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Introduction

This note is the continuation of [2]. In [2], the first named author
has constructed a series of compact complex manifolds $\{M_{n}\}_{n=1,2,3},\cdots$ of
dimension 3 which are non-algebraic and non-Kaehler with the properties:
$\pi_{1}(M_{n})=0,$ $\pi_{2}(M_{n})=Z,$ $b_{3}(M_{n})=4n$ , dim $H^{1}(M_{n}, \theta)\geqq n$ , and dim $H^{1}(M_{n}, \Omega^{1})\geqq n$ .
The present note consists of two sections, \S 5, \S 6. In section 5, we shall
show how to describe differentiable structures of $\{M_{n}\}$ in terms of con-
nected sums, using a result of C. T. C. Wall [4]. We note, in particular,
that $M_{1}$ is diffeomorphic to the connected sum of twice $S^{3}\times S^{3}$ and $S^{2}\times S^{4}$ ;
$M_{1}\approx 2(S^{3}\times S^{3})\#_{t}S^{2}\times S^{4}$ and that $M_{2}$ is diffeomorphic to that of 4 times
$S^{3}\times S^{3}$ and $P^{3};M_{2}\approx 4(S^{3}\times S^{3})\#{}_{t} P^{3}$ . Here $\#_{t}$ indicates the usual connected
sum in the category of differentiable topology. In section 6, we shall
calculate all of their Hodge invariants. We have dim $H^{1}(M_{n}, p)=n$ and
dim $H^{1}(M_{n}, \Omega^{1})=n+1$ , while $H_{1}(M_{n}, Z)=0$ and $H_{2}(M_{n}, Z)=Z$.

In the following, we shall use the notation in [2].

\S 5. In this section, we shall study the differentiable structures of
the compact complex manifolds of dimension 3 $\{M_{n}\}_{n=1,2,3},\cdots$ , which were
constructed in [2].

LEMMA 11.

(v) $H_{q}(M_{n}, Z)=\left\{\begin{array}{ll}Z & q: even ,\\0 & q=1,5,\\Z^{4n} & q=3.\end{array}\right.$

(vi) Let $l$ be a projective line in $\Sigma cP^{3}$ . Then, for any $n\geqq 1$ ,
$l_{n}$ $:=i_{1}(l)(\subset M_{1}^{n-1}\subset M_{n})$ represents a generator of $H_{2}(M_{n}, Z)$ , where $M_{1}^{0}$ is
understood to be $M_{1}$ .
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PROOF. By (ii) in Theorem of [2], we have $H_{2}(M_{n}, Z)=Z$ and
$b_{3}(M_{n})=4n$ . Hence (v) follows from the Poincar\’e duality and the uni-
versal coefficient theorem. (vi) is clear from the proof of (ii) in Theorem
of [2].

LEMMA 12. The bilinear form
$\mu:H^{2}(M_{1}, Z)\times H^{2}(M_{1}, Z)\rightarrow H^{4}(M_{1}, Z)$

defined by taking cup products is zero.

PROOF. Let $S$ be a general fibre of $p_{1}:M_{1}\rightarrow P^{1}$ . For a section $l$
’ of

$p_{1}$ , we have $S\cdot l’=1$ . Hence the 1st Chern class $c_{1}([S])$ of the line bundle
$[S]$ associated to $S$ is a generator of $H^{2}(M_{1}, Z)$ . Since $S$ is a fibre of $p_{1}$ ,
we have $c_{1}([S])^{2}=0$ . Thus $\mu=0$ as desired. $\square $

Since $H_{2}(M_{n}, Z)=Z$, we can define the dual element $ l_{n}\wedge$ in $H^{2}(M_{n}, Z)$

of $l_{n}$ by $\wedge l_{n}(l_{n})=1$ . In general, for a complex manifold $M$, we let $c_{i}(M)$

and $p_{1}(M)$ denote the i-th Chern class and the 1st Pontrjagin class,
respectively.

PROPOSITION 6. $ c_{1}(M_{1})=4l_{1}\wedge$ and $\wedge l_{1}^{2}=c_{2}(M_{1})=p_{1}(M_{1})=0$ .
PROOF. Let $S$ be a general fibre of $p_{1}$ , and $j:S\rightarrow M_{I}$ be the natural

inclusion mapping. Let $K_{r_{1}}$ denote the canonical line bundle of $M_{1}$ . Since
$\deg_{l_{1}}K_{r_{1}}=-4$ , we have

$ c_{1}(M_{1})=4l_{1}\wedge$ .
Let $\Theta_{H}$ denote the sheaf of germs of holomorphic vector fields on $M$.
Since $S$ is a Hopf surface, we have $c_{1}(S)=c_{2}(S)=0$ . Therefore, from the
exact sequence

$0\rightarrow\Theta_{s}\rightarrow j^{*}\Theta_{r_{1}}\rightarrow p_{s}\rightarrow 0$ .
it follows that

(22) $j^{*}c_{1}(M_{1})=j^{*}c_{2}(M_{1})=0$ .
Consider the exact sequence

$...\rightarrow H^{4}(M_{1}, Z)\rightarrow^{j^{*}}H^{4}(S, Z)\rightarrow H^{f}(M_{1};S, Z)\rightarrow\cdots$ .
Note that $p_{1}^{-1}(0)$ is simply connected by Proposition 1 and is a deforma-
tion retract of $M_{1}-S$. Hence, by the Lefschetz duality, we have
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$H^{5}(M_{1};S, Z)=H_{1}(M_{1}-S, Z)$

$=H_{1}(p_{1}^{-1}(0), Z)$

$=0$ .
Therefore the homomorphism

$j^{*}:H^{4}(M_{1}, Z)\rightarrow H^{4}(S, Z)$

is bijective, since we know that

$H^{4}(M_{1}, Z)=H^{4}(S, Z)=Z$ .
Hence we have

$c_{2}(M_{1})=0$

from (22). It follows from Lemma 12 that
$\wedge l_{1}^{2}=c_{1}^{2}(M_{1})=0$ .

Therefore we obtain

$p_{1}(M_{1})=c_{1}^{2}(M_{1})-2c_{2}(M_{1})=0$ .
Thus the proposition is proved. $\square $

PROPOSITION 7. For $n\geqq 2$ , we have $c_{1}(M_{n})=4l_{n}\wedge,$ $c_{2}(M_{n})=6l_{n}^{2}\wedge,$ $p_{1}(M_{n})=$

$ 4l_{n}^{2}\wedge$ , and $\wedge l_{n}^{3}=1-n$ .
PROOF. For the Chern numbers, we have by Proposition 6 and [3,

Proposition 2.2] that

(23) $c_{1}c_{2}[M_{n}]=(1-n)C{}_{1}C_{2}[P^{3}]=24(1-n)$ ,

(24) $c_{1}^{3}[M_{n}]=(1-n)c_{1}^{3}[P^{3}]=64(1-n)$ .
Since $\deg_{l_{\hslash}}K_{x_{n}}=-4$ , we have easily

(25) $ c_{1}(M_{n})=4l_{n}\wedge$ .
Then it follows from $ c_{1}^{3}[M_{n}]=64l_{n}^{3}\wedge$ and (24) that

(26) $\wedge l_{n}^{3}=1-n$ .
Put $c_{2}(M_{n})=al_{n}^{2}\wedge,$ $a\in Q$ . Then by (23), (25), (26) and the equality $c_{1}c_{2}[M_{n}]=$

$ 4al_{n}^{3}\wedge$ , we obtain $a=6$ . Hence
$ c_{2}(M_{n})=6l_{n}^{2}\wedge$ .
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Therefore we have

$ p_{1}(M_{n})=c_{1}^{2}(M_{n})-2c_{2}(M_{n})=4l_{n}^{2}\wedge$ . $\square $

For any $n\geqq 1,$ $M_{n}$ is simply connected, and all its homology groups
are torsion free. Moreover, by Propositions 6 and 7, the 2nd Whitney
classes vanish. Therefore all $M_{n}$ satisfy the condition $(H)$ of C. T. C. Wall
[4]. Hence $M_{n}$ is determined completely by the data of Propositions 6
and 7. Let $X\#_{t}Y$ indicate the connected sum of differentiable manifolds
$X$ and $Y$ in the usual sense in the differential topology. By virtue of
[4, Theorem 5], we have the following immediately.

THEOREM 2. For any $n\geqq 1$ , there is a simply connected compact
differentiable manifold $L_{n}$ of real dimension 6 such that $M_{n}$ is difeomor-
phic to the connected sum (in the usual sense of differential topology) of
$2n$ times $S^{3}\times S^{3}$ and $L_{n}$ ;

$M_{n}\cong 2n(S^{3}\times S^{3})\#_{t}L_{n}$ .
Here $L_{n}$ satisfies the following.

(1) $H_{*}(L_{n}, Z)=H_{*}(P^{3}, Z)$

(2) $p_{1}(L_{n})=4\lambda_{n}^{2},$ $\lambda_{1}^{2}=0,$ $x_{n}^{3}=n-1$ ;
where $\lambda_{n}\in H^{2}(L_{n}, Z)$ is a generator. In particular, we have

$M_{1}\cong 2(S^{3}\times S^{3})\#_{t}(S^{2}\times S^{4})$ ,

and

$M_{2}\cong 4(S^{8}\times S^{3})\#{}_{t} P^{8}$ .

\S 6. In this section, we shall calculate Hodge invariants of $M_{n}$ .
THEOREM 3. For $n\geqq 1$ , we have

(27) dim $H^{q}(M_{n}, p_{H})=\left\{\begin{array}{ll}1 & q=0,\\n & q=1,\\0 & q=2,3,\end{array}\right.$

and

(28) dim $H^{q}(M_{n}, \Omega_{H_{*}}^{1})=\left\{\begin{array}{ll}0 & q=0,3,\\n+1 & q=1,\\2n & q=2.\end{array}\right.$

First we shall prove the theorem for $n=1$ , i.e.,
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(29) dim $H^{q}(M_{1}, \theta_{Af_{1}})=\left\{\begin{array}{ll}1 & q=0,1,\\0 & q=2,3,\end{array}\right.$

and

(30) dim $H^{q}(M_{1}, \Omega_{H_{1}}^{1})=\left\{\begin{array}{ll}0 & q=0,3,\\2 & q=1,2.\end{array}\right.$

As for the equality (29), the case $q=0$ is trivial, and the case $q=1$

was proved in Lemma 8. The case $q=3$ follows easily from [3, Proposi-
tion 2.3] using the Serre duality. The remaining case $q=2$ follows from
Proposition 6 using the Riemann-Roch theorem. Thus (29) is proved.

Now we shall show the equality (30). Recall the construction of the
3-fold $M$ in \S 2. Take two copies $\tilde{V}_{1},\tilde{V}_{2}$ of $C^{3}$ . Let $(\xi_{j}, \zeta_{j}, s_{j})$ be a
standard system of coordinates on $\tilde{V}_{j}$ . Form the union $\tilde{V}=\tilde{V}_{1}\cup\tilde{V}_{2}$ by
identifying $(\xi_{1}, \zeta_{1}, s_{1})\in\tilde{V}_{1}$ with $(\xi_{2}, \zeta_{2}, s_{2})\in\tilde{V}_{2}$ if and only if

$\left\{\begin{array}{l}\xi_{1}=\xi_{1}s_{2}^{-1}\\\zeta_{1}=\zeta_{2}s_{2}^{-1}\\s_{1}=s_{l}^{-1}\end{array}\right.$

Put $l_{0}=\{\xi_{1}=\zeta_{1}=0\}\cup\{\xi_{2}=\zeta_{2}=0\}$ and $\tilde{V}^{*}=\tilde{V}-l_{0}$ . Let $\alpha$ be the holomorphic
automorphism of $\tilde{V}^{*}$ defined by

(31) $(\xi_{j}, \zeta_{j}, s_{j})\mapsto(\alpha\xi_{j}, \alpha\zeta_{j}, s_{j})$

on $\tilde{V}^{*}\cap\tilde{V}_{j},$ $j=1,2$ , where $\alpha\in C$ is a constant satisfying $0<|\alpha|<1$ . Then
$M$ is defined to be the quotient space $\tilde{V}^{*}/\langle\alpha\rangle$ of $\tilde{V}^{*}$ factored by the action
of the infinite cyclic group $\langle\alpha\rangle$ generated by $\alpha$ . Denote $\sigma;\tilde{V}^{*}\rightarrow M$ be
the canonical projection. Taking a small positive constant $\delta$ , we consider
the following subdomains $\tilde{V}^{*}:$

$\tilde{V}_{\dot{g}0}=\{(\xi_{j}, \zeta_{j}, s_{j})\in\tilde{V}_{j}:(1-2\delta)|\alpha|^{2}(1+|s_{j}|^{2})<|\xi_{j}|^{2}+|\zeta_{j}|^{2}<(1+\delta)|\alpha|^{2}(1+|s_{j}|^{2})\}$ ,
$\tilde{V}_{\dot{g}1}=\{(\xi_{j}, \zeta_{j}, s_{j})\in\tilde{V}_{j}:(1-\delta)|\alpha|^{2}(1+|s_{j}|^{2})<|\xi_{j}|^{2}+|\zeta_{j}|^{2}<(1+\delta)(1+|s_{j}|^{2})\}$ ,
$\tilde{V}_{j2}=\{(\xi_{j}, \zeta_{j}, s_{j})\in\tilde{V}_{j}:(1-\delta)(1+|s_{j}|^{2})<|\xi_{j}|^{2}+|\zeta_{j}|^{2}<(1+2\delta)(1+|s_{j}|^{2})\}$ .

Then the open subdomains $V_{j\nu}:=\varpi(\tilde{V}_{j\nu}),$ $j=1,2,$ $\nu=0,1,2$ , cover $M$. On
each $V_{j\nu}$ , we define local coordinates $(u_{j\nu}, v_{j\nu}, t_{j\nu})$ by

$(u_{j\nu}, v_{j\nu}, t_{j\nu})=(\varpi^{\prime}|\tilde{V}_{j\nu})^{-1*}(\xi_{j}, \zeta_{j}, s_{j})$ .
The projections

$(u_{j\nu}, v_{j\nu}, t_{j\nu})\mapsto t_{j\nu}$ on $V_{j\nu}$
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define the fibre bundle structure
$\pi:M\rightarrow P^{1}$ ,

whose fibre is biholomorphic to

$ S_{\alpha}=C^{2}-\{(0,0)\}/\langle\left(\begin{array}{ll}\alpha & 0\\0 & \alpha\end{array}\right)\rangle$ .

LEMMA 13. $R^{q}\pi_{*}\theta_{r}\cong p_{P^{1}}$ , $q=0,1$ .
PROOF. This is trivial for $q=0$ . Suppose that $q=1$ . By Leray’s

spectral sequence

$E_{2}^{p,q}=H^{p}(P^{1}, R^{q}\pi_{*}a_{H})-H^{p+q}(M, p_{r})$

and by Lemma 8, we have easily

(32) $c\cong H^{1}(M, P_{H})\cong H^{1}(P^{1}, R^{0}\pi_{*}\theta_{H})+H^{0}(P^{1}, R^{1}\pi_{*}a_{H})$ .
Since the lemma holds for $q=0$ , we have

$H^{1}(P^{1}, R^{0}\pi_{*}p_{H})=0$ .
Therefore we obtain from (32) that

(33) $H^{0}(P^{1}, R^{1}\pi_{*}p_{H})\cong C$ .
Then we can take a non-zero section $s$ of $H^{0}(P^{1}, R^{1}\pi_{*}p_{H})$ . We form an
exact sequence of sheaves

$\otimes s$

$0\rightarrow\rho_{P^{1}}\rightarrow R^{1}\pi_{*}p_{H}\rightarrow \mathscr{L}\rightarrow 0$ ,
(34)

$t1$) $t1$)

$h$ $-h\otimes s$

on $P^{1}$ , where $\mathscr{G}$ is the cokernel of $\otimes s$ . By the long exact sequence of
cohomologies associated to (34), and by the fact $H^{1}(P^{1}, cf_{P^{1}})=0$ , we have
the exact sequence

$0\rightarrow H^{0}(P^{1}, P_{p1})\rightarrow H^{0}(P^{1}, R^{1}\pi_{*}d_{H})\rightarrow H^{0}(P^{1}, \mathscr{G})\rightarrow 0$ .
Hence the equality

(35) $H^{0}(P^{1}, \mathscr{G})=0$

follows from (33). Since $\dim H^{1}(\pi^{-1}(t), P_{\pi^{-1_{(t)}}})=1$ for any $t\in P^{1},$ $R^{1}\pi_{*}\rho_{H}$

is a locally free sheaf of rank 1 by a theorem of Grauert. Therefore,
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the support of $\mathscr{G}$ is a finite set of points. Hence (35) implies that $\mathscr{G}=0$ .
Thus the lemma is proved. $\square $

Let $\rho:\pi_{1}(M)\rightarrow C^{*}$ be the group representation which sends the holo-
morphic automorphism $\alpha$ of (31) to the complex number $\alpha^{-1}$ . Denote by
$F$ the flat line bundle associated to $\rho$ . Put

$G_{=}p_{P^{1}}(-1)\oplus\beta_{P^{1}}(-1)$ .
Then we have

LEMMA 14. There is an exact sequence of sheaves on $M$:

(36) $0\rightarrow\pi^{*}\Omega_{P^{1}}^{1}\rightarrow^{i}\Omega_{H}^{1}\rightarrow^{\eta}\pi^{*}G\otimes F\rightarrow 0$ ,

where $i$ is the natural inclusion. The $ homomorph\dot{\tau}sm\eta$ will be defined
below.

PROOF. The homomorphism $\eta$ is defined by a collection of sheaf homo-
morphisms

$\eta_{j\nu}:\Omega_{M}^{1}|V_{\dot{g}\nu}\rightarrow\theta_{V_{j\nu}}^{2}$ $j=1,2$ , $\nu=0,1,2$ .
Let $\omega$ be any given germ in $\Omega_{M,x}^{1},$ $x\in V_{j\nu}$ , which is written as

$\omega=a_{j\nu}(x)du_{j\nu}+b_{j\nu}(x)dv_{j\nu}+c_{j\nu}(x)dt_{j\nu}$ .
Then we define

$\eta_{j\nu}(\omega)=(a_{j\nu}(x), b_{j\nu}(x))$ .
Note that we have the relations

$\left\{\begin{array}{l}a_{j\nu}=a_{j\nu+1}\\b_{j\nu}=b_{j\nu+1}\end{array}\right.$ $V_{j\nu}\cap V_{j\nu+1}$ , $\nu=0,1$ ,

$\left\{\begin{array}{l}a_{j0}=\alpha^{-1}a_{j2}\\\\b_{j0}=\alpha^{-1}b_{j2}\end{array}\right.$ $V_{j0}\cap V_{j2}$ ,

and
$a_{1\nu}=s_{2}a_{2\nu}$

on $V_{I\nu}\cap V_{2\nu}$ , $\nu=0,1,2$ .
$b_{1\nu}=s_{2}b_{2\nu}$

Hence the collection $\{\eta_{j\nu}\}$ gives the desired sheaf homomorphism

$\eta:\Omega_{M}^{1}\rightarrow\pi^{*}G\otimes F$ .
The exactness of the sequence follows from the definition. $\square $
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LEMMA 15. $R^{q}\pi_{*}F=0,$ $q\geqq 0$ .
PROOF. Let $F_{t}$ denote the restriction of $F$ to a fibre $\pi^{-1}(t),$ $t\in P^{1}$ .

Since a fibre of $\pi$ is a Hopf surface, we have

dim $H^{0}(\pi^{-1}(t), F_{t})$ -dim $H^{1}(\pi^{-1}(t), F_{t})+\dim H^{2}(\pi^{-1}(t), F_{t})=0$

by the Riemann-Roch theorem. Since the canonical line bundle of $\pi^{-1}(t)$

is $F_{t}^{2}$ , we have by using the Serre duality and the equation above,

(37) 2 dim $H^{0}(\pi^{-1}(t), F_{t})=\dim H^{1}(\pi^{-1}(t), F_{t})$

$=2$ dim $H^{2}(\pi^{-1}(t), F_{t})$ .
Suppose that $\varphi$ is any section of $H^{0}(\pi^{-1}(t), F_{t})$ . Then $\varphi$ defines a holo-
morphic function $\tilde{\varphi}$ on the universal covering $C^{2}-\{(0,0)\}$ of $\pi^{-1}(t)$ satisfying

$\tilde{\varphi}(\alpha z, \alpha w)=\alpha^{-1}\tilde{\varphi}(z, w)$ ,

where $(z, w)$ is a standard system of homogenous coordinates on $C^{2}$ . But
this equation implies $\tilde{\varphi}=0$ . Hence we have dim $H^{0}(\pi^{-1}(t), F_{t})=0$ . There-
fore $\dim H^{q}(\pi^{-1}(t), F_{t})=0$ for $q\geqq 0$ by (37). This implies the lemma by a
theorem of Grauert. $\square $

LEMMA 16. $H^{q}(M, \pi^{*}G\otimes F)=0,$ $q\geqq 0$ .
PROOF. Since $\pi:M\rightarrow P^{1}$ is a fibre bundle, we have

$R^{q}\pi_{*}(\pi^{*}G\otimes F)=G\otimes R^{q}\pi_{*}F=0$ , $q\geqq 0$

by Lemma 15. Hence the lemma follows immediately. $\square $

LEMMA 17. $H^{1}(M, \Omega_{H}^{1})\cong C$.
PROOF. By the long exact sequence of cohomologies associated to

(36), and by Lemma 16, it suffices to show that

$H^{1}(M, \pi^{*}\Omega_{P^{1}}^{1})\cong C$ .
But this follows immediately from Lemma 13 using Leray’s spectral
sequence

$E_{2}^{p,q}=H^{p}(P^{1}, R^{q}\pi_{*}(\pi^{*}\Omega_{P^{1}}^{1}))-H^{p+q}(M, \pi^{*}\Omega_{P^{1}}^{1})$ . $\square $

Recall that $M$ has a structure of a fibre bundle of elliptic curves
over $R$ with the projection $\pi_{H}:M\rightarrow R$ , where $R$ is biholomorphic to
$P^{1}\times P^{1}$ (\S 2).
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LEMMA 18. There is an exact sequence of sheaves on $R$ :
$0\rightarrow\Omega_{R}^{1}\rightarrow R^{0}\pi_{M^{t}}\Omega_{K}^{1}\rightarrow p_{R}\rightarrow 0$ .

PROOF. It is easy to form the exact sequence

$j$ $j^{\prime}$

$0\rightarrow\pi_{M}^{*}\Omega_{R}^{1}\rightarrow\Omega_{H}^{1}\rightarrow\rho_{H}\rightarrow 0$ ,

where $j$
’ is the natural inclusion. From this we have the long exact

sequence
$j_{*}^{\prime}$ $j_{*}^{\prime}$

$ 0\rightarrow\Omega_{R}^{1}\rightarrow R^{0}\pi_{M^{*}}\Omega_{M}^{1}\rightarrow p_{R}\rightarrow\ldots$

Since $\pi:M\rightarrow R$ is a fibre bundle of elliptic curves, the homomorphism $j_{*}$

is surjective. Hence we obtain the lemma. $\square $

Recall also that $M_{1}$ has a structure of fibre bundle of elliptic eurves
over $R^{1}$ with the projection $\pi_{M_{1}}:M_{1}\rightarrow R_{1}$ , where $R_{1}$ is the blown up $P^{1}\times P^{1}$

at one point (\S 2). Similarly to Lemma 18, we have

LEMMA 19. There is an exact sequence of sheaves on $R_{1}$ :

(38) $0\rightarrow\Omega_{R_{1}}^{1}\rightarrow R^{0}\pi_{M}i\Omega_{\kappa_{1}}^{1}\rightarrow p_{R_{1}}\rightarrow 0$ .
LEMMA 20. $H^{0}(R, R^{1}\pi_{H^{*}}\Omega_{M}^{1})=0$ .
PROOF. By Lemma 18, we have the exact sequence

$0\rightarrow H^{0}(R, \Omega_{R}^{1})\rightarrow H^{0}(R, R^{0}\pi_{M^{*}}\Omega_{M}^{1})\rightarrow H^{0}(R, p_{R})$

(39) $\rightarrow H^{1}(R, \Omega_{R}^{1})\rightarrow H^{1}(R, R^{0}\pi_{M^{*}}\Omega_{M}^{1})\rightarrow H^{1}(R, d_{R})$

$\rightarrow H^{2}(R, \Omega_{R}^{1})\rightarrow H^{2}(R, R^{0}\pi_{M^{*}}\Omega_{M}^{1})\rightarrow H^{2}(R, \rho_{R})\rightarrow\cdots$ .
It is easy to check the following facts:

$H^{q}(R, \Omega_{R}^{1})=\left\{\begin{array}{ll}0 & q\neq 1,\\C^{2} & q=1,\end{array}\right.$

$H^{q}(R, P_{R})=\left\{\begin{array}{ll}0 & q\neq 0,\\C & q=0.\end{array}\right.$

Hence we have by (39)

(40) dim $H^{1}(R, R^{0}\pi_{M}.\Omega_{M}^{1})=1+\dim H^{0}(R, R^{0}\pi_{H^{*}}\Omega_{M}^{1})$

and

(41) dim $H^{2}(R, R^{0}\pi_{M^{*}}\Omega_{M}^{1})=0$ .
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From the inclusion

$H^{0}(R, R^{0}\pi_{r}.\Omega_{H}^{1})\subset H^{0}(M, \Omega_{H}^{1})$

and from [3, Proposition 2.3], it follows that

$H^{0}(R, R^{0}\pi_{H}.\Omega_{r}^{1})=0$ .
Therefore, by (40), we get

(42) dim $H^{1}(R, R^{0}\pi_{X}.\Omega_{r}^{1})=1$ .
By Leray’s spectral sequence

$E_{l}^{p,q}=H^{p}(R, R^{q}\pi_{K}.\Omega_{H}^{1})-H^{p+q}(M, \Omega_{r}^{1})$

and by (41), we have

$H^{1}(M, \Omega_{H}^{1})\cong H^{0}(R, R^{1}\pi_{H}.\Omega_{H}^{1})+H^{1}(R, R\pi_{H}.\Omega_{H}^{1})$ .
Then, by (42) and Lemma 17, we obtain

$H^{0}(R, R^{1}\pi_{H}.\Omega_{r}^{I})=0$ . $\square $

LEMMA 21. $H^{0}(R_{1}, R^{1}\pi_{ri}\Omega_{-1}^{1})=0$ .
PROOF. By Proposition 4, we have a homomorphism

(43) $H^{0}(R_{1}-l, R^{1}\pi_{H}i\Omega_{H_{1}}^{1})\rightarrow H^{0}(R-P, R^{1}\pi_{H}.\Omega_{K}^{1})$ .
Moreover we have the homomorphisms defined by restrictions:
(44) $H^{0}(R_{1}, R^{1}\pi_{r}i\Omega_{r_{1}}^{1})\rightarrow H^{0}(R_{1}-l,$ $R^{1}\pi_{\Pi i^{\Omega_{r_{1}}^{1})}}$

and

(45) $H^{0}(R, R^{1}\pi_{r}.\Omega_{H}^{1})\rightarrow H^{0}(R-P, R^{I}\pi_{H}.\Omega_{H}^{1})$ .
Both $R^{1}\pi_{K_{1}^{*}}\Omega_{H_{1}}^{1}$ and $R^{1}\pi_{H^{*}}\Omega_{H}^{1}$ are locally free sheaves by a theorem of
Grauert. Therefore the homomorphisms (43) and (44) are injective, and
the homomorphism (45) is bijective. Hence the lemma follows from
Lemma 20. $\square $

PROOF OF (30). The case $q=0$ follows from [3, Proposition 2.3]. The
case $q=3$ follows from [3, Proposition 2.3] using the Serre duality. Sup-
pose that $q=1$ . From the long exact sequence of cohomologies associated
to (38) and from the facts
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$H^{q}(R_{1}, \Omega_{R_{1}}^{1})=\left\{\begin{array}{ll}0 & q\neq 1,\\C^{8} & q=1,\end{array}\right.$

$H^{q}(R_{1}, \rho_{R_{1}})=\left\{\begin{array}{ll}0 & q\neq 0,\\C & q=0,\end{array}\right.$

it follows that

(46) dim $H^{1}(R_{1}, R^{0}\pi_{M_{1}^{*}}\Omega_{H_{1}}^{1})=2+\dim H^{0}(R_{1}, R^{0}\pi_{H}i\Omega_{M_{1}}^{1})$

and

(47) dim $H^{2}(R_{1}, R^{0}\pi_{u_{1}^{s}}\Omega_{x_{1}}^{1})=0$ .
By the inclusion

$H^{0}(R_{1}, R^{0}\pi_{M}i\Omega_{\pi_{1}}^{1})cH^{0}(M_{1}, \Omega_{x_{1}}^{1})$

and by [3, Proposition 2.3], we have

$H^{0}(R_{1}, R^{0}\pi_{u_{1}^{*}}\Omega_{M_{1}}^{1})=0$ .
Hence by (46) we obtain

(48) dim $H^{1}(R_{1}, R^{0}\pi_{H_{1}^{*}}\Omega_{M_{1}}^{1})=2$ .
By Leray’s spectral sequence

$E_{2}^{p,q}=H^{p}(R_{1}, R^{q}\pi_{x_{1}^{l}}\Omega_{M_{1}}^{1})-H^{p+q}(M_{1}, \Omega_{u_{1}}^{1})$ ,

and by (47), we have

$H^{1}(M_{1}, \Omega_{x_{1}}^{1})=H^{1}(R_{1}, R^{0}\pi_{M}\Omega_{x_{1}}^{1})+H^{0}(R_{1}, R^{1}\pi_{1f}\Omega_{\kappa_{1}}^{1})$ .
Hence it follows that

$H^{1}(M_{1}, \Omega_{M_{1}}^{1})=C^{2}$

from Lemma 21 and (48). Thus the case $q=1$ is proved. The remaining
case $q=2$ follows from the Riemann-Roch theorem together with Proposi.
tion 6. $\square $

PROOF OF (27) AND (28) FOR $n\geqq 1$ . Recall that $M_{n}$ contains Hopf
surfaces $H_{1},$ $H_{2},$

$\cdots,$ $H_{n}$ , which are the copies of the surface $S_{0}$ in $M_{1}$ (\S 4,
pp. 354-355). Note that, in each inductive step of constructing $M_{n}$ , the
image of the inclusion mapping $i_{\nu}:U_{\epsilon_{\nu}}\rightarrow M_{\nu}(\nu=1,2, \cdots, n-1)$ does not
intersect $H_{1},$ $H_{2},$

$\cdots,$
$H_{\nu}$ . Namely, $i_{\nu}$ is a mapping of $U_{e_{\nu}}$ into $M_{\nu}-\bigcup_{\mu=1}^{\nu}H_{\mu}$ .

Therefore, we can replace all the Hopf surfaces $H_{1},$ $H_{2},$
$\cdots,$ $H_{n}$ in $M_{n}$
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with elliptic curves $E_{1},$ $E_{2},$
$\cdots,$ $E_{n}$ , respectively, to obtain a compact 3-fold

$M_{(n)}$ (Proposition 4). The 3-fold $M_{\{n)}$ is nothing but the manifold obtained
by connecting n-copies of $M$ by using the above inclusion mappings

$i_{\nu}:U_{\epsilon_{y}}\rightarrow M_{\nu}-\bigcup_{\mu=1}^{\nu}H_{\mu}\cong M_{\nu}-\bigcup_{\mu=1}^{\nu}E_{\mu}$ .
We describe another method of constructing $M_{(n)}$ . Put

$N_{1}=U_{b}-K_{1}$ , $K_{1}=\overline{U_{b^{\prime}}}$ ,
$N_{2}=U_{\iota/(|\alpha|^{2})}-\overline{U_{b^{\prime}/(|\alpha|^{2})}}$ , $K_{2}=P^{8}-U_{b/(|\alpha|^{2})}$ ,

where $b$ and $b^{\prime}$ are positive constants satisfying $b^{\prime}<|$ a $|<b<1/|$ a $|$ with
$|\alpha|-b$

‘ and $b-|\alpha|$ very small. Let $g_{1}$ be the isomorphism induced by $g$ .
Put

$W_{1}=P^{8}-K_{1}-K_{2}$ .
Note that $N_{1}cW_{1},$ $N_{2}cW_{1}$ , and that $M_{(1)}$ is obtained from $W_{1}$ by identi-
fying $N_{1}$ and $N_{2}$ by $g_{1}$ . Here we can assume that $b-|\alpha|$ is so small that
$ i_{1}(U_{*}1)\cap(N_{1}\cup N_{2})=\emptyset$ . We regard $i_{1}$ as an open embedding of $U_{l_{1}}$ into
$W_{1}$ . Put

$W_{2}=M$( $W_{1}^{\prime},$ $W_{1}$ , il, $i_{1}$),

where $W_{1}$ and $i_{1}$ are copies of $W_{1}$ and $i_{1}$ , respectively. Denote by $N_{8}$ and
$N_{4}$ the subsets in $W_{1}^{\prime}$ corresponding to $N_{1}$ and $N_{2}$ in $W_{1}$ , respectively.
Let $g_{2}$ denote the biholomorphic map of $N_{3}$ onto $N_{4}$ corresponding to $g_{1}$ .
Then it is easy to see that $M_{(2)}$ is obtained from $W_{2}$ identifying $N_{1}$ with
$N_{2}$ by $g_{1}$ , and $N_{3}$ with $N_{4}$ by $g_{2}$ . By our definition,

$W_{2}=M((P’-K_{1}-K_{2})^{\prime}, P^{8}-K_{1}-K_{2}, i_{1}^{\prime}, i_{1})$

$=P^{3}-K_{1}-K_{2}-K_{8}-K_{4}$ .
where $K$, and $K_{4}$ are the new ”holes” of $P^{3}$ corresponding to $K_{1}$ and $K_{2}$

of the first component in the connecting operation. Then, $W_{1}^{\prime}$ identified
naturally with $P^{8}-K_{3}-K_{4}$ . For general $n\geqq 3$ , we put

$W_{n}=M(W_{1}^{\prime}, W_{n-1}, i_{1}^{\prime}|U_{*}-1i_{n-1})$ .
Then we can find the subsets $N_{1},$ $N_{2},$

$\cdots,$ $N_{2n-1},$ $N_{2n}$ of $W_{n}$ , and the biholo-
morphic maps $g_{\nu}:N_{2\nu-1}\rightarrow N_{2\nu},$ $\nu=1,2,$ $\cdots,$ $n$ , which are copies of $N_{1},$ $N_{2}$

and $g_{1}$ of $W_{1}$ , such that $M_{(n)}$ is constructed from $W_{n}$ by identifying $N_{2\nu-1}$

and $N_{2\nu}$ by $g_{\nu}$ for all $\nu$ . Moreover there are compact subsets $K_{1},$ $K_{2},$ $\cdots$ ,
$K_{2n-1},$ $K_{2n}$ in $P^{8}$ such that
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$W_{n}=P^{3}-\bigcup_{\mu=1}^{2n}K_{\mu}$ ,

$W_{n-1}=P^{3}-\bigcup_{\mu=1}^{2n-2}K_{\mu}$ ,
and

$W_{1}=P^{8}-(K_{2n-1}\cup K_{2n})$ .
By the construction $N_{\mu}\cup K_{\mu}$ is a connected open neighborhood of $K_{\mu}$

biholomorphic to $U$. Let
$\pi_{n}:W_{n}\rightarrow M_{(n)}$

be the canonical projection.

LEMMA 22. Let $g$ be the sheaf of germs of a holomorphic covariant
tensor field on a complex manifold such that $H^{q}(P^{3}, g)=0$ for $q=1,2$ .
Then the induced homorphism

$\pi_{n}^{*}:$ $H^{1}(M_{(n)}, g)\rightarrow H^{1}(W_{n}, g)$

is zero.
PROOF. Let us consider the following commutative diagram;

$\rightarrow H^{1}(W_{n}, g)\rightarrow^{\rho^{\tilde}}\bigoplus_{\nu=1}^{2n}H^{1}(N_{\nu}, g)\rightarrow^{\delta^{\tilde}}H_{L}^{2}(W_{n}, \mathscr{G})\rightarrow$

(49) $\uparrow$
$\uparrow$ $\cong|$

$\rightarrow H^{1}(P^{3}, g)\rightarrow\bigoplus_{\nu=1}^{2n}H^{1}(N_{\nu}\cup K_{\nu}, g)\rightarrow^{\delta}H_{L}^{2}(P^{s}, g)\rightarrow H^{2}(P^{8}, g)\rightarrow$ .
Here the horizontal sequences are the exact sequence of local cohomologies
with the restriction map $\tilde{\rho}$ and $L=P^{3}-\bigcup_{\nu=1}^{2n}$ $(N.\cup K_{\nu})$ . Let $\theta\in H^{1}(M_{(n)}, C)$

be any element. Put $\tilde{\theta}=\pi_{n}^{*}\theta$ and

(50) $\tilde{\rho}(\tilde{\theta})=\sum_{\nu=1}^{2n}\tilde{\theta}_{\nu}$ , where $\theta_{\nu}\in H^{1}(N_{\nu}, g)$ .
By the assumption on $g$, using Mayer-Vietoris exact sequence for $P^{3}=$

$(N_{\nu}\cup K_{\nu})\cup(P^{3}-K_{\nu})$ , we can find $\tilde{\alpha}_{\nu}\in H^{1}(N_{\nu}\cup K_{\nu}, g)$ and $\tilde{\beta}_{\nu}\in H^{1}(P^{3}-K_{\nu}, g)$

such that

(51) $\tilde{\theta}_{\nu}=\tilde{\alpha}_{\nu}+\tilde{\beta}_{\nu}$ on $N_{\nu}=(N_{\nu}\cup K_{\nu})\cap(P^{3}-K_{\nu})$ .
Since $\theta$ is the lifting of an element of $H^{1}(M_{(n)}, \mathscr{G})$ , we have the relations;

$g_{\nu}^{*}(\tilde{\alpha}_{2\nu}+\tilde{\beta}_{2\nu})=\tilde{\alpha}_{2\nu-1}+\tilde{\beta}_{2\nu-1}$ , $v=1,2,$ $\cdots,$ $n$ .
Hence we have
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$g_{\nu}^{*}\tilde{\alpha}_{2\nu}-\tilde{\beta}_{l\nu-1}=\tilde{\alpha}_{2\nu-1}-g_{\nu}^{*}\tilde{\beta}_{2\nu}$

The right hand side of this equation is defined on $N_{2\nu-1}\cup K_{2\nu-1}$ , and the
left hand side is defined on $P^{8}-K_{2\nu-1}$ . Since $(N_{2\nu-1}\cup K_{2\nu-1})\cup(P^{8}-K_{2\nu-1})=$

$P^{3}$ , and since $H^{1}(P^{3}, g)=0$ , this implies that

(52) $g_{\nu}^{*}\tilde{\alpha}_{2\nu}=\tilde{\beta}_{2\nu-1}$ and $g_{\nu}^{*}\tilde{\beta}_{2\nu}=\tilde{\alpha}_{2\nu-1}$ .
Since $\delta(\tilde{\rho}(\theta))=0,$ $\delta(g_{\nu}^{*}\tilde{\alpha}_{2\nu})=0$ , and $\delta(\tilde{\beta}_{2\nu})=0$ , we have

$\sum_{\nu=1}^{\cdot}\delta(\tilde{\alpha}_{2\nu})+\sum_{\nu=1}^{n}\delta(g_{\nu}^{*}\tilde{\beta}_{2\nu})=0$ .
Recall that $\tilde{\alpha}_{2\nu}\in H^{1}(N_{2\nu}\cup K_{2\nu}, g)$ and $g_{\nu}^{*}\tilde{\beta}_{2\nu}\in H^{1}(N_{2\nu-1}\cup K_{2\nu-1}, \mathscr{G})$ . Therefore
we obtain $\tilde{\alpha}_{2\nu}=0$ and $\tilde{\beta}_{2\nu}=0$ for $\nu=1,2,$ $\cdots,$ $n$ , since $\delta$ is bijective. Then
it follows from (50), (51) and (52) that $\tilde{\rho}(\theta)=0$ . By the Mayer-Vietoris
exact sequence for $P^{3}=W_{n}\cup(\bigcup_{\nu=1}^{2n} (N.\cup K_{\nu}))$ , we infer that $\tilde{\rho}(\theta)$ extends
to an element of $H^{1}(P’, g)$ , which is equal to zero. Thus $\theta=0$ . This
proves the lemma. $\square $

In general, we let $X_{1}$ and $X_{2}$ be compact 3-folds of Class $L$ and
$\ell_{\nu}:U.\rightarrow X_{\nu},$ $\nu=1,2$ , be open holomorphic embeddings. Define $X$ to be the
manifold $M(X_{I}, X_{2}, c_{1}, c_{2})$ . Put $K.=\overline{c_{\nu}(U_{I/}.}$) and $X_{\nu}^{1}=X_{\nu}$ -K.. Let $j_{\nu}:X_{\nu}^{1}\rightarrow X_{\nu}$

and $h_{\nu}:X_{\nu}^{1}\rightarrow X$ be the natural inclusions. Let $s_{\nu}:N(\epsilon)\rightarrow X_{\nu}^{1}$ and $f;N(\epsilon)\rightarrow X$

be the open holomorphic embeddings defined by $s_{\nu}=c_{\nu}|N(\epsilon)$ and $c=h_{1}\cdot s_{1}=$

$ h_{2}\cdot s_{2}\cdot\sigma$ , respectively.

LEMMA 23. If the induced homomorphis$ms$

$C^{*};H^{1}(X, C)\rightarrow H^{1}(N(\epsilon), g)$

$c_{\nu}^{*}:H^{1}(X_{\nu}, C)\rightarrow H^{1}(U_{*}, g)$

are zero for the sheaf $g$ of germs of a covariant holomorphic tensor field,
then the equality

dim $H^{1}(X_{1}, g)+\dim H^{1}(X_{2}, g)=\dim H^{1}(X, g)$

holds.

PROOF. Consider the following diagram of cohomologies with the
coeficient $g$;

(53) $\rightarrow H^{1}(X_{1})\oplus H^{1}(X_{2})\rightarrow H^{1}(X_{1}^{1})\oplus H^{1}(X_{2}^{1})\rightarrow H^{1}(X)\left|a & j^{*}\oplus j^{*}\right|\cong\rightarrow H_{K_{1}}^{2}(X_{1})\oplus H_{K_{2}}^{2}(X_{2})\delta_{1}\oplus\delta_{2}\rightarrow$

.

$ h_{1}^{*}\oplus h_{2}^{*}\underline{\epsilon_{1}^{*}-(}\epsilon_{2}\sigma)^{*}\rightarrow H^{1}(X_{1}^{1})\oplus H^{1}(X_{2}^{8})\rightarrow H^{1}(N(\epsilon))\rightarrow$
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Here the map $\alpha$ will be defined below. The first horizontal sequence is
the Mayer-Vietoris exact sequence for $X=X_{1}^{l}\cup X_{2}^{l}$ . The second horizontal
sequence is the direct sum of exact sequences for the pairs $(X_{\nu}, X_{\nu}^{1}),$ $\nu=$

$1,2$ . Let $u_{\nu}\in H^{1}(X_{\nu}, g),$ $\nu=1,2$ , be any elements. By the assumption
that 4*, $\nu=1,2$ , are zero, it follows that $s_{1}^{*}\cdot j_{1}^{*}(u_{1})=0$ and $(s_{2}\cdot\sigma)^{*}\cdot j_{2}^{*}(u_{2})=0$ .
Therefore we can find an element $u\in H^{1}(X, g)$ such that $h_{1}^{*}(u)=j_{1}^{*}(u_{1})$

and $h_{2}^{*}(u)=j_{2}^{*}(u_{2})$ . Since $g$ is the sheaf of germs of a holomorphic covari-
ant tensor field, $H^{0}(N(\epsilon), g)=0$ and $H_{K_{\nu}}^{1}(X_{\nu}, g)=0$ hold. Hence the map
$\alpha:(u_{1}, u_{2})\mapsto u$ is well-defined by the injectivity of $j_{1}^{*}\oplus j_{2}^{*}$ and $h_{1}^{*}\oplus h_{2}^{*}$ . It
is easy to see that $\alpha$ is injective. To prove the surjectivity take any
element $u\in H^{1}(X, \mathscr{G})$ . Since $c^{*}$ is zero, both $h_{1}^{*}(u)$ and $h_{2}^{*}(u)$ extends to
elements of $H^{1}(X_{1}, \mathscr{G})$ and $H^{1}(X_{2}, g)$ , respectively, by the Mayer-Vietoris
exact sequences. $\square $

LEMMA 24. dim $H^{1}(M_{(n)}, p)=n$ .
PROOF. By Lemma 22, we see that the assumptions of Lemma 23

is satisfied, if we substitute $M_{(n)},$ $M_{(1)},$ $M_{(n-1)},$ $i_{1}|U_{\epsilon_{n-1}}$ and $i_{n-1}$ for $X,$ $X_{1}$ ,
$X_{2},$ $f_{1}$ and $f_{2}$ . Therefore Lemma 24 follows easily from Lemmas 8 and
23 by the induction on $n$ .

LEMMA 25. The natural homomorphism $H^{1}(M_{(n)}, C)\rightarrow H^{1}(M_{(n)}, p)$ is
an isomorphism.

PROOF. It is easy to see that $b_{1}(M_{(n)})=n$ . Since $H^{0}(X, d\rho)=0$ for
any 3-fold $X$ of Class $L$ , the lemma follows easily from Lemma 24 and
the exact sequence

(54) $0\rightarrow C\rightarrow P\rightarrow dP\rightarrow 0$ . $\square $

Let us study neighborhoods of the Hopf surfaces $H_{\nu}$ in $M_{n}$ . Put
$\tilde{V}=(C^{2}-\{O\})\times C$. Let $V$ be the quotient manifold of $\tilde{V}$ by the action of
the holomorphic automorphism

$\beta;((x, y),$ $z$) $-\rightarrow((\beta_{0}x, \beta_{0}y),$ $\beta_{0}^{-1}z$),

where $\beta_{0}$ is the constant defined on page 341 in \S 1. Denote by $\pi_{V}$ the
canonical projection $\tilde{V}\rightarrow V$. Let $S$ be the submanifold in $V$ defined by $z=0$ .
Then by the construction of $X$ in \S 1, we see that $S_{0}$ has a neighborhood
which is biholomorphic to that of $S$ in $V$. We shall prove

LEMMA 26. dim $H_{s}^{1}(V, dp)=1$ .
PROOF. Naturally, $V$ has the structure of a line bundle on $S$. At-
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taching the infinite section $S_{\infty}$ to $V$, we get a compact 3-fold V. $\overline{V}$ is a
$P^{1}$-bundle over $S$. On the other hand, $\overline{V}-S$ is biholomorphic to the
complement $W-C$ of an elliptic curve $C$ of a 3-dimensional Hopf manifold
$W$. Hence $H^{0}(W-C, dP)=H^{0}$($W$, dcl ) $=0$ . We claim that the holomorphic
l-form $idz/z$ on $(\overline{V}-S)\cap(\overline{V}-S_{\infty})$ defines a non-zero cocycle in $H^{1}(\overline{V}, dP)$ ,
but is cohomologous to zero in $H^{1}(\overline{V}-S, dp)$ . In fact, we have the
equation $idz/z=i-\overline{w}dw/(|w|^{2}+|x|^{2}+|y|^{2})$} $+\{(|x|^{2}+|y|^{2})\overline{z}dz/(1+|xz|^{2}+|yz|^{2})\}$ ,
where $w=z^{-1}$ . Since $H^{0}(\overline{V}, d\Omega^{1})cH^{0}(\overline{V}-S, d\Omega^{1})\cong H^{0}(W-C, d\Omega^{1})=H^{0}(W$,
$d\Omega^{1})=0,$ $H^{1}(\overline{V}, dp)$ and $H^{1}(\overline{V}-S, d\beta)$ can be regarded as subspaces of
$H^{1}(\overline{V}, \Omega^{1})$ and $H^{1}(\overline{V}-S, \Omega^{1})$ , respectively. Regarding the l-cocycle $\{idz/z\}$

as an element of $H^{1}(\overline{V}, \Omega^{1})$ , we see that its Dolbeault cohomology class
is represented by the $\overline{\partial}$-closed form

$\omega=-i\overline{\partial}(\overline{w}dw/(|w|^{2}+|x|^{2}+|y|^{2}))$ on $\overline{V}-S$

$=-i\overline{\partial}((|x|^{2}+|y|^{2})\overline{z}dz/(1+|xz|^{2}+|yz|^{2}))$ on $\overline{V}-S_{\infty}$ .
The triviality of the class $\{idz/z\}$ in $H^{1}(\overline{V}-S, dd)$ follows immediately from
this. By a direct calculation, we have $\int_{p}\omega>0$ , where $F$ is a fibre of the
$P^{1}$-bundle $\overline{V}$ over $S$. This implies that $\omega$ is not $\overline{\partial}$-exact, since, if $\omega=\overline{\partial}\varphi$

for some smooth $(1, 0)$-form $\varphi$ on $\overline{V}$, then we have $\int_{F}\omega=\int_{p}\overline{\partial}\varphi=\int_{F}d\varphi=0$

by the fact that the integration of $(2, 0)$-form on $F$ vanishes. By the
exact sequence (54) on $\overline{V}$ and Leray’s spectral sequence applied to the
$P^{1}$-bundle structure of $\overline{V}$, we have dim $H^{1}(\overline{V}, dP)=1$ . Then we have
the lemma by the exact sequence of local cohomologies;

$\rightarrow H^{0}(\overline{V}-S, d\rho)\rightarrow H_{s}^{1}(\overline{V}, d\rho)\rightarrow H^{1}(\overline{V}, dP)$

$\rightarrow H^{1}(\overline{V}-S, dp)\rightarrow$ . $\square $

LEMMA 27. dim $H_{s}^{1}(V, P)=0$ .
PROOF. It is easy to check that the restriction

$C\cong H^{1}(\overline{V}, P)\rightarrow H^{1}(\overline{V}-S, d1)$

is injective. Note that $H^{0}(\overline{V}, P)=H^{0}(W-C, p)=C$. Therefore the lemma
follows from the exact sequence

$\rightarrow H^{0}(\overline{V}, p)\rightarrow H^{0}(\overline{V}-S, p)\rightarrow H_{s}^{1}(\overline{V}, p)$

$\rightarrow H^{1}(\overline{V}, p)\rightarrow H^{1}(\overline{V}-S, p)\rightarrow$ . $\square $

LEMMA 28. The natural homomorphism $H_{s}^{2}(V, C)\rightarrow H_{s}^{2}(V, p)$ is zero.

PROOF. Consider the exact sequence of local cohomologies;
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$\rightarrow H_{s}^{1}(\overline{V}, \rho)\rightarrow H_{s}^{1}(\overline{V}, dd)\rightarrow H_{s}^{2}(\overline{V}, C)\rightarrow H_{s}^{2}(\overline{V}, \theta)\rightarrow$ .

We see easily that dim $H_{s}^{2}(\overline{V}, C)=1$ .
mas 26 and 27.

Let

Then the lemma follows from Lem-

$\mu:G\rightarrow C^{2}$

be the blowing up at the origin $0=(0,0)$ , where $(u, v)$ is a standard
system of coordinates on $C^{2}$ . $G$ is covered by 2 copies $G_{1}$ and $G_{2}$ of $C^{2}$ .
Let $(u_{i}, v_{i}),$ $i=1,2$ , be their standard systems of coordinates such that
$u=u_{1},$ $v=u_{1}v_{1}$ and $u=u_{2}v_{2},$ $v=u_{2}$ . Then, on $G_{1}\cap G_{2}$ , we have the relations
$u_{1}=v_{2}u_{2},$ $v_{1}=v_{2}^{-1}$ . We define a holomorphic map

$\lambda IV=\tilde{V}/\langle\beta\rangle\rightarrow G$

by

$[(x, y), z]\mapsto(u_{1}, v_{1})=(xz, y/x)$ , if $x\neq 0$

$[(x, y), z]\mapsto(u_{2}, v_{2})=(yz, x/y)$ , if $y\neq 0$ .
Here, for any point $((x, y),$ $z$) $\in\tilde{V}=(C^{2}-\{0\})\times C$, we indicate by $[(x, y), z]$

the corresponding point on the quotient space $V$. Similarly, for any
point $z\in C^{*}$ , we indicate by $[z]$ the corresponding point on the quotient
space $\Delta=C^{*}/\langle\beta_{0}\rangle$ . Put $\tilde{S}=\{((x, y), z)\in\tilde{V}:z=0\}$ . We define biholomorphic
maps

$\nu:\sim\tilde{V}-\tilde{S}\rightarrow(C^{2}-\{0\})\times C^{*}$

by

$((x, y),$ $z$) $\mapsto(xz, yz, z)$ ,

and
$\nu:V-S\rightarrow(C^{2}-\{0\})\times\Delta$

by

$[(x, y), z]\mapsto(xz, yz, [z])$ .
Let $p_{1}:(C^{2}-\{0\})\times\Delta\rightarrow C^{2}-\{0\}$ be the projection to the 1st component.
Then we have

$(\mu\cdot x)|(V-S)=p_{1}\cdot\nu$ .
$Denote\sim$ by $\pi_{V}$ (resp. $\pi_{B}$) the canonical projection to the quotient space
$V\rightarrow V$ (resp. $(C^{2}-\{0\}\times C^{*}\rightarrow(C^{2}-\{0\})\times\Delta)$ . Let $c$ be a small positive
constant. Put
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$B_{o}=\{(u, v)\in C^{2};|u|^{2}+|v|^{2}<c^{2}\}$ ,
$G_{0}=\mu^{-1}(B_{\iota})$ ,
$\tilde{V}_{0}=\{((x, y), z)\in\tilde{V}:|xz|^{2}+|yz|^{2}<c^{2}\}$ , and
$V_{\iota}=\tilde{V}_{c}/\langle\beta\rangle=x^{-1}(G_{0})$ .

Put
$\pi_{B_{l}}=\pi_{B}|(B_{\iota}-\{0\})\times C^{*}$ , $\pi_{V_{0}}=\pi_{V}|\tilde{V}_{0}$ ,
$\tilde{\nu}_{o}=\nu\sim|(\tilde{V}_{c}-\tilde{S})$ , and $\nu_{o}=\nu|(V_{o}-S)$ .

Now we borrow an idea of Douady from [1]. Let $V=\{V\}$ be a covering
of $V_{c}$ such that each $V_{i}$ is a simply connected Stein subdomain. Put
$\tilde{V}_{i}=\pi_{V}^{-1}(V_{i})$ . Then $\tilde{V}=\{\tilde{V}_{i}\}$ is a covering of $\tilde{V}_{c}$ . Each $V$ is $\beta$-invariant,

and is a disjoint union of Stein domains. Let $g$ denote the sheaf of
germs of a holomorphic covariant tensor field on a complex manifold.
Then the automorphism $\beta$ induces an automorphism $\beta^{*}$ of the cochain
group $C^{*}(\tilde{V}, g)$ . There is the following exact sequence

(55) $0\rightarrow C^{*}(\gamma, g)\rightarrow^{\pi_{V}^{*}}C^{*}(\tilde{\gamma}, g)\rightarrow C^{*}(\tilde{\gamma}, g)1-\beta^{*}\rightarrow 0$ .
In fact, $1-\beta^{*}$ is surjective. To prove this, for any $(i_{0}, i_{1}, \cdots, i_{q})$ , we let
$V_{i_{0},i_{1},\cdots,i_{q}}^{\prime}$ denote the open subset of $\tilde{V}_{o}$ such that

$\pi_{V}:V_{0\prime 1q}$$ i\rightarrow V_{i_{0},i_{1’ q}}\ldots$.
is a homeomorphism, where $V_{i_{0},i_{1’ q}}\ldots=\bigcap_{=0}^{q}V$ . Then $\tilde{V}_{i_{0’ 1},\cdots,i_{q}}=\pi_{V}^{-1}(V_{0’ 1})$

is a disjoint union of $\beta^{p}(V_{i_{0},i_{1’ q}}^{\prime}\ldots,),$ $p\in Z$. Any $\gamma\in C^{q}(\tilde{V}, g)$ can be written as
$\gamma=-\gamma_{1}+\gamma_{2}$

with
$\gamma_{1}=0$ on $\beta^{p}(V_{i_{0},i_{1’ q}}^{\prime}\ldots.)$ for $p<0$ ,
$7_{2}=0$ on $\beta^{p}(V_{t_{0},i_{1’ q}}^{\prime}\ldots,)$ for $p\geqq 0$ .

Put

$\varphi=\sum_{p<0}(\beta^{*})^{p}\gamma_{1}+\sum_{p\geq 0}(\beta^{*})^{p}\gamma_{2}$ (locally finite sum).

Then
$\beta^{*}\varphi=\sum_{p\leq 0}(\beta^{*})^{p}\gamma_{1}+\sum_{p>0}(\beta^{*})^{p}\gamma_{2}$ .

Therefore we have $\varphi-\beta^{*}\varphi=-\gamma_{1}+\gamma_{2}=\gamma$ . Thus $1-\beta^{*}$ is surjective. From
(55), we have the long exact sequence
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$0\rightarrow H^{0}(V_{c}, g)\rightarrow^{\pi_{V}^{*}}H^{0}(\tilde{V}_{c}, \mathscr{G})\rightarrow H^{0}(\tilde{V}_{c}1-\beta^{*}\mathscr{G})$

(56)
$\rightarrow^{\delta_{\gamma}}H^{1}(V_{0}, g)\rightarrow^{\pi_{V}^{*}}H^{1}(\tilde{V}_{c}, g)\rightarrow H^{1}(\tilde{V}_{c}, \mathscr{G})1-\beta^{*}\rightarrow$ .

Similarly, for the infinite cyclic coverings

$\pi_{V^{\prime}}:\tilde{V}_{0}-\tilde{S}\rightarrow V_{0}-S$ ,
$\pi_{B}:B_{c}\times C^{*}\rightarrow B_{0}\times\Delta$ , and
$\pi_{B^{\prime}}:(B_{0}-\{0\})\times C^{*}\rightarrow(B_{0}-\{0\})\times\Delta$ ,

we have the similar exact sequences as (56). Moreover, there is the
following commutative diagram of cohomologies with coefficient $g$;

$\rightarrow$

$ H^{0}(\tilde{V}_{c})r_{1}\downarrow$

$\rightarrow^{\delta_{V}}$

$ H^{1}(V_{c})r_{2}\downarrow$ $\rightarrow^{\pi_{V^{\prime}}^{*}\pi_{V}^{*}}$ $ H^{1}(\tilde{V}_{c})r_{3}\downarrow$

$\rightarrow^{1-\beta^{*}}$

$ H^{1}(\tilde{V}_{c})r_{4}\downarrow$

$\rightarrow$

(57)
$\rightarrow H^{0}(\tilde{V}_{0}-\tilde{S})\tilde{\nu}_{c\uparrow\cong}^{*}\rightarrow^{\delta_{V^{\prime}}}H^{1}(V_{c}-S)\nu_{\epsilon\uparrow\cong}^{*}\rightarrow^{\pi_{B^{\prime}}^{*}}H^{1}(\tilde{V}_{c}-\tilde{S})\tilde{\nu}_{c}^{*\dagger\cong}\rightarrow^{1-\beta^{*}}H^{1}(\tilde{V}_{c}-\tilde{S})\tilde{\nu}_{c\uparrow\cong}^{*}\rightarrow$

$\rightarrow H^{0}(B_{c}^{\prime}\times C^{*})\rightarrow^{\delta_{B^{\prime}}}H^{1}(B_{c}\times\Delta)\rightarrow H^{1}(B_{c}^{\prime}\times C^{*})\rightarrow H^{1}(B_{c}^{\prime}\times C^{*})1-\beta_{1}^{*}\rightarrow$

$ r_{l}\uparrow$
$ r_{0}\uparrow$

$\pi_{B}^{*}$

$ r_{7}\uparrow$
$ r_{8}\uparrow$

$\rightarrow H^{0}(B_{0}\times C^{*})\rightarrow^{\delta_{B}}H^{1}(B_{c}\times\Delta)\rightarrow H^{1}(B_{c}\times C^{*})\rightarrow H^{1}(B_{c}\times C^{*})1-\beta_{1}^{*}\rightarrow$

Here the homomorphisms $\gamma_{j},$ $1\leqq j\leqq 8$ , are restrictions, and $B_{\iota}$ indicates
$B_{c}-\{0\}$ . $\beta_{1}^{*}$ is the homomorphism induced by the automorphism of $B_{o}\times C^{*}$

defined by $((u, v),$ $z$) $->((u, v),$ $\beta_{0}^{-1}z$). For simplicity, we denote by $\pi_{V}^{*},$ $\pi^{*}$

$\pi_{B}^{*}$ and $\pi_{B}^{*},$ , the homomorphisms induced by $\pi_{V}|\tilde{V}_{c},$ $\pi_{V}|(\tilde{V}_{c}-\tilde{S}),$
$\pi_{B}|B_{c}\times C^{*}V^{\prime}$

and $\pi_{B}|B_{c}^{\prime}\times C^{*}$ , respectively.

LEMMA 29: There is an isomorphism

$\overline{\nu}_{c}^{*}:H^{1}(B_{0}\times\Delta, p)\rightarrow H^{1}(V_{c}, \theta)$

which makes the diagram

$H^{1}(B_{c}\times\Delta, d)$
$\rightarrow^{\nu_{c}^{*}\overline}$

$H^{1}(V_{c}, d)$

(58) $ r_{B}\downarrow$
$\downarrow r_{V}$

$H^{1}((B_{0}-\{0\}))\times\Delta,$ $p$) $\rightarrow H^{1}(V_{0}-S\nu_{\epsilon}^{*}p)$

commutative. Here $r_{B}$ and $r_{V}$ are restrictions, and $\nu_{c}^{*}is$ the isomorphism
induced by $\nu_{c}$ .
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SUBLEMMA 1. For $ g=\theta$, the homomorphisms $\pi_{V}^{*}$ and $\pi_{B}^{*}$ are zero.

PROOF. It is enough to show that the homomorphisms $1-\beta^{*}$ and
$1-\beta_{1}^{*}$ of the first cohomology groups are injective. First we shall show
that $1-\beta^{*}$ is injective. Let

$\tilde{W}_{1}=\{(x, y, z)\in C^{3}:|xz|^{2}+|yz|^{2}<c^{2}, x\neq 0\}$ and
$\tilde{W}_{2}=\{(x, y, z)\in C^{3}:|xz|^{2}+|yz|^{2}<c^{2}, y\neq 0\}$ .

Then $\{\tilde{W}_{1},\tilde{W}_{2}\}$ is a Stein open covering of $\overline{V}_{c}$ . Therefore we have an
isomorphism

$H^{1}(\tilde{V}_{\iota}, p)\cong\Gamma(\tilde{W}_{1}\cap\tilde{W}_{2}, p)/(\Gamma(\tilde{W}_{1}, p)+\Gamma(\tilde{W}_{2}, p))$ .
Every element $\gamma\in H^{1}(\tilde{V}_{\iota}, p)$ can be represented uniquely by a Laurent
series of the following form:

$\varphi=\sum_{n<0,n<0}a_{mnp}x^{m}y^{n}z^{p}$ ’

which is convergent on $\tilde{W}_{1}\cap\tilde{W}_{2}$ . $\gamma$ is in the kernel of $1-\beta^{*}$ if and
only if the equality $\varphi=\beta^{*}\varphi$ holds. This is equivalent to the equalities
$a_{mnp}(1-\beta_{0}^{n+n-p})=0$ for all $m<0,$ $n<0$ and $p\geqq 0$ . But these imply $a_{nnp}=0$ .
Therefore $1-\beta^{*}$ is injective. Next we have to show that the homomor-
phism $1-\beta_{1}^{*}$ is injective. Let

$\tilde{W}_{1}=\{((u, v), z)\in B_{\iota}\times C^{*}:u\neq 0\}$ and
$\tilde{W}_{2}=\{((u, v), z)\in B_{\sigma}\times C^{*}:v\neq 0\}$ .

Then $\{\tilde{W}_{1},\tilde{W}_{2}\}$ is a Stein open covering of $B_{c}\times C^{*}$ . Hence the injectivity
of $1-\beta_{1}^{*}$ follows by the similar calculation as above. $\square $

PROOF OF LEMMA 29. Take any $\gamma\in H^{1}(B_{\iota}\times\Delta, \rho)$ . By Sublemma 1
and (57), there is an element $\xi\in H^{0}(B_{c}\times C^{*}, p)$ such that $\gamma=\delta_{B}(\xi)$ . Put

$\xi=\sum_{-\infty<p<\infty}a_{mnp}u^{n}v^{n}z^{p}m\geqq 0,n\geq 0$

Let

$\zeta=\sum_{n*Z0,n\geqq 0}\{\sum_{p\neq 0}(a_{mnp}/(1-\beta_{0}^{-p}))u^{m}v^{n}z^{p}\}$ .

Then $\zeta$ is convergent on $B_{\iota}\times C^{*}$ and satisfies the functional equation

$\zeta-\beta_{1}^{*}\zeta=$

$\sum_{r\cdot\geq 0,n\geqq 0,-\infty<p<\infty,p\neq 0}a_{nnp}u^{n}v^{n}z^{p}$
.
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Therefore, replacing $\xi$ by $\xi-(\zeta-\beta_{1}^{*}\zeta)$ , we can assume that $\xi$ is of the form

$\xi=\sum_{m\geqq 0,n\geqq 0}a_{mn0}u^{m}v^{n}$ .
Then

(59) $\tilde{\nu}_{c}^{*}\cdot\gamma_{6}(\xi)=\sum_{m\geqq 0.n\geqq 0}a_{mn0}x^{m}y^{n}z^{m+n}$

This shows that $\tilde{\nu}_{c}^{*}\cdot r_{b}(\xi)$ extends to an element $\xi_{V}\in H^{0}(\tilde{V}_{c}, p)$ . Define
the homomorphism $\overline{\nu}_{c}^{*}$ by $\overline{\nu}_{c}^{*}(\gamma)=\delta_{V}(\xi_{V})$ . Then it is easy to see that $\overline{\nu}_{o}^{*}$ is
injective and makes the diagram (58) commutative. It remains to show
that every element of $H^{1}(V_{\iota}, d)$ is represented by an element of the
form (59). Let

$\rho=\sum_{m\geq 0,n\geqq 0}a_{mnp}x^{m}y^{n}z^{p}$

by any element of $H^{0}(\tilde{V}_{c}, \rho)$ . Put

$\tau=$
$\sum_{m\geqq 0,n\geqq 0,m+n-p\neq 0}(a_{mnp}/(1-\beta_{0}^{m+n-p}))x^{m}y^{n}z^{p}$

.

Then $\tau$ is convergent on $\tilde{V}_{c}$ and satisfies the functional equation

$\tau-\beta^{*}\tau=$
$\sum_{m\geq 0,n\geqq 0,m+n-p\neq 0}a_{mnp}x^{m}y^{n}z^{p}$

.

Since $\delta_{V}(\rho)=\delta_{V}(\rho-(\tau-\beta^{*}\tau))$ , every element of $H^{1}(V_{c}, \rho)$ is represented by
an element of the form (59) by Sublemma 1. This completes the proof
of the lemma. $\square $

For $g=\Omega^{1}$ , we have the following

LEMMA 30. For any element $a\in H^{1}(V_{c}, \Omega^{1})$ , there is an element $ b\in$

$H^{1}(B_{c}\times\Delta, \Omega^{1})$ such that $r_{2}(a)=\nu_{c}^{*}\cdot\gamma_{6}(b)$ .
SUBLEMMA 2. For $g=\Omega^{1}$ , the homomorphism $\pi_{V}^{*}$ is zero.

PROOF. It is enough to show that the homomorphism $1-\beta^{*}$ of the
first cohomology group is injective. We use the Stein open covering of
$\tilde{V}_{\iota}$ used in the proof of Sublemma 1. Then we have an isomorphism

$H^{1}(\tilde{V}_{c}, \Omega^{1})\cong\Gamma(\tilde{W}_{1}\cap\tilde{W}_{2}, \Omega^{1})/(\Gamma(\tilde{W}_{1}, \Omega^{1})+\Gamma(\tilde{W}_{2}, \Omega^{1}))$ .
Every element $\gamma$ of $H^{1}(\tilde{V}_{c}, \Omega^{1})$ can be represented uniquely by a Laurent
series of the following form:

$\varphi=\sum_{m<0,n<0}\{a_{mnp}x^{m}y^{n}z^{p}dx+a_{mnp}^{\prime}x^{m}y^{n}z^{p}dy+a_{mnp}^{\prime}x^{m}y^{n}z^{p}dz\}$ ,
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which is convergent on $\tilde{W}_{1}\cap\tilde{W}_{2}$ . $\gamma$ is in the kernel of $1-\beta^{*}$ if and
only if the equality $\varphi=\beta^{*}\varphi$ holds. This is equivalent to the equalities
$a_{n\cdot np}(1-\beta_{0}^{m+n-p+1})=a_{*np}(1-\beta_{0}^{n*+n-p+1})=a_{n’ np}^{\prime}(1-\beta_{0}^{*+n-p-1})=0$ for all $m<0$ ,
$n<0$ and $p\geqq 0$ . These equalities imply that $\varphi$ is zero. Therefore $1-\beta^{*}$

is injective.

PROOF OF LEMMA 30. By Sublemma 2, $a\in H^{1}(V_{c}, \Omega^{1})$ is represented
by an element of $H^{0}(\tilde{V}_{\epsilon}, \Omega^{1})$ , which is of the form

$\rho=\sum_{m\geqq 0.n\geqq 0}\{a_{nnp}x^{m}y^{n}z^{p}dx+a_{*np}^{\prime}x^{m}y^{n}z^{p}dy+a_{mnp}^{\prime}x^{f\hslash}y^{n}z^{p}dz\}$ .

We define

$\tau=$
$\sum_{n\geq 0,n\geq 0,n*+n-p+1\neq 0}\{b_{nnp}x^{n}y^{n}z^{p}dx+b_{nnp}^{\prime}x^{\prime\hslash}y^{n}z^{p}dy\}+$ $\sum_{n\geq 0,n\geq 0,n+n-p-1\neq 0}b_{nnp}^{\prime}x^{n}y^{n}z^{p}dz$

,

where

$b_{mnp}=a_{mnp}/(1-\beta_{0}^{m+n-p+1})$ ,

$b_{\alpha*np}=a_{*np}/(1-\beta_{0}^{n+n-p+I})$ ,
$b_{n*np}=a_{*np}^{\prime}/(1-\beta_{0^{+n-p-1}}^{\prime\prime})$ .

Then $\tau$ is convergent on $\tilde{V}_{\iota}$ and satisfies the functional equation

$\rho-(\tau-\beta^{*}\tau)=\sum_{n\geq 0,n\geq 0}\{a_{mnm+n+1}x^{n}y^{n}z^{n+n+1}dx+a_{nn\prime n+n+1}x^{n}y^{n}z^{n+n+1}dy\}$

$+\sum_{r*\geqq 0,n\geqq 0}a_{mnm+n-1}^{\prime\prime}x^{m}y^{n}z^{m+n-1}dz$ .

Put

$\rho^{\prime}=\sum_{n\cdot\geq 0.n\geq 0}a_{nnm+n+1}u^{n*}v^{n}(du-udz/z)+\sum_{n\geq 0,n\geq 0}a_{n\cdot nm+n+1}^{\prime}u^{n}v^{n}(dv-vdz/z)$

$+\sum_{n\geqq 0,n\geq 0}a_{*nm+n-1}^{\prime}u^{\prime\hslash}v^{n}dz/z$ .

Then $\rho^{\prime}$ is an element of $H^{0}(B_{c}\times C^{*}, \Omega^{1})$ such that $\tilde{\nu}_{c}^{*}\cdot r_{f}(\rho^{\prime})=r_{1}(\rho-(\tau-\beta^{*}\tau))$ .
Put $b=\delta_{B}(\rho’)$ . Then we have $\nu_{c}^{*}\cdot r_{6}(b)=r_{2}\cdot\delta_{V}(\rho)=r_{2}(a)$ . This completes the
proof of the lemma. $\square $

LEMMA 31. dim $H^{1}(M_{n}, \rho)=n$ .
PROOF. Consider the following diagram of cohomologies with the

coefficient $p$;
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$\rightarrow\bigoplus_{\nu=1}^{n}H_{H_{\nu}}^{1}(M_{n})\rightarrow^{j_{3}}H^{1}(M_{n})\rightarrow^{j_{4}}H^{1}(M_{n}-\bigcup_{\nu=1}^{n}H_{\nu})\rightarrow^{\delta_{1}}\bigoplus_{\nu=1}^{n}H_{H_{\nu}}^{2}(M_{n})\rightarrow$

(60) $\alpha\downarrow$ $ r\downarrow\cong$

$ 0=\bigoplus_{\nu=1}^{n}H_{E_{\nu}}^{1}(M_{(n)})\rightarrow^{j_{5}}H^{1}(M_{(n)})\rightarrow^{j_{6}}H^{1}(M_{(n)}-\bigcup_{\nu=1}^{n}E_{\nu})\rightarrow^{\delta_{2}}\bigoplus_{\nu=1}^{n}H_{E_{\nu}}^{2}(M_{(n)})\rightarrow$ .
Here the homomorphism $r$ is the natural isomorphism. The homomorphism
$\alpha$ will be defined now. Let $\theta$ be any element of $H^{1}(M_{n})$ . Then by Lemma
29, there is an element $\eta\in H^{1}(M_{(n)})$ such that $j_{6}(\eta)=r\cdot j_{4}(\theta)$ . By Lemma
27, $j_{3}$ is zero. Since codim $E_{\nu}>1$ , we have $H_{E_{\nu}}^{1}(M_{(n)})=0$ . Therefore the
correspondence $\theta\mapsto\eta$ is a well-defined homomorphism and injective, which
is denoted by $\alpha$ . Thus we have the inequality

(61) dim $H^{1}(M_{n}, P)\leqq\dim H^{1}(M_{(n)}, \beta)$ .
On the other hand, consider the commutative diagram

$H^{1}(M_{n}-\bigcup_{\nu=1}^{n}H_{\nu},$ $c)\rightarrow\bigoplus_{\nu=1}^{n}H_{H_{\nu}}^{2}(M_{n}, C)$

(62) $\downarrow j_{7}$ $\downarrow$

$H^{1}(M_{n}-\bigcup_{\nu=1}^{n}H_{\nu},$ $p)\rightarrow\bigoplus_{\nu=1}^{n}H_{H_{\nu}}^{2}(M_{n}, \beta)$ .
Note that $\dim H^{1}$ ($M_{n}-\bigcup_{\nu}$ H., $C$ ) $=n$ . Since $H^{0}$ ( $M_{n}-\bigcup_{\nu}$ H., $dP$) $=0,$ $j_{7}$ is
injective. Hence by Lemma 28 and by the first row of the exact sequence
(60), we have the inequality

(63) dim $H^{1}(M_{n}, \rho)\geqq n$ .
Then, combining (61), (63) and Lemma 24, we obtain the lemma. $\square $

LEMMA 32. dim $H^{2}(M_{n}, \rho)=0$ .
PROOF. We know that dim $H^{0}(M_{n}, P)=1$ , dim $H^{1}(M_{n}, \theta)=n$ , and

dim $H^{3}(M_{n}, P)=0$ . Moreover, all Chern numbers of $M_{n}$ are known by
Proposition 7. Therefore the lemma follows immediately from the
Riemman-Roch theorem. $\square $

Thus (27) is proved completely.
In [2], the proofs of Lemmas 9 and 10 were not clear. Note that

these two lemmas have been essentially reproved here.
It remains to prove (28).

LEMMA 33. The image of the homomorphism
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$\pi_{n}^{*}:$ $H^{1}(M_{(n)}, \Omega^{1})\rightarrow H^{1}(W_{n}, \Omega^{1})$

is contained in the image of the restriction map

$H^{1}(P^{3}, \Omega^{1})\rightarrow H^{1}(W_{n}, \Omega^{1})$ .
PROOF. We use the commutative diagram (49) with $g=\Omega^{1}$. Let

$\omega\in H^{1}(M_{(n)}, \Omega^{1})$ be any element. Put $\tilde{\omega}=\pi_{n}^{*}\omega$ and

(64) $\tilde{\rho}(\tilde{\omega})=\sum_{\nu=1}^{2n}\tilde{\omega}_{\nu}$ , where $\tilde{\omega}_{\nu}eH^{1}(N_{\nu}, \Omega^{1})$ .
Using Mayer-Vietoris exact sequence for $P^{8}=(N_{\nu}\cup K_{\nu})\cup(P’-K_{\nu})$ , we can
find $\tilde{\alpha}_{\nu}\in H^{1}(N_{\nu}\cup K_{\nu}, \Omega^{1})$ and $\tilde{\beta}_{\nu}\in H^{1}$ ($P$’-K., $\Omega^{1}$) such that
(65) $\tilde{\omega}_{\nu}=\tilde{\alpha}_{\nu}+\tilde{\beta}_{\nu}$ on $N.=(N_{\nu}\cup K_{\nu})\cap(P^{8}-K_{\nu})$ .
Since $\tilde{\omega}$ is the lifting of an element of $H^{1}(M_{(n)}, \Omega^{1})$ , we have the relations;

$g_{\nu}^{*}(\tilde{\alpha}_{2\nu}+\tilde{\beta}_{2\nu})=\tilde{\alpha}_{2\nu-1}+\tilde{\beta}_{2\nu-1}$ , $\nu=1,2,$ $\cdots,$ $n$ .
Hence we have

$g_{\nu}^{*}\tilde{\alpha}_{2\nu}-\tilde{\beta}_{2\nu-1}=\tilde{\alpha}_{2\nu-1}-g_{\nu}^{*}\tilde{\beta}_{2\nu}$

The left hand side of this equation is defined on $P^{8}-K_{2\nu-1}$ , and the right
hand side is defined on $K_{2\nu-1}\cup N_{2\nu-1}$ . Since $(K_{2\nu-1}\cup N_{2\nu-1})\cup((P^{8}-K_{2\nu-1})=P^{8}$,
this implies that

(66) $g_{\nu}^{*}\tilde{\alpha}_{2\nu}-\tilde{\beta}_{2\nu-1}=\tilde{\omega}_{\nu}^{\prime}$ and $g_{\nu}^{*}\tilde{\beta}_{2\nu}-\tilde{\alpha}_{2\nu-1}=-\tilde{\omega}_{\nu}^{\prime}$

for some element $\tilde{\omega}_{\nu}^{\prime}\in H^{1}(P^{3}, \Omega^{1})$ . Since $\delta(\tilde{\omega}_{\nu}^{\prime})=0,$ $\delta(\tilde{\rho}(\tilde{\omega}))=0,$ $\delta(g_{\nu}^{*}\tilde{\alpha}_{2\nu})=0$ ,
and $\delta(\tilde{\beta}_{2\nu})=0$ , we obtain from (64), (65) and (66) the equality

$\sum_{\nu=1}^{\cdot}\delta(\tilde{\alpha}_{2\nu})+\sum_{\nu=1}^{n}\delta(g_{\nu}^{*}\tilde{\beta}_{2\nu})=0$ .
Then, since dim $H^{1}(P^{8}, \Omega^{1})=1$ , by the exact sequence (49), there is an
element $\tilde{\omega}_{0}^{\prime}\in H^{1}(P^{S}, \Omega^{1})$ such that

(67) $\tilde{\alpha}_{2\nu}=a_{2\nu}\tilde{\omega}_{0}$ and $g_{\nu}^{*}\tilde{\beta}_{2\nu}=b_{2\nu}\tilde{\omega}_{0}^{\prime}$

for some complex numbers $a_{2\nu}$ and $b_{2\nu},$ $\nu=1,2,$ $\cdots,$ $n$ . Since every $g_{\nu}$

entends to an automorphism of $P^{8}$ , we infer from (64), (65), (66) and (67)
that $\tilde{\rho}(\tilde{\omega})$ is defined on the total space $P^{3}$ . This implies the lemma, since
$H_{L}^{1}(W_{n}, \Omega^{1})=0$ . $\square $

LEMMA 34. dim $H^{1}(M_{(n)}, \Omega^{1})=1$ and a generator is represented by a
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smooth d-closed real $(1, 1)$-form $\omega_{n}$ with the properties

(P.1) $\int_{l}\omega_{n}>0$ for any line $l$ in $M_{(n)}$ ,

and

(P.2) $\pi_{n}^{*}\omega_{n}-\tilde{\omega}_{0}=i\partial\overline{\partial}F_{n}$

for some smooth real valued function $F_{n}$ on $W_{n}$ , where $\tilde{\omega}_{0}$ is the d-closed
real $(1, 1)$-form associated with the Fubini-Study metric on $P^{8}$ .

PROOF. The property (P.1) implies that $\omega_{n}$ is not $\overline{\partial}$-exact. In fact,
if $\omega_{n}=\overline{\partial}\varphi$ for some smooth $(1, 0)$-form $\varphi$ , then we would have

$\int_{l}\omega_{n}=\int_{l}\overline{\partial}\varphi=\int_{l}d\varphi=0$ ,

since the integration of $(2, 0)$-form on a line vanishes. This contradicts
(P.1). Now we shall prove the lemma by the induction on $n$ . For $n=1$ ,
we put

$\omega_{1}=(i/2)\partial\overline{\partial}\{\log(|z_{0}|^{2}+|z_{1}|^{2})+\log(|z_{2}|^{2}+|z_{\epsilon}|^{2})\}$ .
Then $\omega_{1}$ is a well-defined smooth d-closed real $(1, 1)$-form on $M_{(1)}$ . It is
easy to check (P.1). Let

$F_{1}=(1/2)\log(|z_{0}|^{2}+|z_{1}|^{2})(|z_{2}|^{2}+|z_{3}|^{2})/(|z_{0}|^{2}+|z_{1}|^{2}+|z_{2}|^{2}+|z_{3}|^{2})^{2}$ .
This is a smooth real valued function on $W_{1}$ and satisfies (P.2). Since
we know dim $H^{1}(M_{(1)}, \Omega^{1})=1$ by Lemma 17, we obtain the lemma for
$n=1$ . Consider the case $n>1$ . Let $k$ be a natural number such that
$k<n$ . By the induction assumption, $H^{1}(M_{(k)}, \Omega^{1})$ is generated by the
Dolbeault cohomology class represented by $\omega_{k}$ . We denote by $[u]$ the
Dolbeault cohomology class represented by a smooth $\overline{\partial}$-closed form $u$ . By
the property (P.1), it is easy to see that the restriction mapping

(68) $H^{1}(M_{(k)}, \Omega^{1})\rightarrow H^{1}(M_{(k)}^{l}, \Omega^{1})$ is injective.

Consider the diagram;
$h_{1}^{*}\oplus h$?

(69) $H^{1}(M_{(1)},\Omega^{1})\oplus H^{1}(M_{(n-1)}, \Omega^{1})\rightarrow H^{1}(M_{(1)}^{l}, \Omega^{1})\oplus H^{1}(M_{(n-1)}^{l}, \Omega^{1})H^{1}(M_{(n)},\Omega^{1})1^{\alpha}\downarrow\cong j_{1}^{*}\oplus j_{2}^{*}$

$\rightarrow H^{1}(M_{(1)}^{l}, \Omega^{1})\oplus H^{1}(M_{(n-1)}^{1}, \Omega^{1})$

(cf. (53)). Here all horizontal homomorphisms are induced by the natural
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inclusions. The first row is the Mayer-Vietoris exact sequence, and the
second row is the direct sum of exact sequences of local cohomologies.
The homomorphism $\alpha$ will be defined below. By (68), $j_{1}^{*}$ and $j_{2}^{*}$ are
injective. Since $H^{0}(N(\epsilon), \Omega^{1})=0,$ $h_{1}^{*}\oplus h_{2}^{*}$ is injective. Let $\xi$ be any ele-
ment of $H^{1}(M_{(n)}, \Omega^{1})$ . By the defininition of $M_{(n)}$ , we claim that both
$h_{1}^{*}(\xi)$ and $h_{2}^{*}(\xi)$ extend to elements of $H^{1}(M_{(1)}, \Omega^{1})$ and $H^{1}(M_{(n-1)}, \Omega^{1})$ ,
respectively. In fact, $\pi_{n}^{*}(\xi)\in H^{1}(W_{n}, \Omega^{1})$ extends to an element $\tilde{\xi}$ of
$H^{1}(P^{8}, \Omega^{1})$ by Lemma 33. Recall that $W_{1}=P-K_{2n-1}-K_{2n}$ and $W_{n-1}=$

$P^{3}-K_{1}-K_{2}-\cdots-K_{2(n-1)}$ . Put $\tilde{\xi}_{1}=\tilde{\xi}|W_{1}^{\prime}$ and $\tilde{\xi}_{2}=\tilde{\xi}|W_{n-1}$ . Then, since $\tilde{\xi}$ is
an extension of the lifting of an element of $H^{1}(M_{(n)}, \Omega^{1})$ , both $\tilde{\xi}_{1}$ and $\tilde{\xi}_{2}$

define $\xi_{1}\in H^{1}(M_{(1)}, \Omega^{1})$ and $\xi_{2}\in H^{1}(M_{(n-1)}, \Omega^{1})$ , respectively, such that $\pi_{1}^{*}(\xi_{1})=$

$\tilde{\xi}_{1}$ and $\pi_{n-1}^{*}(\xi_{2})=\tilde{\xi}_{2}$ , where $\pi_{1}^{\prime}:W_{1}^{\prime}\rightarrow M_{(1)}$ is the canonical projection. This
proves our claim. Since $h_{1}^{*}\oplus h_{2}^{*}$ and $j_{1}^{*}\oplus j_{2}^{*}$ are injective, the correspon-
dence $\xi\mapsto(\xi_{1}, \xi_{2})$ defines the desired homomorphism $\alpha$ . It is easy to see
that $\alpha$ is injective. By (P.1), $(-j_{1}^{*}([\omega_{1}]), j_{2}^{*}[\omega_{n-1}]))\in H^{1}(M_{(1)}^{1}, \Omega^{1})\oplus H^{1}(M_{(n-1)}^{1}$ ,
$\Omega^{1})$ cannot be in the image space of $h_{1}^{*}\oplus h_{2}^{*}$ . Hence we have the inequality

(70) dim $H^{1}(M_{(n)}, \Omega^{1})\leqq 1$ .
By (P.2), we have

$\pi_{1}^{*}\omega_{1}-\tilde{\omega}_{0}=i\partial\overline{\partial}F_{1}$ on $W_{1}$ ,
and

$\pi_{n-1}^{*}\omega_{n-1}-\tilde{\omega}_{0}=i\partial\overline{\partial}F_{n-1}$ on $W_{n-1}$ ,

for some smooth real functions $F_{1}^{\prime}$ on $W_{1}^{\prime}$ and $F_{n-1}$ on $W_{n-1}$ . Put $N=$
$h_{1}(M_{(1)}^{1})\cap h_{2}(M_{(n-1)}^{l}),\tilde{N}=\pi_{n}^{-1}(N)$ , and $\varphi=(\pi_{n}|\tilde{N})^{-1*}(F_{1}^{\prime}-F_{n-1})$ . Take a real
non-negative smooth function $\rho$ on $M_{(n)}$ which is equal to 1 on a neigh-
borhood of $h_{1}(M_{\langle 1)}^{1})-N$, equal to $0$ on a neighborhood of $h_{2}(M_{(n-1)}^{l})-N$, and
which satisfies $0\leqq\rho\leqq 1$ on $N$. We define

$\omega_{n}=\left\{\begin{array}{ll}\omega_{1}-i\partial\overline{\partial}((1-\rho)\varphi) & on h_{1}(M_{(1)}^{1}),\\\omega_{n-1}+i\partial\overline{\partial}(\rho\varphi) & on h_{2}(M_{(n-1)}^{1}).\end{array}\right.$

Then $\omega_{n}$ is a smooth d-closed real $(1, 1)$-form on $M_{(n)}$ . Since any line in
$M_{(n)}$ is homologous to a line in $h_{1}(M_{(1)}^{l}),$ $\omega_{n}$ satisfies (P.1). Put $\tilde{\rho}=\pi_{n}^{*}\rho$ .
Define a smooth real-valued function $F_{n}$ on $W_{n}$ by

$F_{n}=\tilde{\rho}F_{1}^{\prime}+(1-\rho\gamma F_{n-1}$ .
Then we have the equality

$\pi_{n}^{*}\omega_{n}-\tilde{\omega}_{0}=i\partial\overline{\partial}F_{n}$ ,
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which shows that (P.2) is satisfied. Thus we obtain the inequality

(71) dim $H^{1}(M_{(n)}, \Omega^{1})\geqq 1$ .
Combining (70) and (71), we have the lemma. $\square $

REMARK. $\omega_{n}$ is not a positive form. In fact, the integrations of
$\omega_{n}$ on elliptic curves defined by $z_{0}=az_{1},$ $z_{2}=bz_{3},$ $(a, b\in C)$ in $h_{1}(M_{(1)}^{1})$ vanish.

LEMMA 35. dim $H_{s}^{1}(V, \Omega^{1})=1$ .
PROOF. By Lemma 26 and by the exact sequence

$0\rightarrow dP\rightarrow\Omega^{1}\rightarrow d\Omega^{1}\rightarrow 0$ ,

it is enough to show that $\dim H_{s_{0}}^{1}(M_{1}, \Omega^{1})\leqq 1$ . Let $b\in H^{1}(M_{(1)}, \Omega^{1})$ be the
generator represented by $\omega_{1}$ in the proof of Lemma 34. In view of the
defining equation of $\omega_{1}$ , we see that $b$ is equal to zero on a neighborhood
of $E_{1}$ . Therefore $b’:=b|(M_{(1)}-E_{1})$ extends to an element $b$

’ of $H^{1}(M_{1}, \Omega^{1})$ .
Now consider the exact sequence

$ 0\rightarrow H_{s_{0}}^{1}(M_{1}, \Omega^{1})\rightarrow H^{1}(M_{1}, \Omega^{1})\rightarrow^{r}H^{1}(M_{1}-S_{0}, \Omega^{1})\rightarrow$ ,

where $r$ is the restriction. Since $r(b^{\prime}’)=b‘\neq 0$ , and since dim $H^{1}(M_{1}, \Omega^{1})=2$

by (30), we obtain the lemma. $\square $

LEMMA 36. dim $H^{1}(M_{n}, \Omega^{1})=n+1$ .
PROOF. We use the diagram (60) and its notation with the coefficient

$\Omega^{1}$ . Note that $d{\rm Im} H_{H_{\nu}}^{1}(M_{n}, \Omega^{1})=1$ by Lemma 35, $\dim H^{1}(M_{(n)}, \Omega^{1})=1$ by
Lemma 34, and that $j_{3}$ is injective. Hence $H^{1}(M_{n}, \Omega^{1})$ contains the
n-dimensional subspace generated by the images of $j_{8}$ . By the construc-
tion of the d-closed $(1, 1)$-form $\omega_{n}$ in Lemma 33, the Dolbeault cohomology
class $[\omega_{n}]$ is trivial on a neighborhood of each elliptic curve $E_{\nu}$ . There-
fore $[\omega_{n}]|(M_{(n)}-\cup E_{\nu})$ extends to an element $b_{n}\in H^{1}(M_{n}, \Omega^{1})$ . That $b_{n}\neq 0$

follows from the property (P.1). Hence we have

dim $H^{1}(M_{n}, \Omega^{1})\geqq n+1$ .
On the other hand, let $a\in H^{1}(M_{n}, \Omega^{1})$ be any element such that $j_{4}(a)\neq 0$ .
Then, by Lemma 30, $r\cdot j_{4}(a)$ extends to an element of $H^{1}(M_{(n)}, \Omega^{1})$ , which
is of dimension 1 by Lemma 34. Therefore we have

dim $H^{1}(M_{n}, \Omega^{1})\leqq n+1$ .
Thus we have the lemma. $\square $
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PROOF OF (28). dim $H^{0}(M_{n}, \Omega^{1})=0$ holds, since $M_{n}$ is of Class $L$ .
dim $H^{1}(M_{n}, \Omega^{1})=n+1$ was proved by Lemma 36. By the Serre duality,
we have dim $H^{8}(M_{n}, \Omega^{1})=\dim H^{0}(M_{n}, \Omega^{2})=0$ , since $M_{n}$ is of Class $L$ .
Therefore the Euler-Poincar\’e characteristic $\chi(M_{n}, \Omega^{1})$ is equal to $-n-1+$
dim $H^{2}(M_{n}, \Omega^{1})$ . Hence dim $H^{2}(M_{n}, \Omega^{1})=2n$ follows from the Riemann-Roch
theorem using Proposition 7. Thus (28) is proved completely.
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