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Introduction

The existence and uniqueness of solutions to Skorohod’s equation for
a multi-dimensional domain were discussed by Lions and Sznitman [6] and
Saisho [9]. In this paper we prove that a reflecting Brownian motion X
obtained by solving Skorohod’s equation for a domain D in R? is symmetric
in the sense that S thgdx=SgT, fdx holds for any L*-functions fand g on
D, where T, is the semigroup of X. The proof is based on the construe-
tion of X by the penalty method, that is, we prove the above result by
showing that X can be approximated by symmetric diffusions (with re-
spect to the invariant measures) which are described by stochastic differ-
ential equations with smooth drift coefficients of gradient type. The
penalty method was used for the study of reflecting diffusions by Lions,
Menaldi and Sznitman [5], Menaldi [7] and Menaldi and Robin [8]. Our
method is similar to theirs but our approximation result (Theorem 2) is
given in a pathwise formulation and improves some results of [6].

§1. Formulation of the problem and the result.

We denote by B(x, r) the open ball in R? with center # and radius
r and write (-, -> for the usual inner product in R?. Let D be a domain
in R? and let x €8D. Denote by RN,, the set of unit vectors n in R? such
that B(x—rn, rYND=g and by 9N, the union of N, , as r runs over all
positive numbers. An element of M, is called an inward normal vector
at «. :

Following Lions and Sznitman [6] we introduce conditions for D.

CONDITION (A). There exists a constant »,>0 such that R,=N,, #
for any x€odD.
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ConDITION (B). There exist constants 6>0 and B¢€[l, ) with the
following property: for any x €9D there exists a unit vector I, such that

{,, ) g—;- for any ne u =xN,.

Vv€B(2,3)NaD

We can prove that the following two conditions for a unit vector n
are equivalent (see [6: Remark 1.2]).

1.1) ne®,,,

1.2) {y—=, n>+§17-—|y—x]2go for any yeD.

Suppose we are given a domain D in R® satisfying Conditions (A)
and (B). It is then easy to see that there exists a unique Ze D such
that |x—Z|=dist(x, D) for any x € R? with dist(x, D)<r, and ZE—x)/|x—x| e

N; if x¢ D. The notation % is used in this sense throughout the paper.
For an R‘-valued continuous function ¢ with bounded variation we denote
by |¢} the total variation of ¢ on [0, t], i.e.,

[¢).=sup gl |¢(t) — d(tu_)| ,

where the supremum is taken over all partitions 0=¢,<t,<...-<t,=t. We
also set |sk=|sl.—|gl,, 0=s<t.

Given an R‘-valued continuous function w on [0, ) with w(0)e D,
we consider

(1.3) g =w®)+¢@®), t=0.

The problem is to find a pair of £(¢) and 4(¢) satisfying (1.8) together with
the following two conditions:

1.4) &(t) is D-valued and continuous,

(1.5) #(t) is an R%-valued continuous function with bounded variation
on each finite interval such that ¢(0)=0 and

#(t) = S:n(S)dlséI. ,

Iok={ Loo(ee)dlgl

where
n(s) e N, if &(s)eoD .
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When we speak of the equation (1.8) we always consider it under the
conditions (1.4) and (1.5). The equation (1.3) is called Skorohod’s equation
for D. By the results of [8] and [9] there exists a unique solution of (1.3).

We now replace w(t) in (1.83) by a d-dimensional Brownian motion
B(t) (B(0)=0), i.e., consider

(1.6) X(t)=a+B(t)+o(t)

where x € D is given. Of course, (1.6) should be solved under additional
conditions similar to (1.4) and (1.5). It is easy to see that the solution
X(t) of (1.6) is adapted to the filtration generated by the Brownian motion
B(t) and that it gives rise to a diffusion process (reflecting Brownian
motion) X on D. Denote by 7T, the semigroup of the diffusion X. Then
we have the following theorem.

THEOREM 1. X 1s symmetric in the sense that
) | nserdes| ferds, vie (D),

@ | f@T@ds=| g@)Tfwde, vf, geLxD),

where L*D) is the space of real L’-functions on D. In particular, the
Lebesgue measure on D is an invariant measure for X.

The proof of this theorem is given in §7.

§2. Some lemmas.

Given a domain D satisfying Conditions (A) and (B), we are going to
construct a function U(z), « € R*, with the following properties:

(7) UeCY(R"), Uz0,

(22) U)=|c—z> if dist(x, D)=<r,/2
(r, is the constant appearing in Condition (A)),

(277) VU is bounded and Lipschitz continuous.
For ¢>0 we denote by D, the ¢ neighborhood of D, and for x € D,  set
u(x)=x—=z| , U@x)=|lx—% .
LEMMA 2.1. For 0<e<r,, there is a constant £k=k(e)>0 such that

2.1) Z—yl=klx—y| of le—% ly—7I<e.
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Proor. If x=Z% and y=Yy the assertion is clear and we may suppose
that z#%. Let

and 6 be the angle between two vectors x—z and y—z, i.e.,

cos0=< r—z Y=z \,
le—2| " |y -2

First we assume |[x—y|<7,—e. Then #=<7/3. Since Condition (A) implies
Yy € B(z, r)°’N B(y, |T—y|), we easily have

| —y|=4rsin(6/2) ,
le—¥|=(r,—e)sin @ ,

and hence (2.1) holds for z, ¥y with x—y|<r,—e. If |xr—y|>7r,—e, then
|Z—Y|=|x—y|+2¢ from which (2.1) follows.

LEMMA 2.2. (i) weCYD,\D) and

Vu(x) = lz:; .

(i) U,eC'(D,) and VU/(x)=2(x—%).

Proor. (ii) follows immediately from (i) so we prove only (i). Let
x € R* with 0<dist(z, D)<r, and set

z=x+hv,
P o
(k) =
0,(h) = 'z“ﬂ;'“—z' . 0%heR

for ve R* with |v|=1. Then we can show that
min(0,(h), 6,(h)) < EE=E <max(o,(h), o)} .

lim 6,(k) =lim 6,(h) = E=F 2>

A0 A0 [x—:i[

which proves
Vule)=2=%_.
le—Z|
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LEMMA 2.3. There exists a function Ulx), x € R%, satisfying the con-
ditions (3), (11) and (i17).

ProoOF. Choose a non-negative C’-function o(t) on [0, «) such that

t | for 0=t=(r,/2)?,
0(t)={suitably defined for (r,/2)°<t<(87,/4)*,
const. for @r,/4): st ,
and then put
Vo) = {p( U),  weD,,
const., otherwise,

where const. is the same as one in the definition of o(t). Then U(x)
satisfies (2), (42) and (¢17).

§3. Penalty method.

Given an R®-valued continuous function w on [0, ) with w(0)=0 and
z,€D, m=1, we denote by &,(t) the solution of

(3.1) 60 =wa+wt)— 2| VUGE)ds ,
where U is a function of Lemma 2.3, and put
t
5u(t) = =2\ VUCu(e))ds -

We also denote by £(¢) the solution of the following Skorohod’s equation
for D:
(3.2) E@)=z+w(t)+4(t) .

THEOREM 2. Assume that the domain D satisfies Conditions (A) and
(B) and that z,—x as m—oco. Then ¢, converges to the solution & of
(3.2) as m— « uniformly on each finite t-interval.

The following three sections are devoted to the proof of this theorem.

§4. Convergence of dist(¢.(t), D).

In this section we prove the following proposition which is uséd in
§5. We denote by 4, ,(w) the modulus of uniform continuity of w, that is,
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Ay, (w)=supf{|lw(t,) —w(t)| : 0=¢, <8, =8, |t,—t,|<h} .

PROPOSITION 4.1. Let T be any positive fired time. Suppose z,—
xeD as m— o« and &, s the solution of (8.1). Then for any <€ (0, r,),
there exists a positive integer M= M(e) such that &,(t) e D,, 0=t=T,Vm=M,
where r, is the constant in Condition (A).

To prove the proposition, we prepare the following lemma.

LEMMA 4.1. For any x€dD, with 0<e=r,/2, consider the equation
(4.1) n(t):x—_;_yv UnGes)ds, ¢=20.
0

Then (4.1) can be solved uniquely and the solution 7(t) satisfies
4.2) N(t)=2— (X —x)exp(—1) ,
(4.3) [7()—n(t)|=¢ exp(—t) .

ProoF. It is easy to see that (4.2) satisfies the equation (4.1) and
the uniqueness of solutions of (4.1) follows from the Lipschitz continuity

of VU. (4.3) is immediate from the fact 7({t)=%, t=0 and (4.2). The
proof is finished.

Since the equation (3.1) for 0<t<T can be written as
m t/m
alt/m) =2 +w(t/m)— 2| "V Ulea(s))ds
t
=+ 10(t/m)——| VUGAs/m)ds , 0St=mT,
0
the equation (8.1) for 0<t<T is equivalent to the following equation
4.4) Eu(t)=an+B(O)—L| VUE)ds , 0st=mT,

where
E.t)=2.t/m),  @E)=wt/m).

LEMMA 4.2. Suppose that 0<e<7r,/2 and x, € D,,. Then there exists
a positive integer M, for which the following holds. For any u in (0, mT)
such that &, (u) €dD,,, {E.(t+u), 0t=<mT—u} hits aD,, before it hits oD,
provided that m=M,.

PrOOF. Now we suppose that there exists a time v (0<u<mT) such
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that &,(u) €6D,,, and consider the following equation:
(4.5) 2 =Eulw) =\ VUeDds ,  tzu.
By Lemma 4.1 we have
N(t) =& n(u) — {En(u) —En(u)lexp{— (¢t —u)} ,
7@ — ()] =Zexp{—(t—w)}

and therefore, if we set
w =inf{t>u : (t) €4D,,} ,

we have u'=u-+log2. On the other hand, if u<t=<mT we have

Ea(t) = 7(0)=(8) = () —-2| (V UEn(s) —V Utn(s)}ds ,

(4.6) En®— 2O I0@) — B+ L| [Eas)—(6)lds |

where L is one half of the Lipschitz constant of VU. If we set M'=
[w'/T]+1, then w'SmT (m=M") and for u=t=<u’

|@(t) — W(w)| = |w(t/m)—w(u/m)]|
édo,T,l/'m(w) ’

which tends to 0 as m goes to oo because of the continuity of w. Thus,
if we take m=M" so large that

Ao, 71 /m(W) <~ exp(—L) ,

12
(4.6) and Gronwall’s lemma yield
4.7) lé“,,.(t)——n(t)l<—1‘32-exp<—-L>-exp{L<t-u>}
e ’
<—ﬁ— , ustsu .
Therefore,
(4.8) |En(®) — En(®)| < @) — 7(®)| + [(t) — En(D))|
& 15
<21z

<e, ustsu' .
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On the other hand, we have

(4.9) |En(') — & w(u")| = 7)) — ()| + p(u") — Enlw)]
€, € _&

Thus, {.(t), u<t=<mT} hits oD,, before it hits oD,. The proof of the
lemma is finished.

Proposition 4.1 can be proved as follows. Define M=M(c) by M=
max(M,, M,), where M, is the constant in Lemma 4.2 and

M,=max{m=1: dist(x,, D)=¢/2}

and suppose that there exists a time 7 € [0, m T such that {£,.(t), 0=t=mT}
hits oD, at the time 7z for some m>M. Then there is a time u <7 such

that &,(u) € 3D,,, and &,(t) € D\ D,,,, u<t<t, which contradicts Lemma 4.2.
§5. Estimates of |9,[:.

The purpose of this section is to prove the following proposition.
We use the notation

An,t(w)=sup{lw(t2)—"w(tl)‘ (8=t <t <t} .
By Proposition 4.1, for 0<e<r, there is a positive M=M(e) such that
&= sup dist(¢.(t), D)<e, vm=M .
[F4+94
In what follows let 0<e<min(8/2, r,/2) and m=M(e), where § is the con-
stant in Condition (B).

PROPOSITION 5.1. Suppose that D satisfies Conditions (A) and (B).
Then for sufficiently large m we have

(5.1) I¢-k=K{4, (w)+e.}, 0=s<t=T,

where K>0 is a constant depending only on the constants r,, 8, 6 i1n Con-
ditions (A) and (B), T and {4, r:,(w):0<h<T}.

Set

T,.,=inf{t=0:¢,(t) €oD},
tm,n=inf{t> Tm.n—l . |Em(t) —Eﬂ( Tu:,n—l)l 25/2} 14
T, =inf{t 2t . : Eat) € 3D} .
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To prove the proposition, we prepare three lemmas.
LEMMA 5.1. If Ty, <s<t=<T,., we have
(5.2) |9l = B{4,,:(8m) + 4, (W)} ,
where B is the constant appearing in Condition (B).
PROOF. Since ¢,<7,/2, we have
VUGE®)=2{ent)—E.)} , O0=t=T.
Thus, if we set

l = lem(Tmm-—l) 4

_ {{éfm(u)—&m(u)}/ Enw)—E.w) , En(w)eD,
n—né_m(i):: 0 R
, otherwise ,
we have {, n)=1/8, u€[T, .1y Tn,.] provided that n+=0 and hence
lEm() —En( =, En(t) —&m(8))

=t wt)—w(®) +(1, m| a(0) ~Fl0) Indu)

Z (L, wit)~w()+87m| ea(w)—Ea@du
=< w@)—w(s) +B7gnk -
Thus we obtain (5.2).

LEMMA 5.2. For any 6>0, we have

427

(5°3) As,t(sm)é{(l+0_l)ds,t(w)+0l¢mn+26m6—l}exp(ﬂ¢mu) ’ 0§3<t§ T ’

where Y=k*2r, and & 1s the constant in Lemma 2.1.

PrROOF. As in the proof of Lemma 2.8 (ii) of [9], we easily have‘

|En(8) = Em(8)[*= [ (t) —w(s)|*
2| (Galt) —2a(5), dpuu)) +2{ WO —w(w), dpaw) -

Using the same n as in the proof of Lemma 5.1, we have
, , ‘
|| <nt)—a(o), dn)d = CGuu)—£u(o), Wl -

By (1.2) and Lemma 2.1, we have
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<Em(u) - 5m(3): n>

= <$m(u) —ET@, n> + <§m(u) _Em(u)’ n> + <é:(8—)—$,(8), n>

é <€n(u) _—é:@’ n> + 261»

gz—l—le',._<u)—s,.‘*<s)|2+2em
To

ézf-le,,.(u)—em(s)l2+28m .
7o

Thus
lsm(t) - en(s) |2
< ) —w@F+E | (etw)— (o) Pdlgak

+edgabi+2] Cwt) —ww), dga(w))
= 42 (w)+{den+24, (w)llgnk
+ 275: l&m(u) —em(s)lzdlg'sm's .

Therefore, by Gronwall’s inequality we have

lEu(t) _em(s)lz
s[4, (w)+{4en+24, (W)l duflexp@Y]é.L)

é[df,g('u)) + {2¢,, +;..t(w)}2 + 02(l¢mn)2:|eXp(27|¢mI:) ,

from which (5.3) follows.

LEMMA 5.3. If T,,,...=s<t=T,,., we have
(5.4) 4, EDS K, (w)+en)
where

K,=8B exp{47B(||lw||r+8)}+1 ,
lw||;=sup{lw®)| : 0=t=T} .

Proor. | By (6.2) and (5.3) we have

4,(&n)
é {(1 + 0_1 + Ba)Aa,t(w) + Bodl,t(gm) + 269»0_1}
° exD['YB{As,t(w) + As,t(&m)}] ’ Tm,n-—l g 8 < t é Tm,n .

Since
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4,6 S2(ent2) <2, TapsS5<tStnn s

we have
N={1+67"+B0)4,,(w)+ BoN+2¢,67%}
- exp{278(||lw|[z+8)} , Top1=8<t<tm.,

where =4, ,(¢,). Thus, if we set

6=2R)"" exp{—27A(llwll-+0)} ,
r=exp{278(||w||z+0)} ,

then
1
véz{(l +280 +2—>“->A,,t(w) +4,87\.-8,,,}7u
=88\ {4, (w)+en} ,
that is,
(5°5) Aa,t(&m)éK"{As,t(w)_l_em} ’ sr t e [Tm,n—lr t'm,n] ’

429

where K" =843 exp{487(|lwll;+8)}. Since 4, (&n)=4, (W) if 8, ¢ €[tnns T,a)s

we have for T, ,  <s=t, .<t<T,.

As,t(Em) é As,tm,n(ém) + Atm,n,t(flm)
=K"{4,,., (W) +e.}+ 4., . (w)
é (K’, + 1){As,t(w) + em} ’

which combined with (5.5) proves (5.4).
ProoOF oF ProposiTION 5.1. By (5.2) and (5.4) we have

(5.6) I8uli=B{(K,+1)4,,(w) + Ken}
éK,{As,t(w)—i—sm} ’ Tm,n—-1§8<t§ Tm,n H

where K'=gQ(K,+1). Since
lsm(tm,n) —Em( Tm,n—l){ g |Em(t‘m,n) _Em( Tm,n—l)l ""'28.,,,

='—'—25m ’

we have from (5.4)

-g— - 26,,, é lsm(t‘m,n) - E'm( Tm,"—1)|

SK'{drp o yitm (W) +Em}
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and hence, if we set 4,=(—4s,)/(2K")—¢,, then
(6.7 Adu=Sdppy o srtm(W)

On the other hand it is clear that lim,.. 4,>0 and hence there exist
m,=1 and 4>0 such that 4,=4 for vm=m, Thus (5.7) implies

(5.8 Aédr,.m_l,t,.,,,(w) ’ vm=m, .

Since w is continuous, there exists 2>0 such that 4, ., ,(w)<d4. Therefore,
Tw.=T implies T, ,—Tp ,.,=h. In fact, if T,— T, ...<h, then

A'-"m,n—l»tm,n(w) = ATm,n—-erm.n(w)
=dpra(w)<d,

which contradicts (56.8). Thus if m=m, T,.,>T for n>T/h and (5.6)
implies
T ’
Ipati (1)K (4, @)+ e
=K{4, (w)+en}
with K=(T/h+1)K’, as was to be proved.

§6. Convergence of £, to &.

In this section we prove Theorem 2. Before proving the theorem,
we prepare two lemmas.

LEMMA 6.1. For sufficiently large m, n (m<n), we have
K2 . '
= {5 lEn® —EOF + 2eafgub gl ,

where k£ 18 the constant im Lemma 2.1.
ProoOF. It is easy to see that

(Em(t)—&.(1), dgu(t)) = (&n(t)—£.(0), R)d|Sul: ,

where n is defined as in the proof of Lemma 5.1 with replacement of
by t. Since &,(t), &.(t)eD,, for large m, n (m<n) by Proposition 4.1,
using (1.2) and Lemma 2.1 we have

{Em(t) —£a(E), B) S Ea(t) —£.(E), ) +2¢,
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2 Enl)— &)+ 26,
5"—|sm<t> () +2e, .
Therefore,
(6.2) CEm(t) —£.(2), depn(t))
K 2
= (oo len® — &1 + 25, digal, -
Similarly we have
(6.3) CEn(t) —£n(t), do, (1))
K 2
={£ OF +26n} dlguls -

Combining (6.2) and (6.3), we have (6.1). The proof is finished.

LemMmMA 6.2. ¢,, ¢, converge uniformly in t €[0, T] as m— o for any
T (0<T< ).

PROOF. By Lemma 6.1 we have for sufficiently large m, n (m<n),
(Em(l) —&4(8), dgn(t)—dp,(t))
K’ . .
S (g 6O — & (O0F + 26} (gl -+l
On the other hand, we have

(6.4) |8m() — &) = | — 2, "+ |$(8) — (D)2
2T — Ly Pmt) —a(E))

= on =l +2{ (5(8) —5.(5), dpn(s) — ()
+2| @a—,, dpu(s)— dp.(6))
= o=l +2 (us)—£.(5), dpn(s)—dp(5)>

t ,C2
=z —x,,lz-i—zs
027,

+4¢,. (ol +|¢nlt) .

By Proposition 5.1 and Gronwall’s lemma, (6.4) implies that &,(f) con-
verges uniformly in te[0, T] as m— o. Therefore, if we denote the
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limit by & and setting
o) =¢&t)—x—w(t) ,

we have that ¢,(t) converges to ¢(¢) uniformly in ¢ &[0, T'] as m tends to
co. The proof is finished.

PROOF OF THEOREM 2. By Lemma 6.2, (¢,., ¢.) converges to (& ¢) as
m—  and hence it is enough to show that (&, ¢) satisfies the Skorohod
equation (1.3). But this can be done, by a method similar to that of the
proof of Theorem 4.1 of [9], by checking

(6.5) Isk=| 1¢s) e aD)dlgl.
(6.6) s)=nEdsl ,  n(s)eRew, ) 0D

§7. Proof of Theorem 1.

Let D satisfy Conditions (A) and (B) as before and let (2, .5, P) be
a probability space, X(0)e D be an .#;-measurable random variable and
B(t) be a d-dimensional .&;-Brownian motion with B(0)=0, where { <.} is
a filtration such that &, contains all P-negligible sets and &= N,>, F74e-
We adopt the following notation:

Cy(R?) (resp. Cy(D)) _
= the space of continuous functions in R¢ (resp. on D) with

compact supports,
C(R?*) = the space of continuous functions in R? vanishing at infinity.

LEMMA 7.1. Let VeC'(R? and suppose that VV s bounded and
Lipschitz continuous. Denote by T{ the semigroup of the diffusion proc-
ess in R? obtained by solving the stochastic differential equation

(7.1) dX(t)=dB(t) —%v V(X(t))dt .

Then
(i) Nrefi=rll, , vfe L),
(i) (Tif, 99.=(f, TY9). , VYf,9€L(),

where dy=exp{— V}dx and |-|,, £, *), are the L*-norm and L*-inner
product, respectively, in the space L*(v).
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PROOF. A more general result containing this lemma is found in
Fukushima and Stroock [4], but we give a proof here because it is par-
ticularly simple in the present special case. We first notice that T? is
a strongly continuous semigroup on C’(Rd) ([1: Theorem 5.11]). Denote
by A=A, the generator of the strongly continuous semigroup and by
L=Ly, the differential operator (1/2)A—(1/2)VV-V. Then Theorem 1.6 of
[2: Chap. 8] (see also its proof) (L, C}(R?%) is a core for A. Also it is
easy to check (Lf, g),=(f, Lg), for any f, g e C}(R*. Therefore

(7.2) CAS, gh.=(f, Ag). ,  Vf,ge=2(4)

provided that y(R?)<c. Now the proof of the lemma is divided into
two cases.
Case 1. y(R%) <. In this case (7.2) implies

(7.3) Cu, V= A)vh, =(Ov—A)u, v),

for any u=(—A4)"f and v=(—A4)"'¢g with f, g C(R?) and A>0. But
(7.3) is nothing but {(A—A4)7Y; g).=(f, W—A4)'g),, i.e.,

(oo o), ({5 §vrsoa)

from which (ii) follows for f, g ¢ C(R?) and then for f, ge L*(v). Setting
9=1 in (ii) we see that v is invariant under 77 from which (i) follows
after an application of the Schwarz inequality.

Case 2. y(R%)=-co. In this case we approximate V by V, for which
the result of Case 1 can be applied: Choose a function X, € C¥([0, =)
such that

1 for 0=Zax<n,
X, (t)={between 0 and 1 for n<z<n+1,
0 for n+1=2,

and set

V(@)= V(@)X (jo]) + {1 — X ()} |2 ,
v, (dx)=exp{— V, }dx .

Then V,e C'(R%), VV, is bounded and Lipschitz continuous and v,(R?)< co.
Therefore the result of Case 1 implies

(7.4) 1T fl,=If N, » VFeLi(v,),
(7'5) «Tf”f; g»vn:«f; :,”g»un ’ .f’ g € Lz(vn) .
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On the other hand we easily see that Ty»f— T7f (bounded convergence)
as n— oo for any fe C(R") Therefore, letting n tend to « in (7.4) with
f eCy(R? and using Fatou’s inequality, we obtain (i) first for feC(R?)
and then for fe L¥v). (ii) can also be derived from (7.5) by the same
approximation method. The proof is finished.

PrROOF OF THEOREM 1. Let X, be the diffusion process determined by
(7.6) dX(t):dB(t)—ﬂ‘Z-v U(X(t))dt

and denote by T(™ the corresponding semigroup. Let g, (x)=exp{—m U(x)}
and g, (dx)= p,,,(x)dx Then by Lemma 7.1, we have

(7.7) ITE flom SISl » V€ LH(2t) -
(7.8) CT™F, Dum =S Te"Dp » o 9 € L)

If we write the solution of (1.6) (resp. (7.6) with X(0)=x) by X(¢, x)
(resp. X.(t, x)), then Theorem 2 implies that X, (¢, x)— X(¢, «) as m— oo
(x € D) and (7.8) yields

(7.9) [, FU(Xat, D@ ptn(a)da
=| f@FlXat, )@l f 9 CURY .

Therefore noting that #.(x)=1 on D and f,(x)—0 in R*\D, and using
Lebesgue’s dominated convergence theorem, we have for f, g € C,(R%)

[ BLA (X, o)lote)dn= | fa)Blo(X(t, w)lde

Since any function in C,(D) can be extended to a function in C.(R% by
Tietze’s theorem, we have

(7.10) (T.f, 9y=(F, T9) ., f,9¢C(D).

Choosing a sequence {g,} in Cy(D) such that 0=g.T1 on D as ntoo, we
see that (T.f, 1)=(f, 1), feC(D), and this means that the Lebesgue
measure on D is invariant for the diffusion X. (i) follows from this fact.
Since C,(D) is dense in L* D), (ii) follows from (7.10). The proof is finished.

REMARK. 7.1. Under Condition (A) the Lebesgue measure of 9D is
zero, because '



for

[5]

[6]
[7]
[8]
[9]
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im the Lebesgue measure of B(x, ) NoD
clo the Lebesgue measure of B(x, ¢)

each z e€oD.

<1
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