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Introduction

Let 2 be a bounded simply connected domain in R*. The boundary
02 is assumed to be of class C*. Let S be a compact C*' manifold of
dimension n—2 belonging to 2. We assume that S divide 49 into two
non-empty relatively open subsets 0,2 and 0,2, more precisely,

aQ:apQUaanUS, al.Qﬂaz.Q———'@ .

We assume that the usual function spaces C¥(Q2), C¥(R2), L*(Q), W),

'%(2) are known. The norm in W) (L)) is written with || ||,,

(Il 1l respectively. Throughout this paper let 2<p< <, and let all
functions be real-valued. We set

Ch(@2)={ueC(2); u=0 in a neighborhood of 3,2} .

The completion of C},(2) with respect to the norm | |,, is denoted by
V(2). The space V(2) is reflexive and separable. The norm in V(Q) is
denoted by || ||,. Let V’(R) be the dual space of V(2). As is well-known,
Poincaré’s inequality is valid for all functions in V(2), that is,

(0.1) lul,=CllVul,, weV(@).
Hereafter let o bev a real number such that
a=0 | when p=n,

0.2 —
0.2) Oéag—m;l-)——l when »p<n.

n—p
We denote by (,) the inner product in L*2). For uwe V(2) we define
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A(u) by the equality
(A(u), v)=(Vul*~*Vu, Vo) +(jul*u, v) , ve V(Q).

If 1<q<o, let ¢* be the dual number of ¢, i.e., ¢*=q/(¢g—1). By
Sobolev’s imbedding theorem and (0.2) the imbedding V(2)— L“*¥**(Q) is
continuous. Hence we see that A(u)e V'(Q).

We consider the equation A(w)=f in 2, that is,

(0.3) (|Vu|?~2Vu, Vo) + (ul*u, v)=(f, v) , ve V().
The following inequalities hold: For & 7€ R"

(0.4) (gl —lP~™), e—M=ele—P, >0,
and for a, be R!

(0.5) | (le|*a—|b]*b, a —b)=0 .

It is known that with the aid of (0.1), (0.4) and (0.5) the following

proposition is obtained by the “monotonicity” method (cf., e.g., Chap. 2
in [11]). :

PROPOSITION 0.1. For fe€ V'(Q) there is a unique solution € V(2)

of (0.8).

For x e R" we denote by ¢(x) the distance between z and S. And
we denote simply by &* any k-th order derivative with respect to the
variables z;, 1<j<mn. Our aim is to prove the following theorems.

THEOREM 1. Let f be in V'(Q), and let uw € V(Q) be a solution of (0.3).
Then there is a positive mumber B, such that if ¢ **%*f e L*(Q), where
0<B=R,, it holds that ¢ " u, ¢~??au € L*(2) and

lg=reall,+ llg™=0ull, S O+ £, 35 .
Here B, and C are independent of f.

REMARK. If ¢ #+¥?f e L*(2), >0, then fe V'(2) from Lemma 1.4
in the following section. Hence the assumption of f € V'(Q2) is superfluous
in Theorem 1.

Let 6-V be a C! vector field on 2 which is tangent to 02: if 6=
6y <+, 0,), 0-V=32,00,. Let C* be the class of analytic functions.

THEOREM 2. Suppose that 02 and S are both of class C*. Let f be
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m W(Q), and let w e V(RQ) be a solution of (0.3). Then (6- V)|Vu | € L**(Q)
Jor some 6>0 and

1O )T s SCIUF e + (L) 0502,

where § and C are independent of f.

THEOREM 3. Under the assumptions in Theorem 2, it holds that
' ’|Vulr™ € Wh»(2) for some 6>0 and

18419 SO Tt (L) 2= (1) =48]
where 6 and C are independent of f.

Let ue V(2) be a solution of (0.8). Then naturally =0 on 4,2. By
Green’s formula it follows that |Vu|*—*3; cos(y, %;)0,;u=0 on 3,2 in the
weak sense, where v is the exterior normal of 92 with respect to 0.
Hence 3;cos(y, ,)d,,u=0 on 9,2 in the same sense, so that u satisfies
the mixed boundary conditions of Dirichlet-Neumann type on 82. Such
a mixed boundary condition appears in the book of J.L. Lions [11] (ef.
p. 345), where the existence of weak solutions for the non-stationary case
was shown. Thus it seems meaningful for us to derive a regularity
property up to the boundary for solutions of (0.8). Under mixed boundary
conditions, nonlinear equations of another type or more general type were
considered by several authors (cf., e.g., [1], [3], [5], [7], [12], [16], [18]).
Here we do not state explicitly their results.

In 1968, E. Shamir [17] proved the regularity up to the boundary
for solutions of linear elliptic equations, under general mixed boundary
conditions. In this connection we note also the work in H. Beirio da Veiga
[20]. Recently, results analogous to [17] for linear parabolic equations
have been proved by G.M. Lieberman [9]. The method in [17] is to
construct a Green’s function. Since it is not almost applicable to non-
linear equations, we have to use another method for (0.3). As an
application of [17], M. K. V. Murthy and G. Stampacchia [13] proved the
regularity for solutions of a single variational inequality with mixed
boundary conditions. Omne of the authors and H. Nagase [4] have con-
sidered a system of variational inequalities and they have obtained an
analogous result to one of the theorems in [18]. The method in [4] is,
in a word, to use a parallel translation with a weight when one constructs
a difference of differentiation for weak solutions.

The interior regularity for weak solutions of A(u)=f was discussed
by several authors (cf., e.g., [2], [8], [19]) and then the best result has
been obtained. Next we consider the equation A(x)=f under the Dirichlet
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boundary condition throughout 6Q2. In this case it is enough to replace
V(2) with W&?(@2) in (0.8). For this M.I. Vishik [21] first obtained a
global regularity property by using Galerkin’s method. In a series of
papers G.N. Jakolev extended and improved the results in [21] (cf., e.g.,
[6]). His result is as follows: |Vul|*~*du € W"*(2), if fe wr»*(Q). In [6]
the method of a simple parallel translation was used, which was already
applied to linear elliptic equations by L. Nirenberg [14].

The argument in this paper is based on [14], [11, Chap. 2], [6] and
particularly [4]. Theorem 2 is proved with the aid of Theorem 1. We
obtain Theorem 3 by proving the regularity of weak solutions along the
normal direction of 32.

§1. Lemmas.

Throughout this paper, the notation “—’ means the weak convergence.

LEMMA 1.1 (Lions [11, p. 12]). Let uc LY(2) (1<g<) and suppose
that {||u;ll,} is uniformly bounded and u;—u pointwise a.e. in 2. Then
w;—u in LA(Q).

It is known that any u € W"?(Q) has its trace on 02, so on 0,2.
LEMMA 1.2. Let uc W*?(Q2) and w=0 on 0,2. Then uec V(2).
ProOOF. For R>0 we set X={re R*; |x|<R, x,>0}. And we define

1.1) 1) ={ueCYZ);u=0 in a neighborhood
of {lx|=R}U{x,=0, z,_,=0}} .

By a suitable partition of unity it is enough to prove the following
assertion:

Let we Wt?(3). Let =0 on {2,=0, x,_,=0} and near {jx|=R}. Then
there is a sequence {u;}cC%,(Z) such that u;—u in W?(2).

Let u satisfy the assumptions in this proposition. We write a”=
(%, *++, %,_,). Since u(x”, x,_,+¢, x,)—>ux) in W+?(3) as ¢— +0, we may
assume that =0 on {x,=0, x,_,> —d} for some §>0.

Let us take a funection g(z,_,) such that g(x,_,)=0 for z, ,<—¢ and
gz, )= —(,_,+0) for z,_,>—0. And we set

S={z|<R}N{x,>9(x. )}

(see Figure 1). We extend u throughout 5 in such a way that #=0 in
$_>. Then ue W+?(3) obviously. Further we define an extension of
w in {|jz|<R} in such a way that =0 on {|z|=R} and « is in W**({|z| <R}).
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pe

.-/\(\//J = X1

FIGURE 1

Then u(x”, x,_,, x,—&)—u(x) in W= ?({lxy|<R}) as e— +0. By using the
mollifier, we can take a sequence {u;}CC},(3) satisfying u;—u in Wb2(3).
Thus the above assertion has been proved, so that we have completed
the proof of our lemma. Q.E.D.

Let R% ={(x, - -, 2,); ,>0}, and let us define

(R ={uec C(R") ; u=0 in a neighborhood of
{,=0, x,_,=0} and for sufficiently large |x|} .

Hereafter we write r=|xz| and p(x)=(x2_,+a2)"2.

LEMMA 1.8. Let t+#2 and ¢>1. Then for any u € Ci,(R%) it holds
that

S p“[ul“dxécg 0" Vuldz
By 20 2, 20

n

where C is independent of u.

Proor. Obviously it is sufficient to prove only the case of n=2.
Writing '=d/dr, we have

Swrl_tlulqdr= 2—' 1t S:’(,’.z—t)rlulqd,r

0 R

=-—4 rrz"'m[q’zuu'dr .
Hence

§ zfr“’lu["dxéCS | Vu|de
#2920 0

2%
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(by Holder’s inequality)

gc(Smor-t|u|ﬂdx)‘"’”"’(§.2=0r«-'|Vu|«dx)”'

Applying Young’s inequality, we complete the proof. Q.E.D.
LEMMA 1.4. Let t#2 and q>1. Then for any ue C:)(2) it holds
that
- —3 gq—t q
SJ’ ‘|u|"dx_S_C(Sn¢’ |Vu|"dx+sa¢ [uldz) ,

where C is independent of w.

PrOOF. Let P, be any fixed point in S. There are a neighborhood
U of P, and a C*-homeomorphic mapping @ from U into (y,,---, ¥,)-Space
such that

o(P)=0, (UNR)c{y.>0},
o(Unodcly,=0}, #(UNS)C{y,..=y.=0},

and
oW =p@=cply), zeU,
where ¢ is some positive constant. Let ne Cy(U). Then from Lemma

1.3

|, opurdysc| v cuirdy .
Yn20 Y20

n

Hence we have
| ¢ imuirdz=<C] gv.0muirde
gC(SD¢““IVuI”dw+ ans""lul"dx) :

By this inequality and ‘a suitable partition of wunity Lemma 1.4 is
proved. Q.E.D.

§2. Propositions.

For a subdomain D of 2 we denote by || |00 (|| lle.5) the norm in
WD) (L%D)), respectively. WeA denote by L%.(2) the space of locally
g-integrable functions in 2. And we define Wii(Q)={u; u, ou € L%.(Q)}.
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The following proposition is due to M. I. Vishik [21], J. L. Lions [11,
p. 112] and G. N. Jakolev [6]. We repeat its proof for the completeness.
We follow mainly the method in [6]. However the inequality (2.3) is
effective in our proof.

PROPOSITION 2.1. Let u be the solution in Proposition 0.1, and let
f be in Wir(Q). Then |Vul|?~20uc Wit'(2). More precisely, for any
subdomain D with DcQ there is a constant C depending on D and f
such that

| [Vulr~20ull; » »<C .

PROOF. Let us fix any integer ¢ with 1<i<n. Let A>0 be suf-
ficiently small. For any function v we define

V(@) =v(®yy ** 0y Tymgy Tyt Ry Loy, <00, X,)

(Do) ()= %—(vh(w) —v(x)) .

Let us take a function {(x) € C7(R2). If ve W'?(2), then D,({*v) € V(Q)
obviously. Hence we have from (0.3)

(2.1) (IVu|?=*Vu, VD,(E*)) + (lu|*w, Dh(sz»:(.f; D,(C)) .
Evidently

(IVul*~*Vu, VD, () = — (D_s(IVul**Vu), V() ,
(lwl*w, Dy(Cv))= —(D_s(Ju|*u), Tv)

and
(s Du(C0))=—(D_f, Cv) .

Hence (2.1) becomes

(D (IVulr*Vau), Vo) +2(CD_(|Vul*~*Vu), vV{)
+(&D_y(jul*u), v)=(*D_+f, v) -

Replacing v by D_,u, we have

(2.2) (ED_(|IVulr~*Vu), D_.Vu)+2(CD_w(|Vul*~*Vu), D_yu-Vg)
+ (& D_x(lul*w), D_yu)=(C*D_.f, D_,u) .

By P. Lindqgvist [10] the following inequality is valid:
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(2.3) (elP~*—nl*~*n, £—n)
Ze g+ P Dle—nF, & 7neR,
where ¢, is a positive constant®. Hence we get
(2.4) (&D_(|IVul|*~*Vu), D_,Vu)
gcoSDCZ(IVuI”"+ [Vu_,[*~*)|VD_,ultdx .

If v=0, it holds that for any ¢ ne R"
(2.5) | 1gl7e—Imlmgl, [1el™ — I < Cllel + Ipinle—7 ,
which yields
ID_({Vul*Vu)| = C(IVulP =+ [Vu_s [~ VD_u] .

Thus we have

I(CD_s(IVu|*~*Vu), D_yu-VE)|

<C| [VCI(Val =+ [Vu_y" )V D_u| ID_yulde

(by Holder’s inequality)

=c({ cavup-+ VusP)IVD_upds)

(p—2)/2p 1/p
-(§, vaival +1vuinaz) " ({ ve D upds)”
Q2 9
(by Young’s inequality)
< _Z&_Sncz(wur-z +[Vu_i[* )|V D_,ul'dx

+C[S9|vc[(1w|v+ IVu_,,[’)dx+Sa|VC| lD_,.ul"dx:I :

Now putting v=u in (0.3), we see that
(IVull,y =(f, w=Clfllvllully ,
so that
(2.6) IVull,=C(|flly) > .
On the other hand it is clear that

*) Professor H. Nagase has informed us of this inequality. We are grateful to him
for his kindness.
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SJVC‘ Vau_,Pde , SD‘VC‘ \D_ulrde < CSQIVuI"dw :

From the above inequalities we obtain
I(CD_x(IVu[*~*Vu), D_u- V)|

<G| cqvuP=+IVu P VD ulds+ Ol

where C is a constant depending on ¢ and not on %, f. Since ||[{D_,u|l,=
C||Vul|,, it follows that

(C*D_if, D_yw)| = ClIED S ||+l Vi || »
(from (2.6)) éCHCD_thp-(Hvar)”""” .

And we have from (0.5)
(& D_s(jul*u), D_4u)=0 .

Combining the above inequalities with (2.2) and (2.4) we conclude
that

2.7) | cavuir+ Va2 vD_urds

=CUA MY F llyr +IED-a S |lpe) -

Here ||¢D_,f|l,»=C from the assumption of fe Wi#(2). On the other
hand

[D_i(|Vul?~Vu)?*
SC(|Vulr**=2|VD_yu|** + | Vu_;[***~?|VD_,ul") .

Using Holder’s inequality and noting that p*(p—2)=p2—p*), we have
| &IDvur ) de
(2—p%) /2 o2
= (| Ivupaz)""(] c1vup-vD_urds)”
+({ 1vusran) (| civusrvD urds) .
Combining (2.6), (2.7) with this inequality, we obtain
(2.8) | eDvurvwrdesc,

where C depends on f, £ and not on A.
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Let D be any subdomain with DcQ. Then from (2.8)

(2.9) | ID_vap-rvurdz<c,

where C depends on f, D and not on k. Therefore for any %k with
1=k=n there are a function v,€ L*(D) and a positive sequence {h,}
with A,—0 (vy— o) such that
D_, (IVulp~*0,,u)— v, in L*™(D) .
For any @ e Cy(D) we see that
(D_3, (| VulP~0,,u), P)=—(|Vu|?~*0,,u, D, p)
- —(Ivulp—zasku’ an?) ’
which implies that v,=4, (|Vu|*~%,,u). Accordingly

192 (IVe[*~0 ) | po, p = 1M {| Dy ([VU|* 00,0l 5o, -
Combining this inequality with (2.9), we have finished the proof. Q.E.D.

REMARK. If we use another inequality in (2.5), the assertion in
Proposition 2.1 holds also for |Vu«|*~, that is, |Vu|?~*e WL?'(Q2). Hence
by Sobolev’s imbedding theorem we have

(2.10) |Vulp= € L3/ (Q) .

PrOPOSITION 2.2. Under the assumptions 1im Proposition 2.1,
{IVu|*~*D,0u} has a convergent subsequence in LI(Q).

PrROOF. Let ¢>1, and let ¢ be so close to 1 if necessary. Let D
be a subdomain with Dc®. Then by Holder’s inequality and (2.5),

| DA(IVul*~*0u)||e,
= C((Hvuh”pq/(z—q) )PP+ (“V'“”pq/(z—q) ,D)plz)“ [Vul (p_z)/Zthu“z,n .

Noting that n(p—1)p*/(n—p»p*)>p and pg/(2—q)—p+0 as ¢g—1+0, we
see that the right-hand side is uniformly bounded by (2.10) and the proof
of Proposition 2.1. Hence |Vu|r~'ou € Wii(RQ).

By the remark previous to this proposition, {D,|Vu|*~'} is a convergent
sequence in L%.(2). Using (2.10) and Holder’s inequality, we see that
{D,|Vu|r~*-0u,} is a convergent sequence in L%.(2). Since

|Vu|?"*D,ou=D,(|Vul|P~'ou) — D, |Vu|?*-ou, ,

{|Vu|P"'D,ou} is also convergent in L{.(2). Thus there is a function
v € L%.(2) such that
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[Vu|? ™Dy 0u—v a.e. in 2.

From now on we denote by the same {h,} any subsequence of positive
numbers tending to 0. Setting ¥(x)=0 if |Vu(x)|=0 and ¥(x) =v(x)/|Vu(x)|??
if |Vu(x)|+#0, we obtain

|Vu|?~272D, ou— ¥ a.e. in 2.

On the other hand from the proof of Proposition 2.1 there is a
function w € L%,.(Q2) such that

[Vu|?=272D, ou—w in Li..(2) .

By applying Banach-Sacks theorem to the sequence {|Vu|?™®”D,ou}, we
see that w=% in Q2. If we repeat the argument in the book of Lions
[11, p. 144], it follows that for any &>0 '

|Vu|*=272D, du—w in Liz(Q) ,
which completes the proof. Q.E.D.

§3. Proof of Theorem 1.

Let {0;} be a monotone sequence of positive numbers decreasing to
zero, and let us set w;={x; ¢(x)<d;}. Then {w;} is a sequence of neigh-
borhoods of S tending to S. Setting 2,=2—w;, we define

Ct,,(2)={u € CY2,) ; u=0 near dw;U 3,2} .

Let V(2,) be the completion of C%,(2;) with respect to the norm || |l,,,,0;,-

If we extend u to be zero in w; for u € V(2;), then we V(2) and u € V(2,)
for k=j.

PROOF OF THEOREM 1. First we assume that e Wit(2). Replacing
2 with 2;, by Proposition 0.1 we can find u; € V(2;) such that A(u;)=f
in Qj, that iS,

3.1) (Vs Vay, Vo) +(wlous ©)=(f, v), ve V(D).

Hereafter let @ be a positive number which is taken to be close to
zero if necessary. Setting v=¢u; in (3.1) particularly, we have

(3.2) (7°1VuslP Vg, Vuz) + (us|Vus|P* Vg™, Vuy,)
+ (sl us, ¢7Pu)=(f, 67%u;) .
Since |V¢| is bounded, it follows that
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|(u;|Vus P2V ~?, Vu,)|
(p—1)/p 1/p
=ca(| s vulrds)” (| g7 rluslrda)
<cg(| s Ivutrda+| g+-rlu,pdo)
(by Lemma 1.4)
éCﬁ(S ¢"|Vu,l’da:+s ¢“|u,-|’dx) .
2 2
Using Poincaré’s inequality and Lemma 1.4 again, we see that
|(u;|Vus|?~*Veg~2, Vu,-)]gCBLgS—’IVujI”dx .
Combining this with (3.2), we obtain
(3.3) | 67 1Vuspde<CI(S, 577u) .

Clearly
I(fs o Pud| = |g* 22 f || sl g™ 205, -
From Poincaré’s inequality and Lemma 1.4

g~ 02u,)l, < C(llg~#*Vusll, + 6~ 2u;),)
=C||¢g~"*Vu|, .

These two inequalities and (3.3) yield
(3.4) g2, ||, + g2Vl S CUllg=#+# £ || 2= .

Hereafter let us denote by the same notation {«,} any subsequence
of {u;}. By (8.4) and Sobolev’s compact imbedding theorem there is a
function u € L?(2) such that

(3.5) u,—u  in L*Q).
Combining (8.4) with (8.5), we have
e TR V) in L?(Q)
and for any < wifh 1<5i=5n |
¢ #?0, u,— ¢ P?9, u  in L*(Q2).

From this we see that u € V(2). Further from (3.4) again we have
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(3.6) g™, 27V, S Ul =22 ]2

Let D be any subdomain with Dc Q2. Since we have assumed that
feWhr*(2), we can apply Proposition 2.1. Thus there is a positive
integer j, (=7,D)) such that

” lvuilp_zvuinl,p‘mé C

for j=j,, where C depends on f, D and not on j. Hence we can apply
Sobolev’s compact imbedding theorem to the sequence {|Vu,|?"*Vu,} as
follows: for each ¢, 1<i{<n, there is a function g, € LZ.(2) such that
for any D with DcQ

.7 |V, |20, 4, — 9, in L*(D)
Vw0, %, — g, a.e. in 2.
This implies that g,=C 7., h})*~2h, for some functions {#,} and
a;iuk—»h, a.e. in 2. |
Clearly h,e L*?(D), so that we have by Lemma 1.1
0y, Uy — iy in L*(D) .

From this and (3.5) we see that h,=d,u. Therefore it follows from
(3.7) that

(3.8) [V, |20, 4, — |Vu|? %0, u a.e. in Q2
and
(3.9) (IVU|? 205 Up, @) — (|VU?~%0,u, ), PeCF(Q).

Since {|Vu,|*~*0,,u;} are uniformly bounded in L#*(2), it holds from (8. 9)
that

VU, |? 20, 45 — [Vul*~%0, u in L*(Q) .
Hence we obtain |
(8.10) (VU [* 2 Vu,, Vo)— (|Vu|?~Vu, Vo) , veCi,(2).

The followmg inequality is valid from Sobolev’s imbedding theorem
and the assumption (0.2):

I Joeslou il oo < C()lwsl] )+ o

From this and (3.4) we see that {|| |u;|"u,||,.} are uniformly bounded. More
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easily, |ul|*u € L**(2). Hence by (3.5) and Lemma 1.1 we obtain
(8.11) (lue]®uy, v)— (|ul°wn, v) , veCi)(2).

Let us fix any v € C%,(2). Then from (8.1) there is a positive integer 7,
such that for j=7,

(IVu;*~*Vuj, Vo) +(luil*u;, v)=(f, v) .
Combining (3.10), (3.11) with this equality we conclude that
(IVu|?~2Vu, Vo) + (Jul*u, v)=(F, v) , v € Ch,(Q),

which holds also for any ve V(Q) as easily seen. That is, « is the
solution itself in Theorem 1. In view of (3.6), Theorem 1 is correct
under the assumption of f e WL?(Q).

Next let us remove the assumption of fe Wi?'(2). We take a
sequence {g;}CC¥R2) such that g;— ¢ #**f in L*(Q). If we set f;=
¢ Frg., then ¢ FHEf, g7t f in L*(2). It follows by Lemma 1.4
that for v e Ci,(2)

llg* 7 #%0l, = C(llg***Voll,+ llg*~**vll,)
=Cllvlly ,

so that
I(fi—Fs DI=Cllg**+#2(f5— Ol pellvll -
This implies that

I1fi—fllv =Cllg" 22 (f5— )l -

Hence f;— f in V'(2). Let u;e V(2) be the solution of A(uw;)=f; in Q.
Then Theorem 1 is valid for each u; from the first half, so that

(8.12) g™ #%u4ll, + g~ *Vusll, = C(llg 2215l o) 27
It is obvious that for any v e V(Q)
(IVes|P =V — [V~ Vat, V0)+ (|esl*uy— lul*u, v)=(f;—f; v)
Setting v=wu;—wu in this equality, we have from (0.4) and (0.5)

e([|Vus—w)p)? = | f5— Fllvllus—ully ,
so that .
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llws—ully = C(llfi— Flly)*72) .
This yields that u;—wu in V(2). Therefore it follows from (8.12) that
¢ P?0, u,— ¢~ %70, w in L*(Q2), 1=1, 0, m.

Accordingly,

gVl S Cllig=*+# fll > .
We have similarly

g™ ~#*ull, = C(l|g"#*#2 f || ) 72 .
Thus we have finished the proof of Theorem 1. Q.E.D.

§4. Parallel translations with a weight.

The content of this section is due to [4]. The descriptions of Lemmas
4.2 and 4.3 are slightly different from those in [4].

For some time we consider our lemma in the upper half space {x,=0}.
We denote {x,>0} by R:. Let v be any fixed real number with 0<v<1,
which may be chosen so close to 1. Let us define g(z)=(x%_,+27)"*. We
write often P(x) simply with g. It is easily seen that

(4-1) |az'n-—1ﬁléc ’ laznﬁl§Cﬁ1—1/r .
We define the following mapping from RZ into itself:

: Y;i=2&; if j#n—1
D, : -
yn—-1=xn—1+hp ’

where h is a sufficiently small positive number. Hereafter we suppose
that the y-variable is always connected with the z-variable by the
equality y=9,(x). Thus O0(y)=p0(®,(x)). There is a positive constant ¢
such that :

(4.2) cP@)<py)=c'px), =cR%.

In fact the inequality on the right is trivial. That on the left is easily
~ seen from

O =20+ Y +HP°) .

By an easy computation we have
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v 1 , -
aclyl e aalyn ¢ ,1 O
: aa Yy **e am Yn 0 1+ha‘"_1ﬁ 0
" " ko, p 1
4.3)
1 .
(a,,lzc1 3,1:&:,,) . 0
oooooooo = 1
0y, %1 0y, s, 0 *
where

— 1 ( 1 0 )
1+ho,, .0 \—ho, p 1+hd, 0] "
From (4.1) and (4.3) we get
(4.4) 10y BISC, 13, Bl1SCP .

Let J, be the Jacobian of ®,. We can write J,=1+ho,,_,0, so that
csJ,=c™! for some positive constant ¢. It is easy to see that @, is a
one-to-one mapping from R? onto itself.

Let us write 2'"'=(, ---, z,_,) W=, ***, Yo)) for z=(x, ---, 2,)
=Wy +--,¥,)), respectively. We define

(Syu)(@)=ulx", x,_,+hp, x,) ,
(Tvu) W) =u@", Y._s—hp, ¥,) -

Namely, (S,u)@)=u(y) and (T)u)(y)=u(x). Further we define
(Paw)(@) =h~((S,u)(x) —u(x)) ,
(@) W) =h(Twu)(y)—u(y)) .

We have always (Qiu)(¥)=—(P,u)(x). From now on, (Syu)(x), (Tyu)(y),
(Pyu)(x) and (Q,u)(y) are often written simply by S,u, Ty, P,u and Q,u.,
respectively. Clearly

Py(uv)=S,u-Pyw+vPu ,
Qu(uv)=Thau - Quu+vQu .

If we define

Fiu(V u)=h"(V,(Siu)— S,V ,u)
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and
G.(V,u)=h(V/(Twu)— T,V,u) ,
then it is easily seen that

|FW(V,0)| < Cp*7|S,d,, _ul

4.5
(45) {‘Gh(vyu)[ §Cﬁl—l/rl Tyo

V'n-—lu [

on any bounded subset of R?, where C is independent of ~ and wu.

For the time being, let us denote by (,) and || ||, the inner product
in L*(R?%) and the norm in LYR%), respectively. Let (,), ((,),) be the
inner product in L*(R%) with respect to the xz-variable (y-variable), re-
spectively.

LEMMA 4.1. For arbitrary functions w, v it holds that
(u, Pyv),=(Qu, v),+ (K, Twu, v), ,
where K,(y)=—0,,_,0/(1+ha,, _ D).

ProOF. We see that
y Pyv),=h™! dx— de) ,
(u, Pyv) (L,J,ru(w)v(y) ® §n1“(”)”(x) x)
N, s@r@de={_w@widy
R+ R+

and

S ;u(x)v(y)dx=s JTwu-vddy .
R R,

Obviously 'J;*=1+hK,, so that we obtain the required equality. Q.E.D.
LEMMA 4.2, Let 1=9<c, and let u e W‘j“(Rl). Then it holds that
157 Paully < Cl1s, _ulle
and
167 Quull, = C||9y,_,ully »
where C is independent of h and u.

PROOF. Without loss of generality we may assume that u e C'R%)
and u=0 for large |x|. Since
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(P,,u)(x)=ﬁ§:(a,,n_1u)(x”, %, +thp, x,)dt ,
it follows that

U5 Peall = | [Gun )@, 20s-+thB, m,)edult
=\ 16w @I vadyat
é C(“atn_IuHQ)q 9

which proves the first inequality. The second inequality is reduced to

the first one by using (4.2). Q.E.D.
LEMMA 4.3. Let 1=q<oco. Let ue W“(R*). Then '
|0~ Pyu—0,,_ull,—0
and

o~ Qu+a,,_ul,—0 as h—0.

PrROOF. By Lemma 4.2 it is enough to assume that w e CYR:) and
=0 for large |x|. Similarly to the proof of Lemma 4.2 we have

(167 Pyu—0,,_ullo)*
gSISDI(azn_Iu)(x"’ w”_1+thﬁ, xn)—(azn_lu)(x)lﬂdwdt .
0
Clearly the right-hand side tends to zero as h—0, so that the first in-

equality has been proved. The second inequality is reduced to the first
one, because |[(Vu)(y)—(Vu)()||,—0 as h—0. Q.E.D.

§5. A localization of 2.

Let 2 be the domain in Theorem 2. In this section we prepare a
localization of 02 near S. We denote the origin simply by O and we
write «'=(z,, ---, 2,_,). The origin in the z'-space is denoted also by
the same O.

LEMMA 5.1. Let P, be any fixed point on 02. Then there is a
neighborhood U of P, and a function u € C*(U) such that
u=0 on o2NU, u>0 m 2NU

and
|Vu|=1 in U.
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PrROOF. We may asssume that P,=0. We consider our lemma in a
neighborhood of O. By an orthogonal coordinate transformation it is
sufficient to assume that 2 and 62 are expressed by z,>(z') and z,=
¥(x'), respectively, where 4(0)=0, 3,,4(0)=0 for ¢, 1<i=n—1, and ¥(’)
is analytic near O.

We take the following coordinate transformation

Yi=x, (@#n), Y=~ P’ .

Then
05, U =0y U — 0,4+ 0y, U (1#m) ,
0, u=0y % ,

so that the equation |V, u[*=1 is equivalent to
(145 G @uwr+Z G2 —2(3, 0. 90-8,u )5, u=1 .
If >0 for y,>0, this equation becomes
61 ou=(1+Z Ou) | D ouct-dy
+y(Eoaonn) +(1+5 C.r)(1-F Gy |
The initial condition for # is written by

(56.2) u(y’, 0)=0.

We shall solve the Cauchy problem (5.1) with the initial condition
(56.2). We refer to the book of I.G. Petrovskii [15]. Setting P,=d,u
for i#=mn, we write the right-hand side of (5.1) with F(¥', p., -+, p,_.).
By differentiating the both sides of (5.1), we have

n—1

(5.1 35, u=3,0,,F0,,0,u .

If we set u,=u and ui=8_,,iu for 4, 1=<i=n, the Cauchy problems (5.1'),
(5.2) become
0y, Uy="U,

(5.1") <

n—1

auﬂun':z1 (aptF)(y': Uy *° un—-l)awun ’

i=
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(5.2") {uo(y’, 0)=u,¥’, 0)="---=u, (¥, 0)=0
| » un(y's 0)=F(y’7 0, * %y O) .

If (5.1”) and (5.2") are solvable, we easily see that u=wu, is a solution of
(5.1) and (56.2). By Cauchy-Kowalevski’s theorem there is a solution u of
(5.1”) and (5.2') such that « is analytic near O (cf., e.g., [15]), so that
we complete the proof. Q.E.D.

LEMMA 5.2. Let U be a neighborhood of O in R*. Let (v, +++, v,) €
[C(]*, and let (v, +++,v,)%0 in U. Then there are another mneigh-
borhood U’ of O and vector functions (ay,- - -, a,,) €[C*(U)]*, i=1,---,n—1,
such that (a,, +*-a,)#0, 2i_10,v,=0 tn U’ and >i-, ¢40;,=0 in U if
1#£73.

ProorF. In the following we often omit the phrase “in a neighborhood
of O”. Let us prove our lemma by induction on n.

Let n=2. Since (v,, v,)*0, we may assume that v,#0. It is enough
to take a,=1 and a,= —a,v,/v,. Next let us assume that our lemma is
correct. Then we shall prove it, when » is replaced with n-+1.

Without loss of generality we may suppose that (v,, -+, v,)¥0. From
our assumption there are vector functions (a,, ---, a;,) (#¥0)€[C°]*, 1=
1, .-+, n—1, which are orthogonal to each other and so to (v, ---, v,).
Thus » vector functions (v,, -+, v,) and (a,, **°, @), t=1, --+, »—1, are
linearly independent, which implies that

ay, L5
#0
[/ Q] °
7, Vp
We define @, ,,,=-++=a,_;,.,=0and @, ,+,=1. And we determine (a,," -,
a,,) by the system
Ay o Oy (1291 0
Ap1,1°°° Qpy,n . 0
(A ee Vn A —Vnt1

Then (@, * ) @y q41) i8 orthogonal to (v, ---, v,4,) and to (ag, **°, G ae)s
t=1, ---, n—1. Naturally (a,, ***, @, .+1) €E[C*]" and it does not vanish.
The lemma is proved. Q.E.D.

LEMMA 5.8. Let (v, *-+, v,) €[C(U)]", and let (v, -+, v,)#=0 in U,
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where U is a meighborhood of O wn R". Then there are another neigh-
borhood U’ of O and a vector function (u, ---, u,_,) €[C(U)]"* such that
St 0% v, =0, =1, «-+, n—1, and Vu,-Vu;=0, in U'. ’

ProOF. If v,=...=w, ,=0 particularly, it is enough to take u,=z,.

We consider the general case. By Lemma 5.2 there are n—1 unit
vector functions (a,, - .-, a;,) €[C*]" such that they are orthogonal to each
other and so to (v,, -+, v,). If weset (@, ", @)= %= Vi) (Vs * *, V),
then it is in [C“]* and the rPatrix (@) j=1 is orthogonal.

We write e,=(0, ---,0,1,0, --+, 0) and define
e£=ia“~e,- ’ ’l:'——-“'l, e,
=1

Then they4 are unit vector functions which are orthogonal to each other,
and we have

ei—-:jE:Ll a;.e; .
Denoting by o; the differentiation to the direction e;, we have
(@uf)(@) =lim h[f (@ +he) — f ()]
=§’,l @:5(0,;5)() ,
so that
g aif-e£=2‘ 0., € -
This implies that Vf.Vg is invariant by the above coordinate transfor-
mation. More precisely, writing V'f=(.f, *+-, o.f), we have
(5.3) a Vf-Vg=V'f-V'g .
For any‘xeR” there are functions a,(x), 1=1, . -, m, such that
m=; ac,e,———zt. ax)e; .
Clearly a,(x)eC”. If we set u;(&)=a;(x), then

ax)+h if j=1

U@ +he)= a;(x) if 7#1,

so that oju;=4d,;. Therefore, for 1=<:=<n-—1,
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% a,,,u,-v,,=§, (Xk‘, a,-,,v,,)a;-u,=2k‘, Ay, =0 .
Further from (5.3)
VU, -Vu;=V'u, - V'u;=06,; .
From the above, (u, ---, u,_,) is the required vector function. Q.E.D.

§6. Proof of Theorem 2.

Let us fix any point on S which may be assumed to be the origin.
We consider our problem in the neighborhood of O. Thus we often omit
the phrase “in a neighborhood of O”’. By Lemma 5.1 there is a function
p€C® with |Vg|=1 such that 2 and 02 are expressed with ¢>0 and
=0 in a neighborhood of O, respectively. By Lemma 5.3 there is a

vector function (u,, ---, u,_,) €[C*]*™* such that ,(0)=0, Vu,-Vg=0 and
Vut'vuj=3¢jo
For the above functions ¢, u, :--, ,_,, we consider the following
C”® mapping
sr=U,
w‘l : 51.—1:'“1.-1
a=0 .

It is clear that ¥, is a one-to-one C® mapping from a neighborhood of O
onto another one. The inverse ¥;! is also of class C® and the Jacobian
of ¥, is £1. Let us write z=(&, -+, &,) and &'=(&, -+-, £._). The image
of S lies on ¢£,=0, so that S is an (n—2)-dimensional C® manifold in the
g-space. In a neighborhood of O the ¢'-space is divided into two parts
and 0,2 is mapped into either of them.

Let us use again Lemmas 5.1 and 5.8, by replacing » with n—1. Then
there is a function ¥(¢’) € C® with |V.¢|=1 such that S and the image
7,(0,2) are expressed with +(¢')=0 and +(&')>0, respectively. Further
there are functions v,(¢’),: - -, v,_,(&") € C* such that v,(0)=0, Vv,- V=0 and
Vv,-Vv;=4,;. For these functions we consider the following C*® mapping

v,: Nns=Vp_s(&)
nn—l = "1’(5,)
vn = en *
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The composite mapping of ¥, and ¥, is written as follows:

N =w,(%)
wz°w1 . sescse

Na=w,(X) «

Then ¥,o¥, is a C” one-to-one mapping from a neighborhood of O onto
another one. The inverse (¥,o¥,)' is also of class C* and w,(0)=0,
Vw,-Vw;=4d,;. Further 2, 02, 3,2 and S are mapped into {1,>0}, {,=0},
{n.=0, 7,_,>0} and {7,=29,_,=0}, respectively. The Jacobian of ¥,-¥, is
+1. For any two functions f and g we have

(6'1) an'vvgzvzf'vzg .

Let o(x) and ¢(x) be the functions in Lemma 1.8 and Theorem 1, respec-
tively. Then it is easily seen that

coM=g(x)=c'o(n) , c>0,

in a neighborhood of O.

Hereafter let us regard the »-space newly as the z-space. And let
us write (%, -+, »,) with (x,,---, z,). We define 3,={x ¢ R*; |z|< A, 2,>0}.
Let R be any fixed sufficiently small positive number, and let R’ be any
fixed number with 0<R'<R. We write Y=Y, and Y =5.

By (1.1) the function space C%,(Y) is defined. We denote by V()
the completion of C%,(¥) with the norm in W*'?(3). Similarly V(') is
defined. The inner product in L*JY) is denoted by (,)s. We remember
that the Jacobian of ¥,o¥, is +1 and (6.1) is valid, so that the solution
of (0.3) satisfies

(6.2) (IVulr~*Vu, Vo)s+(lul*u, v):=(, v):, 2v€ V@),
where f e W4(Y) from the assumption of Theorem 2.

PROOF OF THEOREM 2. Let us take a function ¥ (x) € C3({|x| <R}) such
that ¥=1 in {jx|<(R+R')/2}. In (6.2) we can replace % with «wu, so
that we can assume that v € V(J) and ©=0 near |x|=R without loss of
generality. Let S,, T,, P, and Q, be the operators in Section 4. Let
v be a real number with 0<v<1, which may be chosen so close to 1.
Later we see that v depends on the number G, in Theorem 1. Let the
y-variable be connected with the z-variable by the mapping @, defined
in Section 4.

Hereafter let w=Q,u. Obviously T,u=0, if ¥,=0 and v,_,>0. And
0T,u € L*(X) by Theorem 1 and (4.5). Hence we see that w € V() similarly
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to the proof of Lemma 1.2. We note that w=0 near |x|=R. Let R”
be a number with 0<R"<R', and let us take a nonnegative function
e C{lxz|<R"}). Clearly Syw=0, if 2,=0 and z,_,>0. From Theorem 1
there is a positive number 6 such that p%S,0weL?(J), so that

P,(l*w) e V(') by Lemma 1.2 and (4.5).

For brevity we write (, )y simply with (,). We have from (6.2)

6.3) (IVul~*Vu, VP,(Cw))+(ul"w, PiCw)=(f, P(Cw)) .

First let us estimate the first term on the left-hand side of (6.3).

We rewrite

(6.4) (IVu|?~Vu, VP(Cw))
=(IVulr~Vu, P,V (Cw))+ (Vul*~*Vu, Fi(V(Ew))) .
By (4.5) we see that

(6.5) (Vul*Va, FyV@w))|
=c| | g vur-t@rivew)ds
+| JVe)@)| @)l Vup-de
=I,+1,, say.
It follows from (4.2) and (4.5) that

=0\ gt Tuvul-vwldy

gC[Szﬁ“"fCﬂ T, Vulr~'|Q, Vuldy + Lﬁm-w’cz] T,.Vul”dy] .

By Schwarz inequality
|, p e Tovulr-iQuvuldy
1/2 1/2
~A2(1—1/7) - 2 ’
=c(| eoomimvardy)” (| cimvur-igvuray)” .
Using Cauchy’s inequality, we have for any &¢>0
|70 Tuvul1@uvuldy

=e| CITvur-iQvurdy + ¢ g Tvurdy

where the constant C on the right-hand side depends on e.

Since
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P20 < Clai_, +22) ™7 in ¥, we have the following inequality by returning
to the original coordinate system:

S ﬁzu—-ur) ‘ T,,Vu["dy é CS 9¢2(1——1/7) |Vu|pdm
z
(by Theorem 1) =C(||f]l," .

From the above inequalities we obtain
©6) L=e| CITVulIQuvuldy+ (1) -

On the other hand by Holder’s inequality

1/p*

IzéC(SJQhu!”dy)w(Szﬁpm_lmIVul”d:x;)

Applying Lemma 4.2 and Theorem 1 to the right-hand side we have
L=C([[f ™ -
Combining (6.5), (6.6) with this inequality, we conclude that
(6.7) |(IVu[*2Vu, F.(V(w)))]
el CITvur-Quvurdy + (111,07 -

Next we estimate the first term on the right-hand side of (6.4). By
Lemma 4.1

(6.8) (|Vu|r~*Vu, P,V(Cw))
=(@u(IVu[**Vu), V(W) + (K, Tu(IVul*~*Vu), V(Z*w))
=(EQ(|Vu[*~*Vu), Q,Vu)+ (LQx( |Vu[?~*Vu), VQyu—QyVu)
+(@yu-VE, Qu(IVul*~*Vu)) + (C K, Tu(|Vu[*~*Vu), VQiu)
+ (K, Qyu -V, T(|Vu[r~tVu))

-_—‘i J,, say.
i=1
We have from (2.3)
Jize| CUTaVulr+Vul 9l @uVuldy .
By (2.5) and (4.5) - |

Jzécszczﬁ‘*f’TIThVul(lThVul*"2+Wul”‘z)lQhVuidy .
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Repeating the procedure in the proof of (6.6), we easily see that
nges SUTVUP =+ [ VulP =)@ Vulfdy + C(1| f ||

Similarly

Jo Jéss L UTVul™ +[Vu =)@ Vuldy + C(I| f [|»)**

More easily we have
Js=C(|| 1l -

From the above inequalities and (6.8) it follows that

(6.9) (= 38)| CUTaVal™+Vul)|Q,Vuldy
SVl Vu, PVEw)+C(If 1,0 .

Now let us estimate the second term on the left-hand side of (6.3).
From (0.5) and Lemma 4.1

(lu|*w, Py(Cw))
=(Qu(Jul*w), FQyu)+ (K, Ti(lu|*n), *Q\u)

= —CLCZT,.(Iul”")IQ;.uIdy .
By Holder’s inequality
1/p* 1/
| BtuiiQuidy=c(| julerorde)” ({1 @uirdy)” .
And by Sobolev’s imbedding theorem

(Ssl )0+ p‘dx)lluﬂ) p'§ C( LIVu]vdw)w ,

so that we have from (2.6) and Lemma 4.2 |
| T iQuuidy = ULl oo

Therefore it holds that
(6.10) (lul*u, PiCw))= —C(||f ||,y e+ee-2

Lastly we estimate the right-hand side of (6.3). Repeating the above
procedure, we see that
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(fy Pu(Cw))=(Quf, CQuu)+ (K, Tf, Q)
<O\ lwo( || Vulrdz)”
éC(”f”l,p')p. .

Let us combine (6.3), (6.4), (6.7), (6.9), (6.10) with this inequality. Further
let us put ¢=¢,/5. Then it follows that

o J STl [Vul)Quvurdy
S CLUS 1w, p)? + (| £ o) +22=0]

Clearly {(x)*<C((y)*+h*) and h|P,Vu|<|S,Vu|+|Vu|. In the same manner
as the above we have thus '

] IS Vule=+ [Vl P,y ubde < UL 07
From this inequality and (6.11) we finally conclude that
(6.12) Lz;ms,,vm»*-;- IVul*=?)|P,Vulde<CA ,

where CA is the right-hand side of (6.11).
By (2.5) we have

|PulVul*?| = C(IS,Vu| =27+ |Vu|»~27)| P, Vul ,

so that it follows from (6.12) that
(6.13) | Sczlp,,wuw;zdngA.
z

From this there are a funection veL¥X) and a sequence {h,} with h,—0
(v— =) such that

(6.14) CP, |Vu[*?—v in L*J) .
By Lemma 4.1
CP,,|IVul?2, @)= (IVul?”, Qo)+ (K, T, (Cp), [Vulr) ,
peCr(2) .

Since K,— —d,,_,0 as h—0, we have from Lemma 4.3



464 KAZUYA HAYASIDA AND YASUHIKO KAWAI

CP | Vul”, @)
——(Vul*?, §9,,_,CP)—0.,_,0-Cp, |Vul*™)
= —(|Vul” 3.,._1(PC¢))

Combining this with (6.14), we have v={@o, _ |Vu[*". From (6.13) and
(6.14) it holds that :

(6.15) Lc* 3., IIVul”’)’deCA
Now we define for any function v -

(6-16) { “)(m) ’v(xl’ ** %y x{-—l, w‘+h, x,‘+1, ey, xu)

(DFv)()=h"(vi¥ (2) — v(x)) .

By replacing P, with D for 1si=n—2, we repeat the above procedure.
Then we can obtain :

6.17) | ,c@.vurrae<ca .
Further we define for ¢>0
0 if t<e
(f)= ]
20 {t—e if t=¢ .

In the above arguments we replace P, and {* by D{’ and x.(x,)¢(x)’,
respectively. Then we can obtain the following inequality in place of
(6.15):
| £ @>C@,, | Vulryd<CA .
If we take ¢—0, this inequality becomes
6.18) Lxﬁ(*(a,ﬂqul"”)*dngA .
Let 6-V be a C' vector field in 5, which is tangent to {x,=0}.

Writing 8=(6,, -, 6.), we have |0,(x)|<Cx,. From (6.15), (6.17) and (6.18)
we obtain

6.19) | chzﬁ’((a-V)IVuI"’z)zdx§CA .

Let 1<s<2. By Holder’s inequality
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(6.20) SZC'](B-V)WuIWzI'dx

~ (2—8)/2 ~, ’ 8/2
< (Szp—zo/(z—-:)dx) (Szczpz((a . V)quI"/z)de)
If s is close to 1, it holds that )
6.21) Szﬁ‘”/‘2“"dx< o |

Indeed setting t=s/(2—s) and z=xz,_ /2., we ha\}e (
Sl dwn—i éx (1—2t)§ dz ;-
o (h_, + o) 0 (z +1)’
where we note that ¥<1. Thus if ¢ is close to 1, namely, s is so, we get

Acwe- il

which yields (6.21). Combining (6.19), (6.20) with (6.21), we finally conclude
that

(6.22) SEC'I(eoV)[Vul"“l’dacéCA”z )

0

More easily we can 7prove (6.22) in a neighborhood of each point of
2—8. Letus put d=s—1. Returning to the original coordinate system
and using (6.22), we complete the proof of Theorem 2. Q.E.D.

§7. Proof of Theorem 3.

Since [04'°|<Cg~%, by Theorem 1 94 °|Vu|*~* e L**(2) for sufﬁclently
small 4. Thus it is enough to prove the inequality

(7.1) 16201V Ul | S CLILF flu o+ (L 150) =72 4 ([ £ 0) 72

PrROOF OF (7.1). Let { and I be the same ones as in the proof of
Theorem 2. We return to the procedure in the proof of Theorem 2. Let

o= p(x)=(a;_,+;)"*. Since |
| PuVu [P~ S C(S,[Vu P72 + [Vu [*7%)| P, Vu|
and p*/2+(p—2)/(2(p—1))=1, we have by Holder’s inequality

SZ(CP“"IP,LIVu}P—q)p'dxé(S p—zpa/(p—z)ls Vulrde

S p—zpa/(p—z)lvu|pdw>(p 2)/(2(? m(s C2(|S;,V?lzlp_2+lvulp 2)|P,.Vu|”dw)
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Hence it follows from Theorem 1 and (6.12) that

7.2) | o iPavurpds

éC[(”f”l’po)"—l—(||f||,.)(2+“)/(’_1)] ’

where we have used the inequality p(y)<Cp(x)’. We write again with
CA the right-hand side of (7.2). Repeating the same argument as in the
previous section and noting that p<Cp, we obtain from (7.2)

(7.3) | ¢o%o., _vul-prds=ca .
Next let D be the operator in (6.16). Since from (2.5)

(7.4) DY |Vulr | S C(IVulr~+ [Vuf ") VDul

we get the following inequality more easily than (7.2):
| @pevurrassca,  1sisa-2,

so that
(7.5) L(Cl&,,lVﬁl"‘l)"dwéCA , =1 e, m—2.

We estimate finally the integral

| [, @0 vup s
Let D be a subdomain of ¥ with DcX. First let us prove that
(7.6) SD(I |VuP|?—*—|Vul*~?| | Do, ul)**de—0 , as h—0, 1<i<n.

Let £ be a number such that 0<s£=min(p—2, 1). We take £ so that it
is close to 0, if necessary. We have from (2.5)

| Va2~ — (Va1 S CUVa P+ [Vul ) [Vl —w)l .

Let ¢ be a number such that p*/2+kp*/p+1/g=1. By Holder’s inequality
[ [(vug =+ [val ) v @ —w) 1D, ] de
éC(S lvu,(‘n)l(p—z—zt)p‘qlzdm_*_s lvul(p—z—zdp'qﬂdw)lm
D D

. (SDW(u,‘:') -u)|’dx)'p./p(SD(IVu§."’ |p—2 4 IV14,|»—=)|D,‘.")a,,,;u,l*dx)p‘/2
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Since (p—2—2k)p*q=2p, we have the following inequality by using (2.6)
and (2.7):

[, Q1w == (vule= D, 7 de

£p*/p

=ct, D v —wirde)™

where the constant C(f, D) depends on both f and D. Therefore (7.6)
has been proved.
Now we easily see that

D (|Vulr~%0, u)=|Vu D3, u
+(®»—2)0, u- SlltVuﬁf’ +A—=t)VulrEtVu® +1A —t)Vu) - VD™ udt .
0

We define F, as follows:
DE(IValr8,,u)=|Vul? D3, U+ (0 —2)3,,u- |Vul*~*Vu- VD u+ F, .

If we repeat the arguments in the proof of Proposition 2.2, similarly to
(7.6) we see that F,—0 in L**(D) as h—0. From the above equality,

IVu|?~*|Di"d,,ul = C(ID" (IVul?~%0, u)| +|Vul*~ g |DiR0,ul+|Fy)

From this and (7.4) we have
@n | €oippvuprrde=d] | oD v, wl s

+5 | @ovuriDpa, wyrda+ | o iFda

+| @0l [Vugp =t~ |Vul| D Vul)da |

Now from Proposition 2.2 there are two functions v,, v, € L§(D) such
that

Vul*—*Di»v6, u—wv, ,
|Vul?P—?D{"o, _u— v, in L*(D) .

And from (6.12) there is a function w € L**(D) such that
|Vu|?~2P, 0, % — w in L**(D) .

We prove that gv,=pv,=w in D. Since |Vu|p € L?(D) for any ¢ € C3(D),
it holds that
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(Py,0.,%, |Vu|?"'@)— (w, |Vulp) .
On the other hand

(Pyo.,u, |Vul|>"'p)

= (a:l”Pku; |Vu["“<p) —_ (aznﬁ. S,0 u, |Vu]”_l¢) )

Fa—1

Hence it follows from Lemma 4.3 and the remark continuing from
Proposition 2.1 that

(Pade, %, [Vul|”~'p)
= (B 32, (|VU*P)) — @y, 5+0s,_ 2, [Val'0)
= — 9z, %s 05, (O|VU[" D)) .
Obviously

(ODid,,_u, |Vul*~'p)
> (an,,_.lui azn(ﬁlvulp—l¢)) .

Therefore |Vu|pv,=|Vulw in D, which implies that pA(x)v,(x)=w(x) if
[Vu(x)|#0. Naturally v,(x)=w(x)=0 if |Vu(x)|=0. Accordingly pv,=w in
D. More easily we can prove that v,=v, in D.

Let us denote », and v, by |Vu|*~%, _0, u. Then from the argument
in the beginning of this section we have

SD(CP‘“‘qul”‘*la,n_la,nu[)"dxéCA .
More easily we see that
| €oivurp, 0. urdesca
where :<n—2. Hence it follows from (7.6) and (7.7) that
|, @ tu,Ivur=)rds
=cl a+{ @o=o.,(vur—a,wirds ] -

On the other hand from (6.2)
10, (IVul*~*3,, u)|
n—1
=C(f1+lul ™+ 35 10, (VU0 w))) -

Therefore
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SD(CPI"’laxnl"ul”‘l!)”*dwéC[A+(Hullu+a>p-)“+a>r*] :

By Sobolev’s imbedding theorem and (2.6), (J|u|larae) ™ "=
C(|| fll o) raee=0_ Accordingly we finally obtain

| €omo. ivur—prasscra+disi, et ey,

By taking D— Y and taking a partition of unity on 2, we complete the
proof of (7.1). Thus the proof of Theorem 3 is finished. Q.E.D.
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