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§1. Background of the problem.

Let s=o0+14t be a complex variable, and {(s) the Riemann zeta-func-
tion. Bohr-Jessen [1] [2] discussed the value-distribution of Z(s) on the
line 6=0, (>1/2), and proved the following result:

Let R be any closed rectangle in the complex plane with the edges
parallel to the axes, and L(T) the measure of the set

{t €[0, T1|log {(o,+1t) e R} .

Then, there exists the limit W=1lim(L(T)/T) as T tends to infinity,
which depends only on ¢, and R. (In case 1/2<o,<1, caused by the
possibility of the existence of the zeros of {(s), there must be a slight
modification.)

For proving this result, Bohr-Jessen introduced the set
QR)=2y(R)={(6,, * -+, 05)€[0, 1)"|Sy(@8,, -+ +, 0x) € R},

where N is a large positive integer, and
N
Sy(01, +++, Ox)=—2 log(1—p; exp(2736,,))
n=1

(p. denotes the n-th prime number). In fact they showed that, if we
denote the measure of the set 2,(R) by Wy, then W, tends to W, as N
tends to infinity.

Recently, the first-named author has tried to refine Bohr-Jessen’s
argument, and obtained, in case o,>1, the asymptotic formula

L(T)= WT+O(T(log log(T))~so=/r+e)
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for any €>0 (see [5]). Furthermore, a closer investigation leads to a
similar result on the line o=0, for 1/2<¢,<1 ([6]). To prove these
results, the study of the geometric behaviour of Q(R) is indispensable.
In this article, we discuss such properties of Q(R).

NoTATIONS. We shall denote the N-dimensional torus [0, 1) by T7*.
The symbol 60X signifies the boundary of the set X. For any subset Y
of the complex plane C,

.Q(Y)={(01, c+e,0y)€ T’N|SN(01’ cee,0y)€ Y} .

In particular, if Y is the line {z|Re(z)=k} (resp. {z|Im(z)=k}), we write
2(k) (resp. 2*(k)) instead of 2(Y). For any small positive ¢ and any
subset Z of 1%,

Za={(019 R 0N) € TNIdiSt((on MR oN), Z)éE} .

We write the n-dimensional volume of a set A (CT%) as vol,(4) A1=n<N).
Throughout the following sections, the O-constants depend only on o,.

§2. Statement of results. Some reductions.

Our main purpose in this paper is the estimation of voly((02(R)).).
At first, we discuss some reductions of the problem. Since S, is con-
tinuous, it can be easily checked that 02(R)CR2(0R). Hence we have

2.1) voly((0R(R)),) = voly((R(OR)).) .

Let A,+1tB,, A,+iB,, A,+1B, and A,+1iB, be the four vertices of the
rectangle R. Then it is obvious (see Fig. 1) that

@2 voL(QOR)) <3, vol((4,))) + 32 volu((2* (B -
iB, A,+iB, A;+iB,
5 /
A, +iB, A;+iB;
[ A4, A,

Ficure 1
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Hence it is sufficient to estimate vol,((2(k)).) and voly((2*(k)).) for real k.
We now calculate the Jacobian of S,:

oSy _ 2mip;’ exp(2rib,)
a0, 1—p;o% exp(2rid,)

(=0,, say),
and therefore,
2.3) IRe(Sy)) _Re(o,)
ao,
_ —27tp; % sin(2x0,)

1 —2p; % cos(2x8,) + p; o0

for 1I=<n<N. So we see that, on 2(k), the differentiation of Re(Sy) does
not vanish except for the points (@, ---, ;) for which Re(®,)=0 holds
for every n<N. Hence, if we put

Ty ={(0, -+, b e TN| [g (Re(@n))2:'m>a}

for small positive a, then T(k)=2(k)N T¥ is a smooth submanifold of Ty
(see [7], Chap. II, §10, Corollary of Theorem 1). Concerning the geometric
properties of T(k), we will show the following lemmas in the sections
below.

LEMMA 1. voly_(T(k))<2N for any real k.

LEMMA 2.
voly((2(k)). N Td)=0(a""e+ sup voly_,(T(k))) .

—o<Llk<co

Next we discuss the volume of 7% — T¥. Since the denominator of
the right-hand side of (2.3) is not larger than (14 p;°)2, we have

T"—-Tdc{(6, -+, Ox) € T¥| |Re(0,)|<a for any n}
C{(6y -+, Oy) € TV | 8in(2r8,)| < ((1 + p;*)/27p;°%)a for any n) .

In the interval 0<6,<1/4, we have 46,<sin(276,), so it follows that if

(2.4) lsin(27r0n)|§-—(lﬂa ,

2rpa
then 6,<(1/4)- (1 +p;%)*/2xp;°)a. Furthermore, if 0, satisfies (2.4), then
(1/2)—#6,, (1/2)+6, and 1—6, also satisfy (2.4). Hence, the measure of
the set {9,€]0, 1)| 9, satisfies (2.4)} is not larger than (1 +p;%) 207 %a.
Therefore,
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(2.5) vol, (T¥ — T¥) g(ﬁl%)wv:o(w fi[ pe) .

Now we note that, for N=2, by using a result of Rosser-Schoenfeld [8],
we can easily obtain that

N N
(2.6) ”I=Il P =exp(o, ,.gi log(p,)) <exp(20,N-log(N))=N*>" .

We combine (2.5), (2.6) and the above two lemmas to get

vol((R(k)).) < vol((2(k)). N TY)+vol (T — T¥)
=0(a e N+ (aN*0)¥) .

The same estimate holds for voly((2*(k)).), and therefore, by (2.1) and
(2.2) we now obtain the following

THEOREM. For any 0,>1/2 and any small positive a and e,
2.7 voly((0R2(R)).) =0(a"'e N+ (aN*)¥) .

This result is used essentially in [5] and [6]. (In those papers, we
put e=r"'N'2 for some r>N. If we choose a=(r"N*2)V¥+YN~%%, then
the right-hand side of (2.7) is surpassed by r 'YW+ NG/ +20 )

The following two sections are devoted to the proofs of Lemma 1
and Lemma 2, respectively.

§3. Proof of Lemma 1.

Let (4,, --+, 8y) be a point of T(k), and we denote a unit normal
vector of T(k) at (8, ---, 8y) by >V, a,(0/06,). Then, the corresponding
volume form is

N
0= (—1)*a,dO,A -+ ANdO,_ AdO,. A - Adby

(see [4], Appendix 6, and [7], Chap. V, §5, Problem 1). We put P,=
{0y -+, 0y)€TY6,=0} 1=n=N), and by =, we mean the projection
from T(k) to P,. If we can take a sufficiently small neighbourhood U
of (0, ++-, 0y) in T(k) which is mapped diffeomorphically onto =, (U) by
r,, we can evaluate voly_,(U), using the naturality of the integral, as
follows (see Fig. 2):

voly_,(U)= va

=§| (—l)n Svandﬁl/\ e Adﬂn_l/\d0,+lA e /\dﬁN

n=1

N
=2(—1)"S QoA o AdO NGO AdOy .
" (U)

n=1
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— (1)

U=ug’n---nUM
FIGURE 2

We note that, as 3 a,(3/d6,) is a unit vector, |a,|<1. Hence,

3.1) vole (VS| doy - d6, @By -+ doy
Tu(U) I

n=1

- ﬁ:; voly_(z (U)) .

These arguments are based on the assumption that 7, maps U
diffeomorphically onto #,(U). Now we show that we can take such a
neighbourhood U for any point with exceptions of a measure zero subset of
T(k). In fact, the point of which we can not take such a neighbourhood
is characterized by the condition that the 6#,-component of the (unit)
normal vector of the tangent space of T(k) at that point is equal to
zero. Let n be a unit normal vector field of T(k). Since Re(S,) is
identically & on T(k) and d(Re(Sy))/06,=Re(0,), we can take

—(3 9Re(Sy) . _0 S 3(Re(SN))
(8.2) n= Z‘l 00, aon> ”

=(Z ®e6.r) " S Re(6,) - -2

n

where the symbol || | denotes the standard norm. Hence, the set of
the points we now consider is characterized by the relation Re(®,)=0,
that is, 6,=0, 1/2. We define the two subtori 7, and 7,, of 7% by the
equations 6,=0 and 6,=1/2, respectively. We apply the argument
analogous to that of T(k) on 7,, T, then we get that the two sets
T,N T(k) and T,,N T(k) are submanifolds of T, and T.,, respectively, with
codimension one. Also, those sets are the codimension one submanifolds
of T(k), so we have
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voly_(T, N T(k))=voly_(Ti, N T(k))=0 .

Since this is true for any n, we ignore the union of those sets for n=
1, .-+, N in the remainder of this section, by removing it from T(k) if
necessary.

Next we fix real numbers 6%, ---, 6%_,, 6°,,, - -+, % belonging to the
interval [0, 1), and consider

Lo={(8 ++, 0y, O By + -, 6%) € T | 056,<1} .

‘This is a line segment in T%=[0, 1)¥, parallel to some axis. The image
Sy(L,) is a closed convex curve in C (see Bohr-Jessen [3]), so the inter-
section of Sy(L,) and the line {z|Re(z)=k} consists of at most two points.
Since the mapping Sy, when restricted onto L,, is injective, the set
L.N T(k) also consists of at most two points (see Fig. 3).

FIGURE 3

We denote such points by (4, ---, 6%) (=1, 2). If we put
L ()={6y +++, 0n) € TV | O0—N=0a=0n+7 (m+#*n),0=60,<1}

for sufficiently small 7, then L.(®)N T(k) consists of at most two con-
nected components U™ and U™, where U{® is a neighbourhood of
@2, «-+,0%) (=1, 2). We cover T(k) by the neighbourhoods of the type
uPn --- NUPN (j, takes the value 1 or 2 for n=1, ---, N), and apply
(8.1) to each of these neighbourhoods. The union of those

z(UPN - N UD

covers P, at most two times, so it follows that
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N_l(T(k))SvolN-l(U 0N - NU)
SZ > (VolN_l(m.( uin .- nUGHM

<23 voly_(P)=2N.
n=1
This proves Lemma 1.

§4. Proof of Lemma 2,
At first we show that

[ ®e©r ["sC=C0)

for any (6, +++, 6x)€ T". In fact, by using the inequality
1—2p;% cos(2r0,) +pro=(1—p;o)?,

we have (see (2.3))

[gl (Re(@,,))’] [é;l 1271-];;_0:0 )2]1/2

<<(§ p;“°) (i pyin) —C(ao)

n=1 n=1

Now we prove the following
LEMMA 8.
QEN.NTFc U Tt) (=TI[k, Ce], say) .

k—Cest<k+Ce

First we show

4.1) QkEk)N.c. U 2) .

k—Cestsk+Ce

We consider the isometric path 7:[0, e]— (2(k)), which satisfies 7(0) €
2(k). We write the differentiation of v as

S(w) = z b (

00, /rw
Then 32 b2=1, and
(Re(S:), ()=, b.(Re(Sn)a(52-)

n’ T
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_&. (dRe(Sy)) (4
7.2-_;1 b" a0, )T(u)( dt )ne(sN)-r(u)

= ENL b, Re(en)r(u)> : (di

’
n=1 T /Re(Sp)or (%)

where (Re(Sy)), is the differentiation of Re(Sy). By using Schwarz’
inequality, we have

[[IRes i@l du={ |3 b Re@rwl du
<((28) & Re©dw) | du

<emax| 3, (Re(8,)u)| =Ce.

0suse Ln=1

This means that the image of Re(Sy)ecv is included in [k—Ce, k+Cel.
In other words,
Y([0, e < U 2(t) .

k=Cestsk+Ce

Sinece this is true for any such paths, (4.1) holds. Taking the intersection
of the both sides of (4.1) with 7Y, Lemma 3 follows.

Now, to prove Lemma 2, it is sufficient to evaluate voly(T[k, Cel).
Let n be a unit normal vector field of 7T(t), and & the dual form of n
We recall that n can be given by (38.2). By the calculation similar to
that of (Re(Sy)).7(u), we get

R S _ N R @ 2 1/2 d
(Re(Sp)a(m)=] 3, (Re(©)) [ 2.
The dual version of this formula is

e=[ 3 Re®)) | " Re(Sm)*@t) ,

where (Re(Sy))* is the dual mapping of (Re(Sy))..
We denote the volume form of T(t) by w,. Since

N 1/2
S Re(6,)) | " >a
for any (4, +--, 0y) € T(t), we have

vol,(T[k, Ce])= s

={ o z',(Re(e,.»Z] (Re(Sn)*(dt)
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=|"at| [S®Re©)r] o

k—Ce n=1

dt § W,
k~—Ce T(t)
<2a7'Ce- max voly_,(T()) .

k—Cestsk+Ce

k+Ce

=a™ S

This inequality, with Lemma 8, completes the proof of Lemma 2.
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