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Introduction

Let $\nu$ be a Borel measure on $R^{n}$ and set

(0.1) $M_{\alpha}\nu(x)=\sup|Q|^{-\alpha}\int_{Q}d|\nu|$ $(0<\alpha\leqq 1)$

where the supremum is taken over all the cubes $Q$ in $R^{n}$ which contain
$x$ and $|Q|$ denotes the Lebesgue measure of $Q$ . Throughout this note we
deal with only cubes of the form $\prod_{j=1}^{n}[x_{j}, x_{j}+r$) where $(x_{1}, \cdots, x_{n})\in R^{n}$

and $r>0$ . $M_{1-\alpha/n},$ $0<\alpha<n$ , is called the fractional maximal operator.
When $\alpha=1,$ $(0.1)$ is the Hardy-Littlewood maximal function of $\nu$ .

Recently E. T. Sawyer [12] showed that for a nonnegative measure
$\omega$ and a nonnegative function $v(x)$ on $R^{n}$ there exists a positive constant
$C_{1}$ independent of $f(x)$ such that

(0.2) $(\int_{R^{n}}[M_{\alpha}f]^{q}d\omega)^{1/q}\leqq C_{1}(\int_{R^{n}}|f|^{p}vdx)^{1/p}$ $(0<\alpha\leqq 1)$

for all measurable functions $f(x)$ if and only if there exists a positive
constant $C_{2}$ independent of cubes $Q$ such that

(0.3) $\int_{Q}[M_{\alpha}(\chi_{Q}v^{1-p^{\prime}})]^{q}d\omega\leqq c_{2}(\int_{Q}v^{1-p^{\prime}})^{q/p}<\infty$

for all cubes $Q$ , where $1<p\leqq q<\infty,$ $(1-p)(1-p^{\prime})=1$ and $\chi_{Q}$ denotes the
characteristic function of $Q$ .

In the case that $p=q,$ $\alpha=1,$ $\omega$ is a function and $\omega=v$ , as it is well
known, B. Muckenhoupt [9] showed that (0.2) is valid if and only if $\omega$

satisfies $A_{p}$ condition:
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(0.4) $(|Q|^{-1}\int_{Q}\omega(x)dx)(|Q|^{-1}\int_{Q}\omega(x)^{1-p^{\prime}})^{p-1}\leqq C_{s}$

for all $Q$ , where $C_{s}$ is independent of $Q$ .
Consequently, in this case, (0.3) is equivalent to (0.4). R. Hunt, D.

Kurtz and C. Neugebauer [7] showed elementarily this relation without
using the equivalence of (0.2) and (0.3).

On the other hand, Muckenhoupt conjectured in [10, p. 319] that when
$p=q,$ $\alpha=1$ and $n=1,$ $(0.2)$ holds if and only if there exists $C$ independent
of $I$ and $E$ such that for every interval $I$ and every subset $E$ of $I$ with
$|E|=2^{-1}|I|$

(0.5) $(\int_{I}\omega(x)d_{X})(|I|^{-1}\int_{I}v(x)^{1-p^{\prime}}dx)^{p}\leqq C\int_{E}v(x)^{1-p^{\prime}}dx$ .

The fact is that (0.5) is sufficient, but not necessary for (0.2) in

general even if we replace $\int_{I}\omega(x)dx$ with $\int_{E}\omega(x)dx$ .
In this note, instead of (0.5), we shall give another necessary and

sufficient condition for (0.2) to hold and we shall show the $equivalenc\epsilon$

of our condition and Sawyer’s condition (0.3) without using (0.2).

\S 1. Theorems.

At first we consider an example. Suppose $ 1<p<\infty$ and let $\sigma(x)$ bc
a nonnegative function on $R$ such that

(1.1) $\sup_{R>1}|RI|^{-p}(|_{RI}\sigma dx)^{p-1}<\infty$ for some interval $I$

where $RI$ is the interval having the same center as $I$ but whose lengtf

is $R$ times as large. And we set

(1.2) $\omega(x)=g(x)\{(\sup_{Iax,|I|\leqq 1/4}|I|^{-1}\int_{I}\sigma dx)^{p}\sigma^{-1}(x)$

$+\sup_{Iax,|I|>1/4}|I|^{-p}(\int_{I}\sigma dx)^{p-1}\}^{-1}$

where $I$ denotes an interval and $g(x)$ is a nonnegative, bounded and in
tegrable function on $R$ such that $g(x)=1$ on $[-1,1$). $ 0\cdot\infty$ will be taker
to be $0$ .

Then we can easily see the pair $(\omega, \sigma)$ satisfies (0.3) where $v=\sigma^{1-p}$

$q=p$ and $\alpha=1$ . But if we set $\sigma(x)=0$ on $[-3/4,3/4$) and $\sigma(x)=1$ otherwise
then there cannot exist any finite positive constant $C$ satisfying
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(1.3) $(\int_{E}\omega(x)dx)(\frac{1}{2}\int_{I}\sigma(x)dx)^{p}\leqq C\int_{E}\sigma(x)dx$ ,

where $I=[-1,1$ ) and $E=[-1/2,1/2$). The assumption (1.1) guarantees
that $\omega\neq 0$ . The construction (1.2) of $\omega$ is essentially due to Sawyer [13,
p. 110]. Also refer to [2].

Muckenhoupt’s coniecture suggests another characterization of the
pair $(\omega, v)$ for (0.2) to hold. We state our theorems:

THEOREM 1. Let $\omega$ and $a$ be nonnegative Borel measures on $R^{n}$ .
Suppose $1\leqq q<\infty,$ $0<\alpha\leqq 1$ and $0<\delta<1$ . Fix a cube $Q$ in $R^{n}$ . If there
exists a nonnegative Borel measure $\mu_{Q}$ and there exists a positive constant
$C_{Q}$ independent of I and $E$ such that

(1.4) $\int_{E}d\omega(|I|^{-\alpha}\int_{I}d\sigma)^{q}\leqq C_{Q}\int_{E}d\mu_{Q}$

for any subcube I of $Q$ and any measurable subset $E$ of I with measure
$|E|\geqq\delta|I|$ , then there exists a positive constant $c_{0}$ depending only on $n,$ $\alpha$ ,

$\delta$ and $q$ such that

(1.5) $\int_{Q}[M_{\alpha}(\chi_{Q}\sigma)(x)]^{q}d\omega\leqq c_{0}C_{Q}\int_{Q}d\mu_{Q}$ .
From Theorem 1 we have the following:

THEOREM 2. Let $\omega$ and $a$ be nonnegative Borel measures on $R^{n}$ and
let $\omega.\neq 0$ . Suppose $0<p<\infty,$ $ 1\leqq q<\infty$ and $0<\alpha\leqq 1$ . Then the following
conditions (I) and (II) are equivalent:

(I) There exists a positive constant $C_{4}$ depending only on $n,$ $\alpha,$ $p$ ,
$q,$ $\omega$ and $a$ such that

(1.6) $\int_{Q}[M_{\alpha}(\chi_{Q}a)(x)]^{q}d\omega\leqq C_{4}(\int_{Q}d\sigma)^{q/p}<\infty$

for all cubes $Q$ .
(II) There exist positive constants $C_{f},$ $C_{6}$ and $\delta\in(0,1)$ depending only

on $n,$ $\alpha,$ $p,$ $q,$ $\omega$ and $\sigma$ , and there exist locally finite nonnegative Borelmeasures $\mu_{Q}$ for all cubes $Q$ such that

(1.4) $\int_{E}d\omega(|I|^{-\alpha}\int_{I}d\sigma)^{q}\leqq C_{b}\int_{E}d\mu_{Q}$

for any subcube I of $Q$ and any measurable subset $E$ of I with measure
$|E|\geqq\delta|I|$ , and
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(1.7) $\int_{Q}d\mu_{Q}\leqq C_{0}(\int_{Q}d\sigma)^{q/p}$ .
If we suppose $d\sigma=v^{1-p^{\prime}}dx$ where $v(x)$ is a positive function and

$(1-p^{\prime})(1-p)=1$ , then (I) means Sawyer’s condition (0.3). So we obtair
the following characterization:

THEOREM 3. Let $\omega$ be a nonnegative measure, $\omega\neq 0$ , and let $vbt$

a nonnegative measurable function on $R^{n}$ . Set $\sigma=v^{1-p^{\prime}}$ and suppost
$ 1<p\leqq q<\infty$ and $0<\alpha\leqq 1$ . Then there exists a positive constant $C_{1}$ in.
dependent of $f$ which satisfies (0.2) if and only if the pair $(\omega, \sigma)$ satisfie:
the condition (II) in Theorem 2.

We shall prove only Theorems 1 and 2. Theorem 3 can be also provec
by the same method as Sawyer [12] and B. Jawerth [8] with slight
modification.

COROLLAR$Y$ (Sawyer [11]). Suppose that $\omega$ is a nonnegative $Bore|$

measure, $\omega\neq 0,$ $\sigma(x)$ is a positive function on $R^{n},$ $ 1<p\leqq q<\infty$ and $0<\alpha\leqq 1$

If the pair $(\omega, \sigma)$ satisfies that there exists a constant $C_{7}$ independent $Oj$

$Q$ such that

(1.8) $\int_{Q}d\omega(|Q|^{-\alpha}\int_{Q}\sigma dx)^{q}\leqq C_{7}(\int_{Q}\sigma dx)^{q/p}$

for all cubes $Q$ and if $\sigma$ is in $A_{\infty}$ , that is, there exist positive constant$
$C_{8}$ and $\delta\in(0,1)$ independent of $Q$ and $E$ such that

(1.9) $\int_{E}\sigma dx\geqq C_{8}\int_{Q}adx$

whenever $E$ is a subset of $Q$ with measure $|E|\geqq\delta|Q|$ , then the pair $(\omega,$ $\sigma$

satisfies the condition (I) in Theorem 2.

Refer to [4] for $A_{\infty}$ condition and see also [6] for details of ou]

subject.

\S 2. Proofs of the theorems.

We first observe the easy direction $(I)\rightarrow(II)$ in Theorem 2. Set

$ d\mu_{Q}=[M_{\alpha}(x_{Q}\sigma)]^{q}d\omega$ ,

then for any subset $E$ of a subcube $I$ in $Q$ we see immediately that $\mu$

satisfies (1.4) and (1.7) with $C_{f}=1$ and $C_{6}=C_{4}$ .
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$(II)\rightarrow(I)$ . We shall prove Theorem 1. The implication $(II)\rightarrow(I)$ in
Theorem 2 is an immediate consequence of Theorem 1 by (1.7). We shall
use the same method as M. Christ and R. Fefferman in [3]. We begin
the proof by showing a lemma which is a version of that due to Calder\’on
and Zygmund [1].

Let $\llcorner \mathscr{F}^{-}$ be a family of dyadic cubes of $R^{n}$ . Dyadic cubes denote the
cubes of the form $\prod_{j=1}^{n}[k_{\dot{f}}2^{m},$ $(k_{j}+1)2^{m})$ where $k_{j}’ s$ and $m$ are integers.
We put

$M_{\alpha}^{d}\nu(x, \mathscr{F})=\sup|I|^{-\alpha}\int_{I}d|\nu|$

where $\nu$ is a Borel measure on $R^{n}$ and the supremum is taken over all
cubes $I$ which belong to $\mathscr{G}^{-}$ and contain $x$ . If any cube $I$ in $\mathscr{G}^{-}$ does
not contain $x$ , we put $M_{\alpha}^{d}\nu(x, \mathscr{F})=0$ . $I\backslash E$ will denote the set $\{x;x\in I$

and $x\not\in E$}.

LEMMA. Suppose $\nu$ is a finite Borel measure on $R^{n}$ and $x>1$ . Then
for every integer $k$ , satisfying $\{M_{\alpha}^{d}\nu(x, \mathscr{G}^{-})>\lambda^{k}\}\neq\emptyset$ , there exists a subfamily
$\mathscr{F}_{k}$ of dyadic cubes $\{I_{j}^{k}\}$ in $\mathscr{F}$ and a family of measurable subsets $\{E_{\dot{f}}^{k}\}$

of $R^{n}$ such that
(i) $\{E_{j}^{2k}\}_{k,j}$ and $\{E_{j}^{2k+1}\}_{k,j}$ are respectively pairwise disjoint,

(ii) $E_{\dot{f}}^{k}\subset I_{j}^{k}$ and $|I_{\dot{f}}^{k}\backslash E_{\dot{f}}^{k}|\leqq x^{-1/\alpha}|I_{\dot{f}}^{k}|$ ,

(iii) $|I_{j}^{k}|^{-\alpha}\int_{I_{\dot{f}}^{k}}d|\nu|>x^{k}$ ,

(iv) $M_{\alpha}^{d}\nu(x, \mathscr{F})\leqq\lambda^{k+2}$ on $E_{j}^{k}$ ,

and

(v) $\{x;M_{\alpha}^{d}\nu(x, \mathscr{F})\neq 0\}\subset\bigcup_{k,j}E_{\dot{f}}^{k}$ .

PROOF OF LEMMA. Let $E^{k}=\{x;M_{\alpha}^{d}\nu(x, \mathscr{F})>\lambda^{k}\}$ , then there exists a
family of maximal dyadic cubes $\{I_{j}^{k}\}_{j}$ in $\ovalbox{\tt\small REJECT}$ such that

(2.1) $\bigcup_{\dot{f}}I_{j}^{k}=E^{k}$

and

(2.2) $|I_{\dot{f}}^{k}|^{-\alpha}\int_{I_{j}}kd|\nu|>x^{k}$

We divide $\{I_{\dot{f}}^{k}\}_{j}$ into three classes:
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$(\mathscr{F}_{k}^{-})$
$|I_{j}^{k}|^{-\alpha}\int_{t_{\dot{f}}^{k}}d|\nu|\leqq\lambda^{k+1}$ ,

$(\mathscr{G}_{k}^{-}’)$ $x^{k+1}<|I_{\dot{f}}^{k}|^{-\alpha}\int_{I_{\dot{f}}^{k}}d|v|\leqq\lambda^{k+2}$ ,

and
$(\mathscr{G}_{k}^{-\prime\prime})$ $|I_{\dot{f}}^{k}|^{-\alpha}\int_{f_{;}}d|\nu|>x^{k+2}$ .

Then $\mathscr{G}_{k}^{-}’\subset \mathscr{G}_{k+1}^{-}$ and, if $I_{j}^{k}e$ Yr”, we see $I_{\dot{f}}^{k}\subset E^{k+2}$ . Therefore, we have

$E^{k}\backslash E^{k+2}\subset\{\bigcup_{I_{j}^{k}e\tau_{k}}I_{\dot{f}}^{k}\backslash E^{k+2}\}\cup\{_{I^{k}+1\in \mathcal{F}_{k+1}}\bigcup_{j}P_{j}^{+1}\backslash E^{k+2}\}$ .
We set $E_{\dot{f}}^{k}=I_{j}^{k}\backslash E^{k+2}$ for $I_{\dot{f}}^{k}e\mathscr{G}_{k}^{-}$ . Then $\{M_{a}^{d}\nu\neq 0\}\subset\bigcup_{k,j}E_{\dot{f}}^{k}$ and $\{E_{\dot{f}}^{2k}\}_{k,j}$

and $\{E_{\dot{f}}^{2k+1}\}_{k,l}$ are respectively pairwise disjoint families.
Also we see that

$I_{j}^{k}\cap E^{k+2}=\bigcup_{J^{k+l\subset I^{b}}}J_{l}^{k+2}$ for $I_{j}^{k}e\mathscr{G}_{k}^{-}$

$l$ $j$

where the maximal dyadic cubes $J_{l}^{k+2}$ satisfy

(2.2) $|J_{l}^{k+2}|^{-\alpha}\int_{J_{l}^{k+2}}d|\nu|>x^{k+2}$ .
Noticing $0<\alpha\leqq 1$ and $I_{\dot{f}}^{k}e\mathscr{G}_{k}^{-}$ , we have

$|I_{j}^{k}\cap E^{k+2}|=\sum_{\subset J_{l}^{k+2k}I_{j}}|J_{l}^{k+2}|$

$\leqq(x^{-(k+2)}\sum_{J_{l}^{k+2}\subset I_{\dot{f}}^{k}}\int_{J_{l}^{k+2}}d|\nu|)^{1/\alpha}$ (by $(2.2)^{\prime}$)

$\leqq(x^{-(k+2)}\int_{f_{\dot{f}}}d|\nu|)^{1/\alpha}$

$\leqq x^{-1/\alpha}|I_{j}^{k}|$ .
So we have (i), (ii) and (iii) for $E_{j}^{k}’ s$ and $I_{j}^{k}’ sin\mathscr{G}_{k}^{-}$ . (iv) and (v) are

immediate. This completes the proof of Lemma.

Having prepared Lemma, we can prove Theorem 1 by reducing the
argument of the maximal operator $M_{\alpha}$ to that of the dyadic maximal
operator $M_{\alpha}^{d}$ as the routine argument.

Let $\mathscr{G}^{-}(Q)$ be the family of all dyadic cubes $I$ such that $|I|<2^{2n}|Q|$ ,
$|I\cap Q|\geqq 2^{-2n}|I|$ and $l_{\dot{f}}\geqq((1+\delta)/2)^{1/(n-1)}\max\{l_{1}, \cdots, l_{n}\},$ $j=1,$ $\cdots,$ $n$ , where $l_{j}$

is the j-th side length of the rectangle $I\cap Q$ . That is, $I\cap Q$ is ’almost
a cube’.
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Since we may assume $\sigma$ is locally finite, applying Lemma we have
the families of dyadic cubes $\{I_{\dot{f}}^{k}\}$ and subsets $\{E_{j}^{k}\}$ of $R^{n}$ which satisfy
the conditions (i), (ii), (iii), (iv) and (v) for $M_{\alpha}^{d}(x_{Q}\sigma)(x, \mathscr{G}^{-}(Q))$ and $x>$

$2^{\alpha 12n+1)}(1-\delta)^{-\alpha}$ . Thus we have that

(2.3) $\int_{Q}[M_{\alpha}^{d}(\chi_{Q}a)(x, \mathscr{G}^{-}(Q))]^{q}d\omega\leqq\int_{\cup k,j^{E_{j}^{2k}\cap Q}}+\int_{\cup k,\dot{g}^{E_{j}^{2k+1}\cap Q}}$ (by $(v)$).

And

(2.4) $\int_{\cup k,j^{E_{\dot{f}}^{2k}\cap Q}}[M_{\alpha}^{d}(\chi_{Q}a)]^{q}d\omega=\sum_{k,j}\int_{E_{j^{k}}^{2}\cap Q}[M_{\alpha}^{d}(\chi_{Q}a)]^{q}d\omega$

$\leqq\sum_{k,j}x^{(2k+2)q}\int_{E_{\dot{f}}^{2k}\cap Q}d\omega$ (by (iv))

$\leqq x^{2q}\sum_{k.\dot{g}}\int_{E_{j^{k}}^{2}\cap Q}d\omega(|I_{j}^{2k}|^{-\alpha}\int_{I^{2k}}\chi_{Q}d\sigma)^{q}$

;
(by (iii)) .

Let $\tilde{I}_{j}^{2k}$ be the least cube such that $ I_{j}^{2k}\cap Q\subset I_{j}^{2k}\subset Q\sim$ . Then, because
$|I_{j}^{2k}|\simeq|I_{j}^{2k}|\sim$ , the above expression is majorized by

$C_{n,\alpha}x^{2q}\sum_{k,\dot{g}}\int_{E_{\dot{f}}^{2k}\cap Q}d\omega(|I_{j}^{2k}\sim|^{-\alpha}\int_{I_{j}^{2k}}\sim d\sigma)^{q}$ .
From our assumption of $\mathscr{G}^{-}(Q)$ we see that

$|\tilde{I}_{j}^{2k}\backslash (I_{j}^{2k}\cap Q)|\leqq\frac{1-\delta}{2}|I_{\dot{f}}^{2k}|\sim$ ,

and we see from (ii) that

$|(I_{j}^{2k}\cap Q)\backslash E_{j}^{2k}|<2^{-(2n+1)}(1-\delta)|I_{j}^{2k}|$

$\leqq\frac{1-\delta}{2}|I_{\dot{f}}^{2k}\cap Q|$

$\leqq\frac{1-\delta}{2}|I_{;}^{2k}|\sim$ .

Hence we have $|E_{j}^{2k}\cap Q|\geqq\delta|I_{j}^{2k}|\sim$ . Therefore, by the assumption (1.4) we
obtain that the last expression of (2.4) is majorized by

$C_{n,\alpha}x^{2q}C_{Q}\sum_{k,\dot{g}}\int_{Q}E_{\dot{f}}^{2k}\cap Qd\mu_{Q}\leqq Cn,\alpha x^{2q}C_{Q}\int d\mu_{Q}(by(i))$

.

By the same argument we get also
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$\int_{\cup k\cdot i^{B_{\dot{f}}^{2k+1_{\cap Q}}}}[M_{\alpha}(\chi_{Q}\sigma)(x, .\pi(Q))]^{q}d\omega\leqq C_{n.\alpha}x^{2q}C_{Q}\int_{Q}d\mu_{Q}$ .
Hence we have

(2.5) $\int_{Q}[M_{\alpha}^{d}(\chi_{Q}\sigma)(x, \sim \mathscr{F}(Q))]^{q}d\omega\leqq c_{0}^{\prime}C_{Q}\int_{Q}d\mu_{Q}$ .
Next we fix $x$ in $Q$ . For every cube $I$ containing $x$ there exists a

subcube $J$ of $Q$ such that $|J|\leqq|I|$ and $I\cap Q\subset J$. Hence

$ M_{\alpha}(\chi_{Q}\sigma)(x)\leqq\sup_{xeI\subset Q}|I|^{-\alpha}\int_{I}\chi_{Q}d\sigma$ .
Fix a subcube $I$ of $Q$ which contains $x$ . Let $\tilde{I}$ be the cube having

that $2^{kn}<|I|\leqq 2^{tk+1)n}$ and $2^{rn}<|\tilde{I}|\leqq 2^{(r+1)n}$ .
the same center as $I$ with measure

$2^{4n}|Q|.LetkWeput$
and $r$ be integers such

$S_{I}=\{teQ_{0}$ ; there exists a dyadic cube $I_{d}$ in $\mathscr{G}^{-}(Q+t)$

such that $I+t\subset I_{\delta}\subset\tilde{I}$ and $|I_{d}|=2^{(k+2)n}$}

where $Q_{0}=\prod[-2^{t+1},2^{r+1}$), and by a geometrical observation we find at
least $2^{lr-(k+\theta))n}$ cubes with the side length $2^{k}\{1-((1+\delta)/2)^{1/(n-1)}\}$ which are
pairwise disjoint and are contained in $S_{I}$ . This observation is due to C.
Fefferman and E. Stein [5] as is well known. Also see [8, p. 383].

Let $\tau_{t}\sigma$ and $\tau_{t}\omega$ denote the translations by $t$ of $\sigma$ and $\omega$ respectively.
Then we have for any integer $K$

(2.6) $\sup_{Iax.|I|>2^{K}}|I|^{-\alpha}\int_{I}\chi_{Q}d\sigma$

$\leqq C_{n.\alpha}2^{(-r+K+8)n}\sum_{l=1}^{N}M_{\alpha}^{d}(\chi_{Q+t_{l}}\tau_{t_{l}}\sigma)(x+t_{l}, \mathscr{G}^{-}(Q+t_{l}))$

where $N=2^{(\prime-K+2)n}\{1-((1+\delta)/2)^{1/(n-1)}\}^{-n}$ and $t_{l}’ s$ are the suitable lattice
points in $Q_{0}$

Since the pair $(\tau\sigma, \tau_{t}\omega)$ satisfies (1.4) with $\tau_{t}\mu_{Q}$ and the same constant
$C_{Q}$ for the cube $Q+t$ and since $\int_{Q+t}d\tau_{t}\mu_{Q}=\int_{Q}d\mu_{Q}$ for any $t$ , using (2.5)
and (2.6) we have

$\int_{Q}(\sup_{Iax,|I|>2^{K}}|I|^{-\alpha}\int_{I}\chi_{e^{d\sigma}})^{q}d\omega\leqq C(n, \alpha, \delta, q)C_{Q}\int_{Q}d\mu_{Q}$

where the constant $C(n, \alpha, \delta, q)$ is independent of $K$. This implies (1.5)
when $ K\rightarrow-\infty$ , and we complete the proof of Theorem 1.

PROOF OF COROLLARY. Fix a cube $Q$ . Let $E$ be a subset of a sub-
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cube $I$ in $Q$ . From (1.8) we have

$\int_{B}d\omega(|I|^{-\alpha}\int_{I}d\sigma)^{q}\leqq c_{7}(\int_{I}da)^{q/p}$

If $|E|\geqq\delta|I|$ , by (1.9) the right hand side of the above is majorized

by $c_{9}(\int_{E}d\sigma)^{q/p}$ Hence we obtain, because $q/p\geqq 1$ ,

$\int_{E}d\omega(|I|^{-\alpha}\int_{I}d\sigma)^{q}\leqq c_{9}(\int_{Q}da)^{q/p-1}\int_{E}da$ .
The above inequality implies that the pair $(\omega, \sigma)$ satisfies the condition

(II) in Theorem 2 with $\mu_{Q}=(\int_{Q}da)^{q/p-1}a$ . Then Theorem 2 implies the
conclusion of Corollary.
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