^{*}: H^{4}\left(M_{1}, \boldsymbol{Z}\right) \longrightarrow H^{4}(\boldsymbol{S}, \boldsymbol{Z})
$$

is bijective, since we know that

$$
H^{4}\left(\boldsymbol{M}_{1}, \boldsymbol{Z}\right)=H^{4}(\boldsymbol{S}, \boldsymbol{Z})=\boldsymbol{Z}
$$

Hence we have

$$
c_{2}\left(M_{1}\right)=0
$$

from (22). It follows from Lemma 12 that

$$
\hat{l}_{1}^{2}=c_{1}^{2}\left(M_{1}\right)=0 .
$$

Therefore we obtain

$$
p_{1}\left(M_{1}\right)=c_{1}^{2}\left(M_{1}\right)-2 c_{2}\left(M_{1}\right)=0 .
$$

Thus the proposition is proved.
Proposition 7. For $n \geqq 2$, we have $c_{1}\left(M_{n}\right)=4 \hat{l}_{n}, c_{2}\left(M_{n}\right)=6 \hat{l}_{n}^{2}, p_{1}\left(M_{n}\right)=$ $4 \hat{l}_{n}^{2}$, and $\hat{l}_{n}^{3}=1-n$.

Proof. For the Chern numbers, we have by Proposition 6 and [3, Proposition 2.2] that

$$
\begin{align*}
c_{1} c_{2}\left[M_{n}\right] & =(1-n) c_{1} c_{2}\left[P^{3}\right]=24(1-n),  \tag{23}\\
c_{1}^{3}\left[M_{n}\right] & =(1-n) c_{1}^{3}\left[P^{3}\right]=64(1-n) . \tag{24}
\end{align*}
$$

Since $\operatorname{deg}_{i_{n}} K_{M_{n}}=-4$, we have easily

$$
\begin{equation*}
c_{1}\left(M_{n}\right)=4 \hat{l}_{n} . \tag{25}
\end{equation*}
$$

Then it follows from $c_{1}^{3}\left[M_{n}\right]=64 \hat{l}_{n}^{3}$ and (24) that

$$
\begin{equation*}
\hat{l}_{n}^{3}=1-n . \tag{26}
\end{equation*}
$$

Put $c_{2}\left(M_{n}\right)=a \hat{l}_{n}^{2}, a \in \boldsymbol{Q}$. Then by (23), (25), (26) and the equality $c_{1} c_{2}\left[M_{n}\right]=$ $4 a \hat{l}_{n}^{3}$, we obtain $a=6$. Hence

$$
c_{2}\left(M_{n}\right)=6 \hat{l}_{n}^{2}
$$

Therefore we have

$$
p_{1}\left(M_{n}\right)=c_{1}^{2}\left(M_{n}\right)-2 c_{2}\left(M_{n}\right)=4 \hat{l}_{n}^{2}
$$

For any $n \geqq 1, M_{n}$ is simply connected, and all its homology groups are torsion free. Moreover, by Propositions 6 and 7, the 2nd Whitney classes vanish. Therefore all $M_{n}$ satisfy the condition (H) of C. T. C. Wall [4]. Hence $M_{n}$ is determined completely by the data of Propositions 6 and 7. Let $X \#_{t} Y$ indicate the connected sum of differentiable manifolds $X$ and $Y$ in the usual sense in the differential topology. By virtue of [4, Theorem 5], we have the following immediately.

Theorem 2. For any $n \geqq 1$, there is a simply connected compact differentiable manifold $L_{n}$ of real dimension 6 such that $M_{n}$ is diffeomorphic to the connected sum (in the usual sense of differential topology) of $2 n$ times $S^{3} \times S^{3}$ and $L_{n}$;

$$
M_{n} \cong 2 n\left(S^{3} \times S^{3}\right) \#_{t} L_{n} .
$$

Here $L_{n}$ satisfies the following.
(1) $\quad H_{*}\left(L_{n}, \boldsymbol{Z}\right)=H_{*}\left(\boldsymbol{P}^{3}, \boldsymbol{Z}\right)$
(2) $p_{1}\left(L_{n}\right)=4 \lambda_{n}^{2}, \lambda_{1}^{2}=0, \lambda_{n}^{3}=n-1$;
where $\lambda_{n} \in H^{2}\left(L_{n}, Z\right)$ is a generator. In particular, we have

$$
M_{1} \cong 2\left(S^{3} \times S^{3}\right) \#_{t}\left(S^{2} \times S^{4}\right),
$$

and

$$
M_{2} \cong 4\left(S^{3} \times S^{3}\right) \#_{t} P^{3} .
$$

§6. In this section, we shall calculate Hodge invariants of $M_{n}$.
Theorem 3. For $n \geqq 1$, we have

$$
\operatorname{dim} H^{q}\left(M_{n}, \mathscr{O}_{M_{n}}\right)= \begin{cases}1 & q=0  \tag{27}\\ n & q=1 \\ 0 & q=2,3\end{cases}
$$

and

$$
\operatorname{dim} H^{q}\left(M_{n}, \Omega_{M_{n}}^{1}\right)= \begin{cases}0 & q=0,3,  \tag{28}\\ n+1 & q=1, \\ 2 n & q=2 .\end{cases}
$$

First we shall prove the theorem for $n=1$, i.e.,

$$
\operatorname{dim} H^{q}\left(M_{1}, \mathcal{O}_{M_{1}}\right)= \begin{cases}1 & q=0,1  \tag{29}\\ 0 & q=2,3\end{cases}
$$

and

$$
\operatorname{dim} H^{q}\left(M_{1}, \Omega_{\mu_{1}}^{1}\right)= \begin{cases}0 & q=0,3,  \tag{30}\\ 2 & q=1,2 .\end{cases}
$$

As for the equality (29), the case $q=0$ is trivial, and the case $q=1$ was proved in Lemma 8. The case $q=3$ follows easily from [3, Proposition 2.3] using the Serre duality. The remaining case $q=2$ follows from Proposition 6 using the Riemann-Roch theorem. Thus (29) is proved.

Now we shall show the equality (30). Recall the construction of the 3 -fold $M$ in $\S 2$. Take two copies $\tilde{V}_{1}, \tilde{V}_{2}$ of $C^{3}$. Let $\left(\xi_{j}, \zeta_{j}, s_{j}\right)$ be a standard system of coordinates on $\widetilde{V}_{j}$. Form the union $\widetilde{V}=\widetilde{V}_{1} \cup \widetilde{V}_{2}$ by identifying $\left(\xi_{1}, \zeta_{1}, s_{1}\right) \in \widetilde{V}_{1}$ with $\left(\xi_{2}, \zeta_{2}, s_{2}\right) \in \widetilde{V}_{2}$ if and only if

$$
\left\{\begin{array}{l}
\xi_{1}=\xi_{1} s_{2}^{-1} \\
\zeta_{1}=\zeta_{2} s_{2}^{-1} \\
s_{1}=s_{2}^{-1}
\end{array}\right.
$$

Put $l_{0}=\left\{\xi_{1}=\zeta_{1}=0\right\} \cup\left\{\xi_{2}=\zeta_{2}=0\right\}$ and $\tilde{V}^{*}=\tilde{V}-l_{0}$. Let $\alpha$ be the holomorphic automorphism of $\widetilde{V}^{*}$ defined by

$$
\begin{equation*}
\left(\xi_{j}, \zeta_{j}, s_{j}\right) \longmapsto\left(\alpha \xi_{j}, \alpha \zeta_{j}, s_{j}\right) \tag{31}
\end{equation*}
$$

on $\tilde{V}^{*} \cap \widetilde{V}_{j}, j=1,2$, where $\alpha \in C$ is a constant satisfying $0<|\alpha|<1$. Then $M$ is defined to be the quotient space $\widetilde{V}^{*} /\langle\alpha\rangle$ of $\widetilde{V}^{*}$ factored by the action of the infinite cyclic group $\langle\alpha\rangle$ generated by $\alpha$. Denote $\sigma: \widetilde{V}^{*} \rightarrow M$ be the canonical projection. Taking a small positive constant $\delta$, we consider the following subdomains $\widetilde{V}^{*}$ :

$$
\begin{aligned}
& \widetilde{V}_{j 0}=\left\{\left(\xi_{j}, \zeta_{j}, s_{j}\right) \in \widetilde{V}_{j}:(1-2 \delta)|\alpha|^{2}\left(1+\left|s_{j}\right|^{2}\right)<\left|\xi_{j}\right|^{2}+\left|\zeta_{j}\right|^{2}<(1+\delta)|\alpha|^{2}\left(1+\left|s_{j}\right|^{2}\right)\right\}, \\
& \widetilde{V}_{j_{1}}=\left\{\left(\xi_{j}, \zeta_{j}, s_{j}\right) \in \widetilde{V}_{j}:(1-\delta)|\alpha|^{2}\left(1+\left|s_{j}\right|^{2}\right)<\left|\xi_{j}\right|^{2}+\left|\zeta_{j}\right|^{2}<(1+\delta)\left(1+\left|s_{j}\right|^{2}\right)\right\}, \\
& \widetilde{V}_{j 2}=\left\{\left(\xi_{j}, \zeta_{j}, s_{j}\right) \in \widetilde{V}_{j}:(1-\delta)\left(1+\left|s_{j}\right|^{2}\right)<\left|\xi_{j}\right|^{2}+\left|\zeta_{j}\right|^{2}<(1+2 \delta)\left(1+\left|s_{j}\right|^{2}\right)\right\} .
\end{aligned}
$$

Then the open subdomains $V_{j \nu}:=\widetilde{\sigma}\left(\widetilde{V}_{j \nu}\right), j=1,2, \nu=0,1,2$, cover $M$. On each $V_{j \nu}$, we define local coordinates ( $u_{j \nu}, v_{j \nu}, t_{j \nu}$ ) by

$$
\left(u_{j \nu}, v_{j \nu}, t_{j \nu}\right)=\left(\widetilde{\sigma} \mid \tilde{V}_{j \nu}\right)^{-1 *}\left(\xi_{j}, \zeta_{j}, s_{j}\right) .
$$

The projections

$$
\left(u_{j \nu}, v_{j \nu}, t_{j \nu}\right) \longmapsto t_{j \nu} \quad \text { on } \quad V_{j \nu}
$$

define the fibre bundle structure

$$
\pi: M \longrightarrow P^{1}
$$

whose fibre is biholomorphic to

$$
S_{\alpha}=C^{2}-\{(0,0)\} /\left\langle\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)\right\rangle
$$

Lemma 13. $R^{q} \pi_{*} \mathcal{O}_{H} \cong \mathcal{O}_{P^{1}}, \quad q=0,1$.
Proof. This is trivial for $q=0$. Suppose that $q=1$. By Leray's spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(P^{1}, R^{q} \pi_{*} \mathscr{O}_{M}\right) \Longrightarrow H^{p+q}\left(M, \mathscr{O}_{M}\right)
$$

and by Lemma 8, we have easily

$$
\begin{equation*}
\boldsymbol{C} \cong H^{1}\left(M, \mathscr{O}_{M}\right) \cong H^{1}\left(\boldsymbol{P}^{1}, R^{0} \pi_{*} \mathscr{O}_{M}\right)+H^{0}\left(\boldsymbol{P}^{1}, R^{1} \pi_{*} \mathscr{O}_{\mathcal{H}}\right) \tag{32}
\end{equation*}
$$

Since the lemma holds for $q=0$, we have

$$
H^{1}\left(\boldsymbol{P}^{1}, R^{0} \pi_{*} \mathcal{O}_{\boldsymbol{M}}\right)=0 .
$$

Therefore we obtain from (32) that

$$
\begin{equation*}
H^{0}\left(\boldsymbol{P}^{1}, R^{1} \pi_{*} \mathcal{O}_{M}\right) \cong C \tag{33}
\end{equation*}
$$

Then we can take a non-zero section $s$ of $H^{0}\left(P^{1}, R^{1} \pi_{*} \mathscr{O}_{\mathcal{H}}\right)$. We form an exact sequence of sheaves

on $P^{1}$, where $\mathscr{S}$ is the cokernel of $\otimes s$. By the long exact sequence of cohomologies associated to (34), and by the fact $H^{1}\left(\boldsymbol{P}^{1}, \mathcal{O}_{\boldsymbol{P}^{1}}\right)=0$, we have the exact sequence

$$
0 \longrightarrow H^{0}\left(\boldsymbol{P}^{1}, \mathscr{O}_{\mathbf{P}^{1}}\right) \longrightarrow H^{0}\left(\boldsymbol{P}^{1}, R^{1} \pi_{*} \mathscr{O}_{\boldsymbol{M}}\right) \longrightarrow H^{0}\left(\boldsymbol{P}^{1}, \mathscr{S}\right) \longrightarrow 0
$$

Hence the equality

$$
\begin{equation*}
H^{0}\left(\boldsymbol{P}^{1}, \mathscr{S}\right)=0 \tag{35}
\end{equation*}
$$

follows from (33). Since $\operatorname{dim} H^{1}\left(\pi^{-1}(t), \mathcal{O}_{\pi^{-1}(t)}\right)=1$ for any $t \in P^{1}, R^{1} \pi_{*} \mathcal{O}_{M}$ is a locally free sheaf of rank 1 by a theorem of Grauert. Therefore,
the support of $\mathscr{S}$ is a finite set of points. Hence (35) implies that $\mathscr{S}=0$. Thus the lemma is proved.

Let $\rho: \pi_{1}(M) \rightarrow C^{*}$ be the group representation which sends the holomorphic automorphism $\alpha$ of (31) to the complex number $\alpha^{-1}$. Denote by $F$ the flat line bundle associated to $\rho$. Put

$$
G=\mathcal{O}_{P^{1} 1}(-1) \oplus \mathcal{O}_{P_{1}(-1)}
$$

Then we have
Lemma 14. There is an exact sequence of sheaves on $M$ :

$$
\begin{equation*}
0 \longrightarrow \pi^{*} \Omega_{P^{1}}^{1} \xrightarrow{i} \Omega_{M}^{1} \xrightarrow{\eta} \pi^{*} G \otimes F \longrightarrow 0 \tag{36}
\end{equation*}
$$

where $i$ is the natural inclusion. The homomorphism $\eta$ will be defined below.

Proof. The homomorphism $\eta$ is defined by a collection of sheaf homomorphisms

$$
\eta_{j \nu}: \Omega_{M}^{1} \mid V_{j \nu} \longrightarrow O_{V j_{j \nu}}^{2} \quad j=1,2, \quad \nu=0,1,2 .
$$

Let $\omega$ be any given germ in $\Omega_{H, x}^{1}, x \in V_{j \nu}$, which is written as

$$
\omega=a_{j \nu}(x) d u_{j \nu}+b_{j \nu}(x) d v_{j \nu}+c_{j \nu}(x) d t_{j \nu}
$$

Then we define

$$
\eta_{j \nu}(\omega)=\left(a_{j \nu}(x), b_{j \nu}(x)\right)
$$

Note that we have the relations

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{j \nu}=a_{j \nu+1} \\
b_{j \nu}=b_{j \nu+1}
\end{array} \text { on } \quad V_{j \nu} \cap V_{j \nu+1}, \quad \nu=0,1,\right. \\
& \left\{\begin{array}{l}
a_{j 0}=\alpha^{-1} a_{j 2} \\
b_{j 0}=\alpha^{-1} b_{j 2}
\end{array} \text { on } \quad V_{j 0} \cap V_{j 2},\right.
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
a_{1 \nu}=s_{2} a_{2 \nu} \\
b_{1 \nu}=s_{2} b_{2 \nu}
\end{array} \quad \text { on } \quad V_{1 \nu} \cap V_{2 \nu}, \quad \nu=0,1,2\right.
$$

Hence the collection $\left\{\eta_{j \nu}\right\}$ gives the desired sheaf homomorphism

$$
\eta: \Omega_{M}^{1} \longrightarrow \pi^{*} G \otimes F
$$

The exactness of the sequence follows from the definition.

Lemma 15. $R^{q} \pi_{*} F=0, q \geqq 0$.
Proof. Let $F_{t}$ denote the restriction of $F$ to a fibre $\pi^{-1}(t), t \in P^{1}$. Since a fibre of $\pi$ is a Hopf surface, we have

$$
\operatorname{dim} H^{0}\left(\pi^{-1}(t), F_{t}\right)-\operatorname{dim} H^{1}\left(\pi^{-1}(t), F_{t}\right)+\operatorname{dim} H^{2}\left(\pi^{-1}(t), F_{t}\right)=0
$$

by the Riemann-Roch theorem. Since the canonical line bundle of $\pi^{-1}(t)$ is $F_{t}^{2}$, we have by using the Serre duality and the equation above,

$$
\begin{align*}
2 \operatorname{dim} H^{0}\left(\pi^{-1}(t), F_{t}\right) & =\operatorname{dim} H^{1}\left(\pi^{-1}(t), F_{t}\right)  \tag{37}\\
& =2 \operatorname{dim} H^{2}\left(\pi^{-1}(t), F_{t}\right) .
\end{align*}
$$

Suppose that $\varphi$ is any section of $H^{0}\left(\pi^{-1}(t), F_{t}\right)$. Then $\varphi$ defines a holomorphic function $\tilde{\varphi}$ on the universal covering $C^{2}-\{(0,0)\}$ of $\pi^{-1}(t)$ satisfying

$$
\tilde{\mathscr{\varphi}}(\alpha z, \alpha w)=\alpha^{-1} \widetilde{\mathscr{\varphi}}(z, w)
$$

where $(z, w)$ is a standard system of homogenous coordinates on $C^{2}$. But this equation implies $\widetilde{\mathscr{\varphi}}=0$. Hence we have $\operatorname{dim} H^{0}\left(\pi^{-1}(t), F_{t}\right)=0$. Therefore $\operatorname{dim} H^{q}\left(\pi^{-1}(t), F_{t}\right)=0$ for $q \geqq 0$ by (37). This implies the lemma by a theorem of Grauert.

Lemma 16. $\quad H^{q}\left(M, \pi^{*} G \otimes F\right)=0, q \geqq 0$.
Proof. Since $\pi: M \rightarrow P^{1}$ is a fibre bundle, we have

$$
R^{q} \pi_{*}\left(\pi^{*} G \otimes F\right)=G \otimes R^{q} \pi_{*} F=0, \quad q \geqq 0
$$

by Lemma 15. Hence the lemma follows immediately.
Lemma 17. $H^{1}\left(M, \Omega_{M}^{1}\right) \cong C$.
Proof. By the long exact sequence of cohomologies associated to (36), and by Lemma 16, it suffices to show that

$$
H^{1}\left(M, \pi^{*} \Omega_{P_{1}^{1}}^{1}\right) \cong C
$$

But this follows immediately from Lemma 13 using Leray's spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(\boldsymbol{P}^{1}, R^{q} \pi_{*}\left(\pi^{*} \Omega_{P^{1}}^{1}\right)\right) \Longrightarrow H^{p+q}\left(M, \pi^{*} \Omega_{P^{1}}^{1}\right)
$$

Recall that $M$ has a structure of a fibre bundle of elliptic curves over $R$ with the projection $\pi_{\mu}: M \rightarrow R$, where $R$ is biholomorphic to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ (§2).

Lemma 18. There is an exact sequence of sheaves on $R$ :

$$
0 \longrightarrow \Omega_{R}^{1} \longrightarrow R^{0} \pi_{M^{*}} \Omega_{M}^{1} \longrightarrow \mathcal{O}_{R} \longrightarrow 0 .
$$

Proof. It is easy to form the exact sequence

$$
0 \longrightarrow \pi_{M}^{*} \Omega_{R}^{1} \xrightarrow{j^{\prime}} \Omega_{M}^{1} \xrightarrow{j^{\prime \prime}} \mathcal{O}_{M} \longrightarrow 0,
$$

where $j^{\prime}$ is the natural inclusion. From this we have the long exact sequence

$$
0 \longrightarrow \Omega_{R}^{1} \xrightarrow{j_{*}^{\prime}} R^{0} \pi_{M^{*}} \Omega_{M}^{1} \xrightarrow{j_{*}^{\prime \prime}} \mathcal{O}_{R} \longrightarrow \cdots
$$

Since $\pi: M \rightarrow R$ is a fibre bundle of elliptic curves, the homomorphism $j_{*}^{\prime \prime}$ is surjective. Hence we obtain the lemma.

Recall also that $M_{1}$ has a structure of fibre bundle of elliptic curves over $R^{1}$ with the projection $\pi_{M_{1}}: M_{1} \rightarrow R_{1}$, where $R_{1}$ is the blown up $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ at one point (§2). Similarly to Lemma 18, we have

Lemma 19. There is an exact sequence of sheaves on $R_{1}$ :

$$
\begin{equation*}
0 \longrightarrow \Omega_{R_{1}}^{1} \longrightarrow R^{0} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1} \longrightarrow \mathcal{O}_{R_{1}} \longrightarrow 0 \tag{38}
\end{equation*}
$$

Lemma 20. $H^{0}\left(R, R^{1} \pi_{M^{*}} \Omega_{M}^{1}\right)=0$.
Proof. By Lemma 18, we have the exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(R, \Omega_{R}^{1}\right) \longrightarrow H^{0}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right) \longrightarrow H^{0}\left(R, \mathscr{O}_{R}\right) \\
& \longrightarrow H^{1}\left(R, \Omega_{R}^{1}\right) \longrightarrow H^{1}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right) \longrightarrow H^{1}\left(R, \mathscr{O}_{R}\right) \\
& \longrightarrow H^{2}\left(R, \Omega_{R}^{1}\right) \longrightarrow H^{2}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right) \longrightarrow H^{2}\left(R, \mathscr{O}_{R}\right) \longrightarrow \cdots .
\end{aligned}
$$

It is easy to check the following facts:

$$
\begin{aligned}
H^{q}\left(R, \Omega_{R}^{1}\right) & = \begin{cases}0 & q \neq 1, \\
C^{2} & q=1,\end{cases} \\
H^{q}\left(R, O_{R}\right) & = \begin{cases}0 & q \neq 0, \\
C & q=0\end{cases}
\end{aligned}
$$

Hence we have by (39)

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right)=1+\operatorname{dim} H^{0}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim} H^{2}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right)=0 . \tag{41}
\end{equation*}
$$

From the inclusion

$$
H^{0}\left(R, R^{0} \pi_{M^{*}} \Omega_{M}^{1}\right) \subset H^{0}\left(M, \Omega_{M}^{1}\right)
$$

and from [3, Proposition 2.3], it follows that

$$
H^{0}\left(R, R^{0} \pi_{M^{*}} \Omega_{M_{H}}^{1}\right)=0
$$

Therefore, by (40), we get

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(R, R^{0} \pi_{M} \cdot \Omega_{M H}^{1}\right)=1 \tag{42}
\end{equation*}
$$

By Leray's spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(R, R^{q} \pi_{M^{*}} \Omega_{M}^{1}\right) \Longrightarrow H^{p+q}\left(M, \Omega_{M H}^{1}\right)
$$

and by (41), we have

$$
H^{1}\left(M, \Omega_{M}^{1}\right) \cong H^{0}\left(R, R^{1} \pi_{M^{*}} \Omega_{M}^{1}\right)+H^{1}\left(R, R^{0} \pi_{M^{*}} \cdot \Omega_{M}^{1}\right)
$$

Then, by (42) and Lemma 17, we obtain

$$
H^{0}\left(R, R^{1} \pi_{M} \Omega_{M_{H}}^{1}\right)=0
$$

Lemma 21. $H^{0}\left(R_{1}, R^{1} \pi_{\mu_{1}^{*}} \Omega_{M_{1}}^{1}\right)=0$.
Proof. By Proposition 4, we have a homomorphism

$$
\begin{equation*}
H^{0}\left(R_{1}-l, R^{1} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right) \longrightarrow H^{0}\left(R-P, R^{1} \pi_{\mu^{*}} \Omega_{M_{H}}^{1}\right) \tag{43}
\end{equation*}
$$

Moreover we have the homomorphisms defined by restrictions:

$$
\begin{equation*}
H^{0}\left(R_{1}, R^{1} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right) \longrightarrow H^{0}\left(R_{1}-l, R^{1} \pi_{M_{1}^{*}}^{*} \Omega_{M_{1}}^{1}\right) \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{0}\left(R, R^{1} \pi_{M^{*}} \Omega_{M}^{1}\right) \longrightarrow H^{0}\left(R-P, R^{1} \pi_{M^{*}} \Omega_{M}^{1}\right) \tag{45}
\end{equation*}
$$

Both $R^{1} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}$ and $R^{1} \pi_{M^{*}} \Omega_{M}^{1}$ are locally free sheaves by a theorem of Grauert. Therefore the homomorphisms (43) and (44) are injective, and the homomorphism (45) is bijective. Hence the lemma follows from Lemma 20.

Proof of (30). The case $q=0$ follows from [3, Proposition 2.3]. The case $q=3$ follows from [3, Proposition 2.3] using the Serre duality. Suppose that $q=1$. From the long exact sequence of cohomologies associated to (38) and from the facts

$$
\begin{aligned}
H^{q}\left(R_{1}, \Omega_{R_{1}}^{1}\right) & = \begin{cases}0 & q \neq 1 \\
C^{s} & q=1\end{cases} \\
H^{q}\left(R_{1}, O_{R_{1}}\right) & = \begin{cases}0 & q \neq 0 \\
C & q=0\end{cases}
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} Q_{M_{1}}^{1}\right)=2+\operatorname{dim} H^{0}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right) \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim} H^{2}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right)=0 \tag{47}
\end{equation*}
$$

By the inclusion

$$
H^{0}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right) \subset H^{0}\left(M_{1}, \Omega_{M_{1}}^{1}\right)
$$

and by [3, Proposition 2.3], we have

$$
H^{0}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right)=0
$$

Hence by (46) we obtain

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} Q_{M_{1}}^{1}\right)=2 . \tag{48}
\end{equation*}
$$

By Leray's spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(R_{1}, R^{q} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right) \Longrightarrow H^{p+q}\left(M_{1}, \Omega_{M_{1}}^{1}\right),
$$

and by (47), we have

$$
H^{1}\left(M_{1}, \Omega_{M_{1}}^{1}\right)=H^{1}\left(R_{1}, R^{0} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right)+H^{0}\left(R_{1}, R^{1} \pi_{M_{1}^{*}} \Omega_{M_{1}}^{1}\right) .
$$

Hence it follows that

$$
H^{1}\left(M_{1}, \Omega_{M_{1}}^{1}\right)=C^{2}
$$

from Lemma 21 and (48). Thus the case $q=1$ is proved. The remaining case $q=2$ follows from the Riemann-Roch theorem together with Proposition 6.

Proof OF (27) AND (28) FOR $n \geqq 1$. Recall that $M_{n}$ contains Hopf surfaces $H_{1}, H_{2}, \cdots, H_{n}$, which are the copies of the surface $S_{0}$ in $M_{1}(\S 4$, pp. 354-355). Note that, in each inductive step of constructing $M_{n}$, the image of the inclusion mapping $i_{\nu}$ : $U_{\varepsilon_{\nu}} \rightarrow M_{\nu}(\nu=1,2, \cdots, n-1)$ does not intersect $H_{1}, H_{2}, \cdots, H_{\nu}$. Namely, $i_{\nu}$ is a mapping of $U_{\varepsilon_{\nu}}$ into $M_{\nu}-\bigcup_{\mu=1}^{\nu} H_{\mu}$. Therefore, we can replace all the Hopf surfaces $H_{1}, H_{2}, \cdots, H_{n}$ in $M_{n}$
with elliptic curves $E_{1}, E_{2}, \cdots, E_{n}$, respectively, to obtain a compact 3-fold $M_{(n)}$ (Proposition 4). The 3-fold $M_{(n)}$ is nothing but the manifold obtained by connecting $n$-copies of $M$ by using the above inclusion mappings

$$
i_{\nu}: U_{\varepsilon_{\nu}} \longrightarrow M_{\nu}-\bigcup_{\mu=1}^{\nu} H_{\mu} \cong M_{\nu}-\bigcup_{\mu=1}^{\nu} E_{\mu} .
$$

We describe another method of constructing $M_{(n)}$. Put

$$
\begin{aligned}
& N_{1}=U_{b}-K_{1}, \quad K_{1}=\overline{U_{b^{\prime}}}, \\
& N_{2}=U_{b /\left(|\alpha|^{2}\right)}-\overline{U_{b^{\prime}}\left(\left.| | \alpha\right|^{2}\right)}, \quad K_{2}=\boldsymbol{P}^{3}-U_{b /\left(|\alpha|^{2}\right)}
\end{aligned}
$$

where $b$ and $b^{\prime}$ are positive constants satisfying $b^{\prime}<|\alpha|<b<1 /|\alpha|$ with $|\alpha|-b^{\prime}$ and $b-|\alpha|$ very small. Let $g_{1}$ be the isomorphism induced by $g$. Put

$$
W_{1}=P^{8}-K_{1}-K_{2} .
$$

Note that $N_{1} \subset W_{1}, N_{2} \subset W_{1}$, and that $M_{(1)}$ is obtained from $W_{1}$ by identifying $N_{1}$ and $N_{2}$ by $g_{1}$. Here we can assume that $b-|\alpha|$ is so small that $i_{1}\left(U_{\varepsilon_{1}}\right) \cap\left(N_{1} \cup N_{2}\right)=\varnothing$. We regard $i_{1}$ as an open embedding of $U_{\varepsilon_{1}}$ into $W_{1}$. Put

$$
W_{2}=M\left(W_{1}^{\prime}, W_{1}, i_{1}^{\prime}, i_{1}\right),
$$

where $W_{1}^{\prime}$ and $i_{1}^{\prime}$ are copies of $W_{1}$ and $i_{1}$, respectively. Denote by $N_{s}$ and $N_{4}$ the subsets in $W_{1}^{\prime}$ corresponding to $N_{1}$ and $N_{2}$ in $W_{1}$, respectively. Let $g_{2}$ denote the biholomorphic map of $N_{3}$ onto $N_{4}$ corresponding to $g_{1}$. Then it is easy to see that $M_{(2)}$ is obtained from $W_{2}$ identifying $N_{1}$ with $N_{2}$ by $g_{1}$, and $N_{3}$ with $N_{4}$ by $g_{2}$. By our definition,

$$
\begin{aligned}
W_{2} & =M\left(\left(\boldsymbol{P}^{3}-K_{1}-K_{2}\right)^{\prime}, \boldsymbol{P}^{3}-K_{1}-K_{2}, i_{1}^{\prime}, i_{1}\right) \\
& =\boldsymbol{P}^{3}-K_{1}-K_{2}-K_{3}-K_{4}
\end{aligned}
$$

where $K_{3}$ and $K_{4}$ are the new "holes" of $P^{3}$ corresponding to $K_{1}$ and $K_{2}$ of the first component in the connecting operation. Then, $W_{1}^{\prime}$ identified naturally with $P^{3}-K_{3}-K_{4}$. For general $n \geqq 3$, we put

$$
W_{n}=M\left(W_{1}^{\prime}, W_{n-1}, i_{1}^{\prime} \mid U_{\varepsilon_{n-1}}, i_{n-1}\right)
$$

Then we can find the subsets $N_{1}, N_{2}, \cdots, N_{2 n-1}, N_{2 n}$ of $W_{n}$, and the biholomorphic maps $g_{\nu}: N_{2 \nu-1} \rightarrow N_{2 \nu}, \nu=1,2, \cdots, n$, which are copies of $N_{1}, N_{2}$ and $g_{1}$ of $W_{1}$, such that $M_{(n)}$ is constructed from $W_{n}$ by identifying $N_{2 \nu-1}$ and $N_{2 \nu}$ by $g_{\nu}$ for all $\nu$. Moreover there are compact subsets $K_{1}, K_{2}, \cdots$, $K_{2 n-1}, K_{2 n}$ in $P^{3}$ such that

$$
\begin{gathered}
W_{n}=\boldsymbol{P}^{3}-\bigcup_{\mu=1}^{2 n} K_{\mu}, \\
W_{n-1}=\boldsymbol{P}^{3}-\bigcup_{\mu=1}^{2 n-2} K_{\mu},
\end{gathered}
$$

and

$$
W_{1}^{\prime}=\boldsymbol{P}^{8}-\left(K_{2 n-1} \cup K_{2 n}\right) .
$$

By the construction $N_{\mu} \cup K_{\mu}$ is a connected open neighborhood of $K_{\mu}$ biholomorphic to $U$. Let

$$
\pi_{n}: W_{n} \longrightarrow M_{(n)}
$$

be the canonical projection.
Lemma 22. Let $\mathscr{E}$ be the sheaf of germs of a holomorphic covariant tensor field on a complex manifold such that $H^{q}\left(\boldsymbol{P}^{3}, \mathscr{E}\right)=0$ for $q=1,2$. Then the induced homorphism

$$
\pi_{n}^{*}: H^{1}\left(M_{(n)}, \mathscr{E}\right) \longrightarrow H^{1}\left(W_{n}, \mathscr{E}\right)
$$

is zero.
Proof. Let us consider the following commutative diagram;


Here the horizontal sequences are the exact sequence of local cohomologies with the restriction map $\tilde{\rho}$ and $L=\boldsymbol{P}^{3}-\cup_{\nu=1}^{2 n}\left(N_{\nu} \cup K_{\nu}\right)$. Let $\theta \in H^{1}\left(M_{(n)}, \mathscr{E}\right)$ be any element. Put $\tilde{\theta}=\pi_{n}^{*} \theta$ and

$$
\begin{equation*}
\tilde{\rho}(\widetilde{\theta})=\sum_{\nu=1}^{2 n} \tilde{\theta}_{\nu}, \quad \text { where } \quad \tilde{\theta}_{\nu} \in H^{1}\left(N_{\nu}, \mathscr{E}\right) \tag{50}
\end{equation*}
$$

By the assumption on $\mathscr{E}$, using Mayer-Vietoris exact sequence for $\boldsymbol{P}^{s}=$ $\left(N_{\nu} \cup K_{\nu}\right) \cup\left(\boldsymbol{P}^{3}-K_{\nu}\right)$, we can find $\tilde{\boldsymbol{\alpha}}_{\nu} \in H^{1}\left(N_{\nu} \cup K_{\nu}, \mathscr{E}\right)$ and $\widetilde{\beta}_{\nu} \in H^{1}\left(\boldsymbol{P}^{3}-K_{\nu}, \mathscr{E}\right)$ such that

$$
\begin{equation*}
\tilde{\theta}_{\nu}=\widetilde{\alpha}_{\nu}+\widetilde{\beta}_{\nu} \quad \text { on } \quad N_{\nu}=\left(N_{\nu} \cup K_{\nu}\right) \cap\left(\boldsymbol{P}^{3}-K_{\nu}\right) . \tag{51}
\end{equation*}
$$

Since $\tilde{\theta}$ is the lifting of an element of $H^{1}\left(M_{(n)}, \mathscr{E}\right)$, we have the relations;

$$
g_{\nu}^{*}\left(\widetilde{\alpha}_{2 \nu}+\widetilde{\beta}_{2 \nu}\right)=\widetilde{\alpha}_{2 \nu-1}+\widetilde{\beta}_{2 \nu-1}, \quad \nu=1,2, \cdots, n
$$

Hence we have

$$
g_{\nu}^{*} \widetilde{\alpha}_{2 \nu}-\widetilde{\beta}_{2 \nu-1}=\widetilde{\alpha}_{2 \nu-1}-g_{\nu}^{*} \widetilde{\beta}_{2 \nu} .
$$

The right hand side of this equation is defined on $N_{2 \nu-1} \cup K_{2 \nu-1}$, and the left hand side is defined on $\boldsymbol{P}^{3}-K_{2 \nu-1}$. Since $\left(N_{2 \nu-1} \cup K_{2 \nu-1}\right) \cup\left(\boldsymbol{P}^{8}-K_{2 \nu-1}\right)=$ $P^{3}$, and since $H^{1}\left(P^{3}, \mathscr{E}\right)=0$, this implies that

$$
\begin{equation*}
g_{\nu}^{*} \widetilde{\alpha}_{2 \nu}=\widetilde{\beta}_{2 \nu-1} \quad \text { and } \quad g_{\nu}^{*} \widetilde{\beta}_{2 \nu}=\widetilde{\alpha}_{2 \nu-1} . \tag{52}
\end{equation*}
$$

Since $\widetilde{\delta}(\widetilde{\rho}(\widetilde{\theta}))=0, \delta\left(g_{\nu}^{*} \widetilde{\alpha}_{2 \nu}\right)=0$, and $\delta\left(\widetilde{\beta}_{2 \nu}\right)=0$, we have

$$
\sum_{\nu=1}^{n} \delta\left(\widetilde{\alpha}_{2 \nu}\right)+\sum_{\nu=1}^{n} \delta\left(g_{\nu}^{*} \widetilde{\beta}_{2 \nu}\right)=0 .
$$

Recall that $\widetilde{\alpha}_{2 \nu} \in H^{1}\left(N_{2 \nu} \cup K_{2 \nu}, \mathscr{E}\right)$ and $g_{\nu}^{*} \widetilde{\beta}_{2 \nu} \in H^{1}\left(N_{2 \nu-1} \cup K_{2 \nu-1}, \mathscr{E}\right)$. Therefore we obtain $\tilde{\alpha}_{2 \nu}=0$ and $\widetilde{\beta}_{2 \nu}=0$ for $\nu=1,2, \cdots, n$, since $\delta$ is bijective. Then it follows from (50), (51) and (52) that $\tilde{\rho}(\tilde{\theta})=0$. By the Mayer-Vietoris exact sequence for $P^{3}=W_{n} \cup\left(\cup_{\nu=1}^{2 n}\left(N_{\nu} \cup K_{\nu}\right)\right)$, we infer that $\tilde{\rho}(\widetilde{\theta})$ extends to an element of $H^{1}\left(\boldsymbol{P}^{3}, \mathscr{E}\right)$, which is equal to zero. Thus $\tilde{\theta}=0$. This proves the lemma.

In general, we let $X_{1}$ and $X_{2}$ be compact 3 -folds of Class $L$ and $\iota_{\nu}: U_{s} \rightarrow X_{\nu}, \nu=1,2$, be open holomorphic embeddings. Define $X$ to be the manifold $M\left(X_{1}, X_{2}, c_{1}, \iota_{2}\right)$. Put $K_{\nu}=\overline{\iota_{\nu}\left(U_{1 / \varepsilon}\right)}$ and $X_{\nu}^{\ddagger}=X_{\nu}-K_{\nu}$. Let $j_{\nu}: X_{\nu}^{\ddagger} \rightarrow X_{\nu}$ and $h_{\nu}: X_{\nu}^{*} \rightarrow X$ be the natural inclusions. Let $s_{\nu}: N(\varepsilon) \rightarrow X_{\nu}^{*}$ and $\iota: N(\varepsilon) \rightarrow X$ be the open holomorphic embeddings defined by $s_{\nu}=\iota_{\nu} \mid N(\varepsilon)$ and $\iota=h_{1} \cdot s_{1}=$ $h_{2} \cdot s_{2} \cdot \sigma$, respectively.

Lemma 23. If the induced homomorphisms

$$
\begin{aligned}
& \iota^{*}: H^{1}(X, \mathscr{E}) \longrightarrow H^{1}(N(\varepsilon), \mathscr{E}) \\
& \iota_{\nu}^{*}: H^{1}\left(X_{\nu}, \mathscr{E}\right) \longrightarrow H^{1}\left(U_{\varepsilon}, \mathscr{E}\right)
\end{aligned}
$$

are zero for the sheaf $\mathscr{E}$ of germs of a covariant holomorphic tensor field, then the equality

$$
\operatorname{dim} H^{1}\left(X_{1}, \mathscr{E}\right)+\operatorname{dim} H^{1}\left(X_{2}, \mathscr{E}\right)=\operatorname{dim} H^{1}(X, \mathscr{E})
$$

holds.
Proof. Consider the following diagram of cohomologies with the coeficient $\mathscr{E}$;


Here the map $\alpha$ will be defined below. The first horizontal sequence is the Mayer-Vietoris exact sequence for $X=X_{1}^{\sharp} \cup X_{2}^{\sharp}$. The second horizontal sequence is the direct sum of exact sequences for the pairs ( $X_{\nu}, X_{\nu}^{*}$ ), $\nu=$ 1, 2. Let $u_{\nu} \in H^{1}\left(X_{\nu}, \mathscr{E}\right), \nu=1,2$, be any elements. By the assumption that $\iota_{\nu}^{*}, \nu=1,2$, are zero, it follows that $s_{1}^{*} \cdot j_{1}^{*}\left(u_{1}\right)=0$ and $\left(s_{2} \cdot \sigma\right)^{*} \cdot j_{2}^{*}\left(u_{2}\right)=0$. Therefore we can find an element $u \in H^{1}(X, \mathscr{E})$ such that $h_{1}^{*}(u)=j_{1}^{*}\left(u_{1}\right)$ and $h_{2}^{*}(u)=j_{2}^{*}\left(u_{2}\right)$. Since $\mathscr{E}$ is the sheaf of germs of a holomorphic covariant tensor field, $H^{0}(N(\varepsilon), \mathscr{E})=0$ and $H_{K_{\nu}}^{1}\left(X_{\nu}, \mathscr{E}\right)=0$ hold. Hence the map $\alpha:\left(u_{1}, u_{2}\right) \mapsto u$ is well-defined by the injectivity of $j_{1}^{*} \oplus j_{2}^{*}$ and $h_{1}^{*} \oplus h_{2}^{*}$. It is easy to see that $\alpha$ is injective. To prove the surjectivity take any element $u \in H^{1}(X, \mathscr{E})$. Since $\iota^{*}$ is zero, both $h_{1}^{*}(u)$ and $h_{2}^{*}(u)$ extends to elements of $H^{1}\left(X_{1}, \mathscr{E}\right)$ and $H^{1}\left(X_{2}, \mathscr{E}\right)$, respectively, by the Mayer-Vietoris exact sequences.

Lemma 24. $\operatorname{dim} H^{1}\left(M_{(n)}, \mathcal{O}\right)=n$.
Proof. By Lemma 22, we see that the assumptions of Lemma 23 is satisfied, if we substitute $M_{(n)}, M_{(1)}, M_{(n-1)}, i_{1} \mid U_{\varepsilon_{n-1}}$ and $i_{n-1}$ for $X, X_{1}$, $X_{2}, c_{1}$, and $c_{2}$. Therefore Lemma 24 follows easily from Lemmas 8 and 23 by the induction on $n$.

Lemma 25. The natural homomorphism $H^{1}\left(M_{(n)}, C\right) \rightarrow H^{1}\left(M_{(n)}, \mathcal{O}\right)$ is an isomorphism.

Proof. It is easy to see that $b_{1}\left(M_{(n)}\right)=n$. Since $H^{0}(X, d \mathcal{O})=0$ for any 3 -fold $X$ of Class $L$, the lemma follows easily from Lemma 24 and the exact sequence

$$
\begin{equation*}
0 \longrightarrow C \longrightarrow \mathcal{O} \longrightarrow d \mathcal{O} \longrightarrow 0 \text {. } \tag{54}
\end{equation*}
$$

Let us study neighborhoods of the Hopf surfaces $H_{\nu}$ in $M_{n}$. Put $\widetilde{V}=\left(C^{2}-\{0\}\right) \times C$. Let $V$ be the quotient manifold of $\widetilde{V}$ by the action of the holomorphic automorphism

$$
\beta:((x, y), z) \longmapsto\left(\left(\beta_{0} x, \beta_{0} y\right), \beta_{0}^{-1} z\right),
$$

where $\beta_{0}$ is the constant defined on page 341 in $\S 1$. Denote by $\pi_{V}$ the canonical projection $\widetilde{V} \rightarrow V$. Let $S$ be the submanifold in $V$ defined by $z=0$. Then by the construction of $X$ in $\S 1$, we see that $S_{0}$ has a neighborhood which is biholomorphic to that of $S$ in $V$. We shall prove

Lemma 26. $\operatorname{dim} H_{S}^{1}(V, d \mathcal{O})=1$.
Proof. Naturally, $V$ has the structure of a line bundle on $S$. At-
taching the infinite section $S_{\infty}$ to $V$, we get a compact 3-fold $\bar{V} . \quad \bar{V}$ is a $P^{1}$-bundle over $S$. On the other hand, $\bar{V}-S$ is biholomorphic to the complement $W-C$ of an elliptic curve $C$ of a 3-dimensional Hopf manifold $W$. Hence $H^{0}(W-C, d \mathcal{O})=H^{\circ}(W, d \varnothing)=0$. We claim that the holomorphic 1-form $i d z / z$ on $(\bar{V}-S) \cap\left(\bar{V}-S_{\infty}\right)$ defines a non-zero cocycle in $H^{1}(\bar{V}, d \mathcal{O})$, but is cohomologous to zero in $H^{1}(\bar{V}-S, d \mathcal{O})$. In fact, we have the equation $\left.i d z / z=i-\bar{w} d w /\left(|w|^{2}+|x|^{2}+|y|^{2}\right)\right\}+\left\{\left(|x|^{2}+|y|^{2} \bar{z} d z /\left(1+|x z|^{2}+|y z|^{2}\right)\right\}\right.$, where $w=z^{-1}$. Since $H^{0}\left(\bar{V}, d \Omega^{1}\right) \subset H^{0}\left(\bar{V}-S, d \Omega^{1}\right) \cong H^{0}\left(W-C, d \Omega^{1}\right)=H^{0}(W$, $\left.d \Omega^{1}\right)=0, H^{1}(\bar{V}, d \mathcal{O})$ and $H^{1}(\bar{V}-S, d \mathcal{O})$ can be regarded as subspaces of $H^{1}\left(\bar{V}, \Omega^{1}\right)$ and $H^{1}\left(\bar{V}-S, \Omega^{1}\right)$, respectively. Regarding the 1-cocycle $\{i d z / z\}$ as an element of $H^{1}\left(\bar{V}, \Omega^{1}\right)$, we see that its Dolbeault cohomology class is represented by the $\bar{\partial}$-closed form

$$
\begin{aligned}
\omega & =-i \bar{\partial}\left(\bar{w} d w /\left(|w|^{2}+|x|^{2}+|y|^{2}\right)\right) \quad \text { on } \quad \bar{V}-S \\
& =-i \bar{\partial}\left(\left(|x|^{2}+|y|^{2}\right) \bar{z} d z /\left(1+|x z|^{2}+|y z|^{2}\right)\right) \quad \text { on } \quad \bar{V}-S_{\infty} .
\end{aligned}
$$

The triviality of the class $\{i d z / z\}$ in $H^{1}(\bar{V}-S, d \mathcal{O})$ follows immediately from this. By a direct calculation, we have $\int_{F} \omega>0$, where $F$ is a fibre of the $P^{1}$-bundle $\bar{V}$ over $S$. This implies that $\omega$ is not $\bar{\partial}$-exact, since, if $\omega=\bar{\partial} \varphi$ for some smooth (1, 0)-form $\varphi$ on $\bar{V}$, then we have $\int_{F} \omega=\int_{F} \bar{\partial} \varphi=\int_{F} d \varphi=0$ by the fact that the integration of (2,0)-form on $F$ vanishes. By the exact sequence (54) on $\bar{V}$ and Leray's spectral sequence applied to the $P^{1}$-bundle structure of $\bar{V}$, we have $\operatorname{dim} H^{1}(\bar{V}, d \mathcal{O})=1$. Then we have the lemma by the exact sequence of local cohomologies;

$$
\begin{aligned}
\longrightarrow H^{\circ}(\bar{V}-S, d \mathcal{O}) \longrightarrow H_{S}^{1}(\bar{V}, d \mathcal{O}) & \longrightarrow H^{1}(\bar{V}, d \mathscr{O}) \\
& H^{1}(\bar{V}-S, d \mathcal{O}) \longrightarrow
\end{aligned}
$$

Lemma 27. $\operatorname{dim} H_{S}^{1}(V, \mathcal{O})=0$.
Proof. It is easy to check that the restriction

$$
C \cong H^{1}(\bar{V}, \mathcal{O}) \longrightarrow H^{1}(\bar{V}-S, \mathcal{O})
$$

is injective. Note that $H^{0}(\bar{V}, \mathscr{O})=H^{0}(W-C, \mathcal{O})=C$. Therefore the lemma follows from the exact sequence

$$
\begin{aligned}
& \longrightarrow H^{0}(\bar{V}, O) \longrightarrow H^{0}(\bar{V}-S, O) \longrightarrow H_{S}^{1}(\bar{V}, \mathcal{O}) \\
& \longrightarrow H^{1}(\bar{V}, \mathcal{O}) \longrightarrow H^{1}(\bar{V}-S, \mathcal{O}) \longrightarrow .
\end{aligned}
$$

Lemma 28. The natural homomorphism $H_{S}^{2}(V, C) \rightarrow H_{S}^{2}(V, \mathcal{O})$ is zero.
Proof. Consider the exact sequence of local cohomologies;

$$
\longrightarrow H_{s}^{1}(\bar{V}, O) \longrightarrow H_{S}^{1}(\bar{V}, d \mathcal{O}) \longrightarrow H_{S}^{2}(\bar{V}, C) \longrightarrow H_{\mathcal{S}}^{2}(\bar{V}, \mathcal{O}) \longrightarrow .
$$

We see easily that $\operatorname{dim} H_{S}^{2}(\bar{V}, C)=1$. Then the lemma follows from Lemmas 26 and 27.

Let

$$
\mu: G \longrightarrow C^{2}
$$

be the blowing up at the origin $0=(0,0)$, where $(u, v)$ is a standard system of coordinates on $C^{2} . G$ is covered by 2 copies $G_{1}$ and $G_{2}$ of $C^{2}$. Let ( $u_{i}, v_{i}$ ), i=1,2, be their standard systems of coordinates such that $u=u_{1}, v=u_{1} v_{1}$ and $u=u_{2} v_{2}, v=u_{2}$. Then, on $G_{1} \cap G_{2}$, we have the relations $u_{1}=v_{2} u_{2}, v_{1}=v_{2}^{-1}$. We define a holomorphic map

$$
\lambda: V=\tilde{V} \mid\langle\beta\rangle \longrightarrow G
$$

by

$$
\begin{aligned}
& {[(x, y), z] \longmapsto\left(u_{1}, v_{1}\right)=(x z, y / x), \quad \text { if } \quad x \neq 0} \\
& {[(x, y), z] \longmapsto\left(u_{2}, v_{2}\right)=(y z, x / y), \text { if } y \neq 0 .}
\end{aligned}
$$

Here, for any point $((x, y), z) \in \tilde{V}=\left(C^{2}-\{0\}\right) \times C$, we indicate by $[(x, y), z]$ the corresponding point on the quotient space $V$. Similarly, for any point $z \in C^{*}$, we indicate by [ $z$ ] the corresponding point on the quotient space $\Delta=C^{*} /\left\langle\beta_{0}\right\rangle$. Put $\widetilde{S}=\{((x, y), z) \in \widetilde{V}: z=0\}$. We define biholomorphic maps

$$
\tilde{\nu}: \tilde{V}-\widetilde{S} \longrightarrow\left(C^{2}-\{0\}\right) \times C^{*}
$$

by

$$
((x, y), z) \longmapsto(x z, y z, z),
$$

and

$$
\nu: V-S \longrightarrow\left(C^{2}-\{0\}\right) \times \Delta
$$

by

$$
[(x, y), z] \longmapsto(x z, y z,[z]) .
$$

Let $p_{1}:\left(C^{2}-\{0\}\right) \times \Delta \rightarrow C^{2}-\{0\}$ be the projection to the 1 st component. Then we have

$$
(\mu \cdot \lambda) \mid(V-S)=p_{1} \cdot \nu .
$$

Denote by $\pi_{V}$ (resp. $\pi_{B}$ ) the canonical projection to the quotient space $\tilde{V} \rightarrow V$ (resp. ( $\boldsymbol{C}^{2}-\{0\} \times \boldsymbol{C}^{*} \rightarrow\left(\boldsymbol{C}^{2}-\{0\}\right) \times \Delta$ ). Let $c$ be a small positive constant. Put

$$
\begin{aligned}
& B_{o}=\left\{(u, v) \in C^{2} ;|u|^{2}+|v|^{2}<c^{2}\right\}, \\
& G_{c}=\mu^{-1}\left(B_{c}\right), \\
& \tilde{V}_{o}=\left\{((x, y), z) \in \tilde{V}:|x z|^{2}+|y z|^{2}<c^{2}\right\}, \quad \text { and } \\
& V_{c}=\widetilde{V}_{o} /\langle\beta\rangle=\lambda^{-1}\left(G_{c}\right)
\end{aligned}
$$

Put

$$
\begin{aligned}
& \pi_{B_{c}}=\pi_{B}\left|\left(B_{c}-\{0\}\right) \times C^{*}, \quad \pi_{V_{o}}=\pi_{V}\right| \widetilde{V}_{c}, \\
& \tilde{\nu}_{c}=\widetilde{\nu} \mid\left(\widetilde{V}_{c}-\widetilde{S}\right), \quad \text { and } \quad \nu_{o}=\nu \mid\left(V_{o}-S\right) .
\end{aligned}
$$

Now we borrow an idea of Douady from [1]. Let $V=\left\{V_{i}\right\}$ be a covering of $V_{c}$ such that each $V_{i}$ is a simply connected Stein subdomain. Put $\tilde{V}_{i}=\pi_{V}^{-1}\left(V_{i}\right)$. Then $\widetilde{V}=\left\{\tilde{V}_{i}\right\}$ is a covering of $\tilde{V}_{c}$. Each $\tilde{V}_{i}$ is $\beta$-invariant, and is a disjoint union of Stein domains. Let $\mathscr{E}$ denote the sheaf of germs of a holomorphic covariant tensor field on a complex manifold. Then the automorphism $\beta$ induces an automorphism $\beta^{*}$ of the cochain group $C^{*}(\widetilde{V}, \mathscr{E})$. There is the following exact sequence

$$
\begin{equation*}
0 \longrightarrow C^{*}(V, \mathscr{E}) \xrightarrow{\pi_{v}^{*}} C^{*}(\widetilde{V}, \mathscr{E}) \xrightarrow{1-\beta^{*}} C^{*}(\widetilde{V}, \mathscr{E}) \longrightarrow 0 . \tag{55}
\end{equation*}
$$

In fact, $1-\beta^{*}$ is surjective. To prove this, for any ( $i_{0}, i_{1}, \cdots, i_{q}$ ), we let $V_{i_{0}, i_{1}, \cdots, i_{q}}^{\prime}$ denote the open subset of $\widetilde{V}_{c}$ such that

$$
\pi_{V}: V_{i_{0}, i_{1}, \cdots, i_{q}}^{\prime} \longrightarrow V_{i_{0}, i_{1}, \cdots, s_{q}}
$$

is a homeomorphism, where $V_{i_{0}, i_{1}, \cdots i_{q}}=\bigcap_{i=0}^{q} V_{i_{g}}$. Then $\widetilde{V}_{i_{0}, i_{1}, \cdots, i_{q}}=\pi_{V}^{-1}\left(V_{i_{0}, i_{1}, \cdots, i_{q}}\right)$ is a disjoint union of $\beta^{p}\left(V_{i_{0}, i_{1}, \cdots, i_{q}}^{\prime}\right), p \in Z$. Any $\gamma \in C^{q}(\widetilde{\boldsymbol{V}}, \mathscr{E})$ can be written as

$$
\gamma=-\gamma_{1}+\gamma_{2}
$$

with

$$
\begin{aligned}
& \gamma_{1}=0 \text { on } \beta^{p}\left(V_{i_{0}, i_{1}, \cdots, \tau_{q}}^{\prime}\right) \text { for } p<0, \\
& \gamma_{2}=0 \text { on } \beta^{p}\left(V_{i_{0}, i_{1}}^{\prime}, \cdots, i_{q}\right) \text { for } p \geqq 0 \text {. }
\end{aligned}
$$

Put

$$
\varphi=\sum_{p<0}\left(\beta^{*}\right)^{p} \gamma_{1}+\sum_{p \geq 0}\left(\beta^{*}\right)^{p} \gamma_{2} \quad \text { (locally finite sum). }
$$

Then

$$
\beta^{*} \varphi=\sum_{p \leq 0}\left(\beta^{*}\right)^{p} \gamma_{1}+\sum_{p>0}\left(\beta^{*}\right)^{p} \gamma_{2} .
$$

Therefore we have $\varphi-\beta^{*} \varphi=-\gamma_{1}+\gamma_{2}=\gamma$. Thus $1-\beta^{*}$ is surjective. From (55), we have the long exact sequence

$$
\begin{align*}
& 0 \longrightarrow H^{0}\left(V_{c}, \mathscr{E}\right) \xrightarrow{\pi_{V}^{*}} H^{0}\left(\tilde{V}_{c}, \mathscr{E}\right) \xrightarrow{1-\beta^{*}} H^{0}\left(\widetilde{V}_{c}, \mathscr{E}\right)  \tag{56}\\
& \xrightarrow{\delta_{V}} H^{1}\left(V_{c}, \mathscr{E}\right) \xrightarrow{\pi_{r}^{*}} H^{1}\left(\widetilde{V}_{c}, \mathscr{E}\right) \xrightarrow{1-\beta^{*}} H^{1}\left(\widetilde{V}_{c}, \mathscr{E}\right) \longrightarrow .
\end{align*}
$$

Similarly, for the infinite cyclic coverings

$$
\begin{aligned}
& \pi_{V^{\prime}}: \widetilde{V}_{c}-\widetilde{S} \longrightarrow V_{o}-S, \\
& \pi_{B}: B_{c} \times C^{*} \longrightarrow B_{c} \times \Delta, \quad \text { and } \\
& \pi_{B^{\prime}}:\left(B_{o}-\{0\}\right) \times C^{*} \longrightarrow\left(B_{c}-\{0\}\right) \times \Delta,
\end{aligned}
$$

we have the similar exact sequences as (56). Moreover, there is the following commutative diagram of cohomologies with coefficient $\mathscr{E}$ :


Here the homomorphisms $r_{j}, 1 \leqq j \leqq 8$, are restrictions, and $B_{c}^{\prime}$ indicates $B_{c}-\{0\} . \quad \beta_{1}^{*}$ is the homomorphism induced by the automorphism of $B_{c} \times C^{*}$ defined by $((u, v), z) \mapsto\left((u, v), \beta_{0}^{-1} z\right)$. For simplicity, we denote by $\pi_{v}^{*}, \pi_{V^{\prime}}^{*}$, $\pi_{B}^{*}$ and $\pi_{B}^{*}$, the homomorphisms induced by $\pi_{V}\left|\widetilde{V}_{c}, \pi_{V}\right|\left(\widetilde{V}_{c}-\widetilde{S}\right), \pi_{B} \mid B_{c} \times C^{*}$ and $\pi_{B} \mid B_{c}^{\prime} \times C^{*}$, respectively.

Lemma 29: There is an isomorphism

$$
\bar{\nu}_{c}^{*}: H^{1}\left(B_{c} \times \Delta, \mathcal{O}\right) \longrightarrow H^{1}\left(V_{c}, \mathcal{O}\right)
$$

which makes the diagram

commutative. Here $r_{B}$ and $r_{V}$ are restrictions, and $\nu_{c}^{*}$ is the isomorphism induced by $\nu_{c}$.

Sublemma 1. For $\mathscr{E}=\mathcal{O}$, the homomorphisms $\pi_{V}^{*}$ and $\pi_{B}^{*}$ are zero.
Proof. It is enough to show that the homomorphisms $1-\beta^{*}$ and $1-\beta_{1}^{*}$ of the first cohomology groups are injective. First we shall show that $1-\beta^{*}$ is injective. Let

$$
\begin{aligned}
& \widetilde{W}_{1}=\left\{(x, y, z) \in C^{3}:|x z|^{2}+|y z|^{2}<c^{2}, x \neq 0\right\} \quad \text { and } \\
& \widetilde{W}_{2}=\left\{(x, y, z) \in C^{s}:|x z|^{2}+|y z|^{2}<c^{2}, y \neq 0\right\} .
\end{aligned}
$$

Then $\left\{\tilde{W}_{1}, \widetilde{W}_{2}\right\}$ is a Stein open covering of $\bar{V}_{c}$. Therefore we have an isomorphism

$$
H^{1}\left(\tilde{V}_{c}, \mathscr{O}\right) \cong \Gamma\left(\widetilde{W}_{1} \cap \tilde{W}_{2}, \mathscr{O}\right) /\left(\Gamma\left(\widetilde{W}_{1}, \mathscr{O}\right)+\Gamma\left(\widetilde{W}_{2}, \mathscr{O}\right)\right)
$$

Every element $\gamma \in H^{1}\left(\widetilde{V}_{c}, \mathcal{O}\right)$ can be represented uniquely by a Laurent series of the following form:

$$
\varphi=\sum_{\substack{m<0, n<0 \\ p \geq 0}} a_{m n p} x^{m} y^{n} z^{p}
$$

which is convergent on $\widetilde{W}_{1} \cap \widetilde{W}_{2} . \quad \gamma$ is in the kernel of $1-\beta^{*}$ if and only if the equality $\varphi=\beta^{*} \varphi$ holds. This is equivalent to the equalities $a_{m n p}\left(1-\beta_{0}^{m+n-p}\right)=0$ for all $m<0, n<0$ and $p \geqq 0$. But these imply $a_{m n p}=0$. Therefore $1-\beta^{*}$ is injective. Next we have to show that the homomorphism $1-\beta_{1}^{*}$ is injective. Let

$$
\begin{aligned}
& \widetilde{W}_{1}=\left\{((u, v), z) \in B_{c} \times C^{*}: u \neq 0\right\} \quad \text { and } \\
& \widetilde{W}_{2}=\left\{((u, v), z) \in B_{c} \times C^{*}: v \neq 0\right\} .
\end{aligned}
$$

Then $\left\{\widetilde{W}_{1}, \widetilde{W}_{2}\right\}$ is a Stein open covering of $B_{c} \times C^{*}$. Hence the injectivity of $1-\beta_{1}^{*}$ follows by the similar calculation as above.

Proof of Lemma 29. Take any $\gamma \in H^{1}\left(B_{c} \times \Delta, \mathcal{O}\right)$. By Sublemma 1 and (57), there is an element $\xi \in H^{0}\left(B_{c} \times C^{*}, \mathcal{O}\right)$ such that $\gamma=\delta_{B}(\xi)$. Put

$$
\xi=\sum_{\substack{m \geq 0, n \geq 0 \\-\infty<p<\infty}} a_{m n p} u^{m} v^{n} z^{p} .
$$

Let

$$
\zeta=\sum_{m \geq 0, n \geq 0}\left\{\sum_{p \neq 0}\left(a_{m n p} /\left(1-\beta_{0}^{-p}\right)\right) u^{m} v^{n} z^{p}\right\} .
$$

Then $\zeta$ is convergent on $B_{c} \times C^{*}$ and satisfies the functional equation

$$
\zeta-\beta_{1}^{*} \zeta=\sum_{\substack{m \geq 0, n \geq 0 \\-\infty<p<\infty, p \neq 0}} a_{m n p} u^{m} v^{n} z^{p}
$$

Therefore, replacing $\xi$ by $\xi-\left(\zeta-\beta_{1}^{*} \zeta\right)$, we can assume that $\xi$ is of the form

$$
\xi=\sum_{m \geq 0, n \geq 0} a_{m n 0} u^{m} v^{n} .
$$

Then

$$
\begin{equation*}
\tilde{\mathcal{V}}_{c}^{*} \cdot r_{5}(\xi)=\sum_{m \geq 0, n \geq 0} a_{m n 0} x^{m} y^{n} z^{m+n} \tag{59}
\end{equation*}
$$

This shows that $\tilde{\Sigma}_{c}^{*} \cdot r_{5}(\xi)$ extends to an element $\xi_{V} \in H^{0}\left(\tilde{V}_{c}, \mathcal{O}\right)$. Define the homomorphism $\bar{\nu}_{c}^{*}$ by $\bar{\nu}_{c}^{*}(\gamma)=\delta_{V}\left(\xi_{V}\right)$. Then it is easy to see that $\bar{\nu}_{c}^{*}$ is injective and makes the diagram (58) commutative. It remains to show that every element of $H^{1}\left(V_{c}, \mathcal{O}\right)$ is represented by an element of the form (59). Let

$$
\rho=\sum_{\substack{m \geq 0, n \geq 0 \\ p \geq 0}} a_{m n p} x^{m} y^{n} z^{p}
$$

by any element of $H^{0}\left(\widetilde{V}_{c}, \mathcal{O}\right)$. Put

$$
\tau=\sum_{\substack{m \geq 0, n \geq 0 \\ m+n-p \neq 0}}\left(\alpha_{m n p} /\left(1-\beta_{0}^{m+n-p}\right)\right) x^{m} y^{n} z^{p} .
$$

Then $\tau$ is convergent on $\tilde{V}_{c}$ and satisfies the functional equation

$$
\tau-\beta^{*} \tau=\sum_{\substack{m \geq 0, n \geq 0 \\ m+n-p \neq 0}} a_{m n p} x^{m} y^{n} z^{p}
$$

Since $\delta_{V}(\rho)=\delta_{V}\left(\rho-\left(\tau-\beta^{*} \tau\right)\right)$, every element of $H^{1}\left(V_{c}, \mathcal{O}\right)$ is represented by an element of the form (59) by Sublemma 1. This completes the proof of the lemma.

For $\mathscr{E}=\Omega^{1}$, we have the following
Lemma 30. For any element $a \in H^{1}\left(V_{c}, \Omega^{1}\right)$, there is an element $b \in$ $H^{1}\left(B_{c} \times \Delta, \Omega^{1}\right)$ such that $r_{2}(a)=\nu_{c}^{*} \cdot r_{8}(b)$.

SUblemma 2. For $\mathscr{E}=\Omega^{1}$, the homomorphism $\pi_{V}^{*}$ is zero.
Proof. It is enough to show that the homomorphism $1-\beta^{*}$ of the first cohomology group is injective. We use the Stein open covering of $\tilde{V}_{c}$ used in the proof of Sublemma 1. Then we have an isomorphism

$$
H^{1}\left(\widetilde{V}_{c}, \Omega^{1}\right) \cong \Gamma\left(\widetilde{W}_{1} \cap \widetilde{W}_{2}, \Omega^{1}\right) /\left(\Gamma\left(\widetilde{W}_{1}, \Omega^{1}\right)+\Gamma\left(\widetilde{W}_{2}, \Omega^{1}\right)\right)
$$

Every element $\gamma$ of $H^{1}\left(\widetilde{V}_{c}, \Omega^{1}\right)$ can be represented uniquely by a Laurent series of the following form:

$$
\varphi=\sum_{\substack{m<0, n<0 \\ p \geq 0}}\left\{a_{m n p} x^{m} y^{n} z^{p} d x+a_{m n p}^{\prime} x^{m} y^{n} z^{p} d y+a_{m_{n p}}^{\prime \prime} x^{m} y^{n} z^{p} d z\right\}
$$

which is convergent on $\widetilde{W}_{1} \cap \widetilde{W}_{2} . \quad \gamma$ is in the kernel of $1-\beta^{*}$ if and only if the equality $\varphi=\beta^{*} \varphi$ holds. This is equivalent to the equalities $a_{m n p}\left(1-\beta_{0}^{m+n-p+1}\right)=a_{m}^{\prime}{ }_{n}\left(1-\beta_{0}^{m+n-p+1}\right)=\alpha_{m p}^{\prime \prime}\left(1-\beta_{0}^{m+n-p-1}\right)=0$ for all $m<0$, $n<0$ and $p \geqq 0$. These equalities imply that $\varphi$ is zero. Therefore $1-\beta^{*}$ is injective.

Proof of Lemma 30. By Sublemma 2, $a \in H^{1}\left(V_{c}, \Omega^{1}\right)$ is represented by an element of $H^{0}\left(\widetilde{V}_{c}, \Omega^{1}\right)$, which is of the form

$$
\rho=\sum_{\substack{m \geq 0 n \\ p \geq 0}}\left\{a_{m n p} x^{m} y^{n} z^{p} d x+a_{m{ }_{p}}^{\prime} x^{m} y^{n} z^{p} d y+a_{m{ }_{n}}^{\prime \prime} x^{m} y^{n} z^{p} d z\right\}
$$

We define

$$
\tau=\sum_{\substack{m \geq 0, n \geq 0 \\ m+n-p+1 \neq 0}}\left\{b_{m n p} x^{m} y^{n} z^{p} d x+b_{m}^{\prime}{ }_{n} x^{m} y^{n} z^{p} d y\right\}+\sum_{\substack{m \geq 0 \\ m+n-p-1 \geq 0}} b_{m}^{\prime \prime} \boldsymbol{n}_{p} x^{m} y^{n} z^{p} d z
$$

where

$$
\begin{aligned}
& b_{m n p}=a_{m n p} /\left(1-\beta_{0}^{m+n-p+1}\right), \\
& b_{m n p}^{\prime}=a_{m n p}^{\prime} /\left(1-\beta_{0}^{m+n-p+1}\right), \\
& b_{m_{n p}}^{\prime \prime}=a_{m n p}^{\prime \prime} /\left(1-\beta_{0}^{m+n-p-1}\right) .
\end{aligned}
$$

Then $\tau$ is convergent on $\tilde{V}_{c}$ and satisfies the functional equation

$$
\begin{aligned}
\rho-\left(\tau-\beta^{*} \tau\right)= & \sum_{m \geq 0, n \geq 0}\left\{a_{m n m+n+1} x^{m} y^{n} z^{m+n+1} d x+a_{m n m+n+1}^{\prime} x^{m} y^{n} z^{m+n+1} d y\right\} \\
& +\sum_{\substack{m \geq 0, n \geq 0 \\
m+n>0}} a_{m}^{\prime \prime \prime}{ }_{n m+n-1} x^{m} y^{n} z^{m+n-1} d z
\end{aligned}
$$

Put

$$
\begin{aligned}
\rho^{\prime}= & \sum_{m \geq 0, n \geq 0} a_{m n m+n+1} u^{m} v^{n}(d u-u d z / z)+\sum_{m \geq 0, n \geq 0} a_{m n m+n+1}^{\prime} u^{m} v^{n}(d v-v d z / z) \\
& +\sum_{\substack{m \geq 0 \\
m+n>0}} a_{m}^{\prime \prime}{ }_{m m+n-1} u^{m} v^{n} d z / z
\end{aligned}
$$

Then $\rho^{\prime}$ is an element of $H^{0}\left(B_{c} \times C^{*}, \Omega^{1}\right)$ such that $\tilde{\nu}_{c}^{*} \cdot r_{s}\left(\rho^{\prime}\right)=r_{1}\left(\rho-\left(\tau-\beta^{*} \tau\right)\right)$. Put $b=\delta_{B}\left(\rho^{\prime}\right)$. Then we have $\nu_{c}^{*} \cdot r_{\theta}(b)=r_{2} \cdot \delta_{V}(\rho)=r_{2}(a)$. This completes the proof of the lemma.

Lemma 31. $\operatorname{dim} H^{1}\left(M_{n}, \mathcal{O}\right)=n$.
Proof. Consider the following diagram of cohomologies with the coefficient $\mathcal{O}$;

$$
\begin{gather*}
\longrightarrow \bigoplus_{\nu=1}^{n} H_{H_{\nu}}^{1}\left(M_{n}\right) \xrightarrow{j_{3}} H^{1}\left(M_{n}\right) \xrightarrow{j_{4}} H^{1}\left(M_{n}-\bigcup_{\nu=1}^{n} H_{\nu}\right) \xrightarrow{\delta_{1}} \bigoplus_{\nu=1}^{n} H_{H_{\nu}}^{2}\left(M_{n}\right) \longrightarrow \\
0=\bigoplus_{\nu=1}^{n} H_{E_{\nu}}^{1}\left(M_{(n)}\right) \xrightarrow{j_{5}} H^{1}\left(M_{(n)}\right) \xrightarrow{j_{s}} H^{1}\left(M_{(n)}-\bigcup_{\nu=1}^{n} E_{\nu}\right) \xrightarrow{\delta_{2}} \bigoplus_{\nu=1}^{n} H_{E_{\nu}}^{2}\left(M_{(n)}\right) \longrightarrow \tag{60}
\end{gather*}
$$

Here the homomorphism $r$ is the natural isomorphism. The homomorphism $\alpha$ will be defined now. Let $\theta$ be any element of $H^{1}\left(M_{n}\right)$. Then by Lemma 29, there is an element $\eta \in H^{1}\left(M_{(n)}\right)$ such that $j_{6}(\eta)=r \cdot j_{4}(\theta)$. By Lemma 27, $j_{3}$ is zero. Since codim $E_{\nu}>1$, we have $H_{E_{\nu}}^{1}\left(M_{(n)}\right)=0$. Therefore the correspondence $\theta \mapsto \eta$ is a well-defined homomorphism and injective, which is denoted by $\alpha$. Thus we have the inequality

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(M_{n}, \mathscr{O}\right) \leqq \operatorname{dim} H^{1}\left(M_{(n)}, \mathscr{O}\right) \tag{61}
\end{equation*}
$$

On the other hand, consider the commutative diagram

$$
\begin{gather*}
H^{1}\left(M_{n}-\bigcup_{\nu=1}^{n} H_{\nu}, \boldsymbol{C}\right) \longrightarrow \bigoplus_{\nu=1}^{n} H_{H_{\nu}}^{2}\left(M_{n}, \boldsymbol{C}\right)  \tag{62}\\
H^{j_{7}}\left(M_{n}-\bigcup_{\nu=1}^{n} H_{\nu}, O\right) \longrightarrow \bigoplus_{\nu=1}^{n} H_{H_{\nu}}^{2}\left(M_{n}, O\right) .
\end{gather*}
$$

Note that $\operatorname{dim} H^{1}\left(M_{n}-\cup_{\nu} H_{\nu}, C\right)=n$. Since $H^{0}\left(M_{n}-\cup_{\nu} H_{\nu}, d O\right)=0, j_{7}$ is injective. Hence by Lemma 28 and by the first row of the exact sequence (60), we have the inequality

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(M_{n}, \mathcal{O}\right) \geqq n \tag{63}
\end{equation*}
$$

Then, combining (61), (63) and Lemma 24, we obtain the lemma.
Lemma 32. $\operatorname{dim} H^{2}\left(M_{n}, \mathcal{O}\right)=0$.
Proof. We know that $\operatorname{dim} H^{0}\left(M_{n}, \mathcal{O}\right)=1, \operatorname{dim} H^{1}\left(M_{n}, \mathcal{O}\right)=n$, and $\operatorname{dim} H^{3}\left(M_{n}, \mathcal{O}\right)=0$. Moreover, all Chern numbers of $M_{n}$ are known by Proposition 7. Therefore the lemma follows immediately from the Riemman-Roch theorem.

Thus (27) is proved completely.
In [2], the proofs of Lemmas 9 and 10 were not clear. Note that these two lemmas have been essentially reproved here.

It remains to prove (28).
Lemma 33. The image of the homomorphism

$$
\pi_{n}^{*}: H^{1}\left(M_{(n)}, \Omega^{1}\right) \longrightarrow H^{1}\left(W_{n}, \Omega^{1}\right)
$$

is contained in the image of the restriction map

$$
H^{1}\left(\boldsymbol{P}^{3}, \Omega^{1}\right) \longrightarrow H^{1}\left(W_{n}, \Omega^{1}\right) .
$$

Proof. We use the commutative diagram (49) with $\mathscr{E}=\Omega^{1}$. Let $\omega \in H^{1}\left(M_{(n)}, \Omega^{1}\right)$ be any element. Put $\tilde{\omega}=\pi_{n}^{*} \omega$ and

$$
\begin{equation*}
\tilde{\rho}(\tilde{\omega})=\sum_{\nu=1}^{2 n} \tilde{\omega}_{\nu}, \quad \text { where } \quad \tilde{\omega}_{\nu} \in H^{1}\left(N_{\nu}, \Omega^{1}\right) . \tag{64}
\end{equation*}
$$

Using Mayer-Vietoris exact sequence for $\boldsymbol{P}^{3}=\left(N_{\nu} \cup K_{\nu}\right) \cup\left(\boldsymbol{P}^{3}-K_{\nu}\right)$, we can find $\widetilde{\alpha}_{\nu} \in H^{1}\left(N_{\nu} \cup K_{\nu}, \Omega^{1}\right)$ and $\widetilde{\beta}_{\nu} \in H^{1}\left(\boldsymbol{P}^{3}-K_{\nu}, \Omega^{1}\right)$ such that

$$
\begin{equation*}
\tilde{\boldsymbol{\omega}}_{\nu}=\tilde{\alpha}_{\nu}+\widetilde{\beta}_{\nu} \quad \text { on } \quad N_{\nu}=\left(N_{\nu} \cup K_{\nu}\right) \cap\left(P^{s}-K_{\nu}\right) . \tag{65}
\end{equation*}
$$

Since $\tilde{\boldsymbol{\omega}}$ is the lifting of an element of $H^{1}\left(M_{(n)}, \Omega^{1}\right)$, we have the relations;

$$
g_{v}^{*}\left(\widetilde{\alpha}_{2 \nu}+\widetilde{\beta}_{2 v}\right)=\widetilde{\alpha}_{2 \nu-1}+\widetilde{\beta}_{2 \nu-1}, \quad \nu=1,2, \cdots, n .
$$

Hence we have

$$
g_{\nu}^{*} \widetilde{\alpha}_{2 \nu}-\widetilde{\beta}_{2 \nu-1}=\tilde{\alpha}_{2 \nu-1}-g_{\nu}^{*} \widetilde{\beta}_{2 \nu} .
$$

The left hand side of this equation is defined on $P^{3}-K_{2 \nu-1}$, and the right hand side is defined on $K_{2 \nu-1} \cup N_{2 \nu-1}$. Since $\left(K_{2 \nu-1} \cup N_{2 \nu-1}\right) \cup\left(\left(\boldsymbol{P}^{3}-K_{2 \nu-1}\right)=\boldsymbol{P}^{3}\right.$, this implies that

$$
\begin{equation*}
g_{\nu}^{*} \tilde{\alpha}_{2 \nu}-\widetilde{\beta}_{2 \nu-1}=\tilde{\omega}_{\nu}^{\prime} \quad \text { and } g_{\nu}^{*} \widetilde{\beta}_{2 \nu}-\widetilde{\alpha}_{2 \nu-1}=-\tilde{\omega}_{\nu}^{\prime} \tag{66}
\end{equation*}
$$

for some element $\tilde{\omega}_{\nu}^{\prime} \in H^{1}\left(\boldsymbol{P}^{3}, \Omega^{1}\right)$. Since $\tilde{\delta}\left(\tilde{\omega}_{\nu}^{\prime}\right)=0, \tilde{\delta}(\tilde{\rho}(\tilde{\omega}))=0, \tilde{\delta}\left(g_{\nu}^{*} \tilde{\alpha}_{2 \nu}\right)=0$, and $\tilde{\delta}\left(\widetilde{\mathcal{\beta}}_{2 \nu}\right)=0$, we obtain from (64), (65) and (66) the equality

$$
\sum_{\nu=1}^{n} \delta\left(\widetilde{\alpha}_{2 \nu}\right)+\sum_{\nu=1}^{n} \delta\left(g_{\nu}^{*} \widetilde{\beta}_{2 \nu}\right)=0 .
$$

Then, since $\operatorname{dim} H^{1}\left(P^{8}, \Omega^{1}\right)=1$, by the exact sequence (49), there is an element $\tilde{\boldsymbol{\omega}}_{0}^{\prime} \in H^{1}\left(\boldsymbol{P}^{\mathbf{s}}, \Omega^{1}\right)$ such that

$$
\begin{equation*}
\tilde{\alpha}_{2 \nu}=a_{2 v} \tilde{\omega}_{0}^{\prime} \quad \text { and } \quad g_{\nu}^{*} \tilde{\beta}_{2 \nu}=b_{2 \nu} \tilde{\omega}_{0}^{\prime} \tag{67}
\end{equation*}
$$

for some complex numbers $a_{2 \nu}$ and $b_{2 \nu}, \nu=1,2, \cdots, n$. Since every $g_{\nu}$ entends to an automorphism of $P^{3}$, we infer from (64), (65), (66) and (67) that $\tilde{\rho}(\tilde{\omega})$ is defined on the total space $P^{3}$. This implies the lemma, since $H_{L}^{1}\left(W_{n}, \Omega^{1}\right)=0$.

Lemma 34. $\operatorname{dim} H^{1}\left(M_{(n)}, \Omega^{1}\right)=1$ and a generator is represented by a
smooth d-closed real (1, 1)-form $\omega_{n}$ with the properties

$$
\begin{equation*}
\int_{l} \omega_{n}>0 \text { for any line } l \text { in } M_{(n)} \tag{P.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{n}^{*} \omega_{n}-\tilde{\omega}_{0}=i \partial \partial \bar{\partial} F_{n} \tag{P.2}
\end{equation*}
$$

for some smooth real valued function $F_{n}$ on $W_{n}$, where $\tilde{\omega}_{0}$ is the d-closed real (1, 1)-form associated with the Fubini-Study metric on $P^{3}$.

Proof. The property (P.1) implies that $\omega_{n}$ is not $\bar{\partial}$-exact. In fact, if $\omega_{n}=\bar{\partial} \rho$ for some smooth (1,0)-form $\varphi$, then we would have

$$
\int_{l} \omega_{n}=\int_{\imath} \bar{\partial} \varphi=\int_{l} d \varphi=0,
$$

since the integration of (2,0)-form on a line vanishes. This contradicts (P.1). Now we shall prove the lemma by the induction on $n$. For $n=1$, we put

$$
\omega_{1}=(i / 2) \partial \bar{\partial}\left\{\log \left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}\right)+\log \left(\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)\right\}
$$

Then $\omega_{1}$ is a well-defined smooth $d$-closed real $(1,1)$-form on $M_{(1)}$. It is easy to check (P.1). Let

$$
F_{1}=(1 / 2) \log \left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}\right)\left(\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right) /\left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)^{2} .
$$

This is a smooth real valued function on $W_{1}$ and satisfies (P.2). Since we know $\operatorname{dim} H^{1}\left(M_{(1)}, \Omega^{1}\right)=1$ by Lemma 17 , we obtain the lemma for $n=1$. Consider the case $n>1$. Let $k$ be a natural number such that $k<n$. By the induction assumption, $H^{1}\left(M_{(k)}, \Omega^{1}\right)$ is generated by the Dolbeault cohomology class represented by $\omega_{k}$. We denote by [ $u$ ] the Dolbeault cohomology class represented by a smooth $\bar{\partial}$-closed form $u$. By the property (P.1), it is easy to see that the restriction mapping

$$
\begin{equation*}
H^{1}\left(M_{(k)}, \Omega^{1}\right) \longrightarrow H^{1}\left(M_{(k)}^{*}, \Omega^{1}\right) \quad \text { is injective. } \tag{68}
\end{equation*}
$$

Consider the diagram;

(cf. (53)). Here all horizontal homomorphisms are induced by the natural
inclusions. The first row is the Mayer-Vietoris exact sequence, and the second row is the direct sum of exact sequences of local cohomologies. The homomorphism $\alpha$ will be defined below. By (68), $j_{1}^{*}$ and $j_{2}^{*}$ are injective. Since $H^{0}\left(N(\varepsilon), \Omega^{1}\right)=0, h_{1}^{*} \oplus h_{2}^{*}$ is injective. Let $\xi$ be any element of $H^{1}\left(M_{(n)}, \Omega^{1}\right)$. By the defininition of $M_{(n)}$, we claim that both $h_{1}^{*}(\xi)$ and $h_{2}^{*}(\xi)$ extend to elements of $H^{1}\left(M_{(1)}, \Omega^{1}\right)$ and $H^{1}\left(M_{(n-1)}, \Omega^{1}\right)$, respectively. In fact, $\pi_{n}^{*}(\xi) \in H^{1}\left(W_{n}, \Omega^{1}\right)$ extends to an element $\tilde{\xi}$ of $H^{1}\left(\boldsymbol{P}^{3}, \Omega^{1}\right)$ by Lemma 33. Recall that $W_{1}^{\prime}=\boldsymbol{P}^{3}-K_{2 n-1}-K_{2 n}$ and $W_{n-1}=$ $\boldsymbol{P}^{3}-K_{1}-K_{2}-\cdots-K_{2(n-1)}$. Put $\tilde{\xi}_{1}=\tilde{\xi} \mid W_{1}^{\prime}$ and $\tilde{\xi}_{2}=\tilde{\xi} \mid W_{n-1}$. Then, since $\tilde{\xi}$ is an extension of the lifting of an element of $H^{1}\left(M_{(n)}, \Omega^{1}\right)$, both $\widetilde{\xi}_{1}$ and $\tilde{\xi}_{2}$ define $\xi_{1} \in H^{1}\left(M_{(1)}, \Omega^{1}\right)$ and $\xi_{2} \in H^{1}\left(M_{(n-1)}, \Omega^{1}\right)$, respectively, such that $\pi_{1}^{\prime *}\left(\xi_{1}\right)=$ $\tilde{\xi}_{1}$ and $\pi_{n-1}^{*}\left(\xi_{2}\right)=\tilde{\xi}_{2}$, where $\pi_{1}^{\prime}: W_{1}^{\prime} \rightarrow M_{(1)}$ is the canonical projection. This proves our claim. Since $h_{1}^{*} \oplus h_{2}^{*}$ and $j_{1}^{*} \oplus j_{2}^{*}$ are injective, the correspondence $\xi \mapsto\left(\xi_{1}, \xi_{2}\right)$ defines the desired homomorphism $\alpha$. It is easy to see that $\alpha$ is injective. By (P.1), $\left.\left(-j_{1}^{*}\left(\left[\omega_{1}\right]\right), j_{2}^{*}\left[\omega_{n-1}\right]\right)\right) \in H^{1}\left(M_{(1)}^{*}, \Omega^{1}\right) \bigoplus H^{1}\left(M_{(n-1)}^{*}\right.$, $\Omega^{1}$ ) cannot be in the image space of $h_{1}^{*} \oplus h_{2}^{*}$. Hence we have the inequality

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(M_{(n)}, \Omega^{1}\right) \leqq 1 \tag{70}
\end{equation*}
$$

By (P.2), we have

$$
\pi_{1}^{\prime *} \omega_{1}-\tilde{\omega}_{0}=i \partial \bar{\partial} F_{1}^{\prime} \quad \text { on } \quad W_{1}^{\prime},
$$

and

$$
\pi_{n-1}^{*} \omega_{n-1}-\tilde{\omega}_{0}=i \partial \bar{\partial} F_{n-1} \quad \text { on } \quad W_{n-1}^{\prime},
$$

for some smooth real functions $F_{1}^{\prime}$ on $W_{1}^{\prime}$ and $F_{n-1}$ on $W_{n-1}$. Put $N=$ $h_{1}\left(M_{(1)}^{*}\right) \cap h_{2}\left(M_{(n-1)}^{*}\right), \quad \widetilde{N}=\pi_{n}^{-1}(N)$, and $\varphi=\left(\pi_{n} \mid \widetilde{N}\right)^{-1 *}\left(F_{1}^{\prime}-F_{n-1}\right)$. Take a real non-negative smooth function $\rho$ on $M_{(n)}$ which is equal to 1 on a neighborhood of $h_{1}\left(M_{(1)}^{*}\right)-N$, equal to 0 on a neighborhood of $h_{2}\left(M_{(n-1)}^{*}\right)-N$, and which satisfies $0 \leqq \rho \leqq 1$ on $N$. We define

$$
\omega_{n}=\left\{\begin{array}{lll}
\omega_{1}-i \partial \bar{\partial}((1-\rho) \varphi) & \text { on } & h_{1}\left(M_{(1)}^{*}\right), \\
\omega_{n-1}+i \partial \bar{\partial}(\rho \varphi) & \text { on } & h_{2}\left(M_{(n-1)}^{*}\right) .
\end{array}\right.
$$

Then $\omega_{n}$ is a smooth $d$-closed real (1,1)-form on $M_{(n)}$. Since any line in $M_{(n)}$ is homologous to a line in $h_{1}\left(M_{(1)}^{*}\right), \omega_{n}$ satisfies (P.1). Put $\tilde{\rho}=\pi_{n}^{*} \rho$. Define a smooth real-valued function $F_{n}$ on $W_{n}$ by

$$
F_{n}=\tilde{\rho} F_{1}^{\prime}+(1-\tilde{\rho}) F_{n-1} .
$$

Then we have the equality

$$
\pi_{n}^{*} \omega_{n}-\tilde{\omega}_{0}=i \partial \bar{\partial} F_{n},
$$

which shows that (P.2) is satisfied. Thus we obtain the inequality

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(M_{(n)}, \Omega^{1}\right) \geqq 1 \tag{71}
\end{equation*}
$$

Combining (70) and (71), we have the lemma.
Remark. $\omega_{n}$ is not a positive form. In fact, the integrations of $\omega_{n}$ on elliptic curves defined by $z_{0}=a z_{1}, z_{2}=b z_{3},(a, b \in C)$ in $h_{1}\left(M_{(1)}^{*}\right)$ vanish.

Lemma 35. $\operatorname{dim} H_{S}^{1}\left(V, \Omega^{1}\right)=1$.
Proof. By Lemma 26 and by the exact sequence

$$
0 \longrightarrow d O \longrightarrow \Omega^{1} \longrightarrow d \Omega^{1} \longrightarrow 0
$$

it is enough to show that $\operatorname{dim} H_{S_{0}}^{1}\left(M_{1}, \Omega^{1}\right) \leqq 1$. Let $b \in H^{1}\left(M_{(1)}, \Omega^{1}\right)$ be the generator represented by $\omega_{1}$ in the proof of Lemma 34. In view of the defining equation of $\omega_{1}$, we see that $b$ is equal to zero on a neighborhood of $E_{1}$. Therefore $b^{\prime}:=b \mid\left(M_{(1)}-E_{1}\right)$ extends to an element $b^{\prime \prime}$ of $H^{1}\left(M_{1}, \Omega^{1}\right)$. Now consider the exact sequence

$$
0 \longrightarrow H_{S_{0}}^{1}\left(M_{1}, \Omega^{1}\right) \longrightarrow H^{1}\left(M_{1}, \Omega^{1}\right) \xrightarrow{r} H^{1}\left(M_{1}-S_{0}, \Omega^{1}\right) \longrightarrow,
$$

where $r$ is the restriction. Since $r\left(b^{\prime \prime}\right)=b^{\prime} \neq 0$, and since $\operatorname{dim} H^{1}\left(M_{1}, \Omega^{1}\right)=2$ by (30), we obtain the lemma.

Lemma 36. $\operatorname{dim} H^{1}\left(M_{n}, \Omega^{1}\right)=n+1$.
Proof. We use the diagram (60) and its notation with the coefficient $\Omega^{1}$. Note that $\operatorname{dim} H_{H_{\nu}}^{1}\left(M_{n}, \Omega^{1}\right)=1$ by Lemma $35, \operatorname{dim} H^{1}\left(M_{(n)}, \Omega^{1}\right)=1$ by Lemma 34, and that $j_{3}$ is injective. Hence $H^{1}\left(M_{n}, \Omega^{1}\right)$ contains the $n$-dimensional subspace generated by the images of $j_{3}$. By the construction of the $d$-closed (1, 1)-form $\omega_{n}$ in Lemma 33, the Dolbeault cohomology class $\left[\omega_{n}\right.$ ] is trivial on a neighborhood of each elliptic curve $E_{\nu}$. Therefore $\left[\omega_{n}\right] \mid\left(M_{(n)}-\cup E_{\nu}\right)$ extends to an element $b_{n} \in H^{1}\left(M_{n}, \Omega^{1}\right)$. That $b_{n} \neq 0$ follows from the property (P.1). Hence we have

$$
\operatorname{dim} H^{1}\left(M_{n}, \Omega^{1}\right) \geqq n+1
$$

On the other hand, let $a \in H^{1}\left(M_{n}, \Omega^{1}\right)$ be any element such that $j_{4}(a) \neq 0$. Then, by Lemma 30,r $\cdot j_{4}(a)$ extends to an element of $H^{1}\left(M_{(n)}, \Omega^{1}\right)$, which is of dimension 1 by Lemma 34. Therefore we have

$$
\operatorname{dim} H^{1}\left(M_{n}, \Omega^{1}\right) \leqq n+1
$$

Thus we have the lemma.

Proof of (28). $\operatorname{dim} H^{0}\left(M_{n}, \Omega^{1}\right)=0$ holds, since $M_{n}$ is of Class $L$. $\operatorname{dim} H^{1}\left(M_{n}, \Omega^{1}\right)=n+1$ was proved by Lemma 36. By the Serre duality, we have $\operatorname{dim} H^{3}\left(M_{n}, \Omega^{1}\right)=\operatorname{dim} H^{0}\left(M_{n}, \Omega^{2}\right)=0$, since $M_{n}$ is of Class $L$. Therefore the Euler-Poincaré characteristic $\chi\left(M_{n}, \Omega^{1}\right)$ is equal to $-n-1+$ $\operatorname{dim} H^{2}\left(M_{n}, \Omega^{1}\right)$. Hence $\operatorname{dim} H^{2}\left(M_{n}, \Omega^{1}\right)=2 n$ follows from the Riemann-Roch theorem using Proposition 7. Thus (28) is proved completely.

## References

[1] A. Douady, Déformations Régullières, Seminaire Henri Cartan, 13e année, 1960/61, $\mathrm{n}^{\circ} 3$.
[2] Ma. Kato, Examples of simply connected compact complex 3-folds, Tokyo J. Math., 5 (1982), 341-364.
[ 3 ] Ma. Kato, On compact complex 3-folds with lines, Japan. J. Math., 11 (1985), 1-58.
[4] C. T. C. Wall, Classification problems in differential topology V, On certain 6-manifolds, Invent. Math., 1 (1966), 355-374.
[5] A. Yamada, Small deformations of certain compact Class L manifolds, Tôhoku Math. J., 38 (1986), 99-122.

Present Address:
Department of Mathematics
Faculty of Science and Teghnology
Sophia University
Kioi-cho, Chiyoda-ku, Tokyo 102
AND
Information \& Communication
Systems Laboratory,
Toshiba Corp.
Ohme, Tokyo 198


[^0]:    Received May 23, 1983

