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§1. Introduction.

In [6] the first author derived a new numerical invariant, denoted
by O(K), of knots from their diagrams and showed that if the Conway
polynomial of a knot K is not one, then O(K) is finite ([6] Corollary 2.4).
In this paper, we call O(K) the triviality index of K. It arises a problem

as to whether or not there exists a knot K such that O(K)=mn for any
natural number n«.

In this paper, we show the following theorems.

THEOREM A. If a knot K has a 2n-trivial diagram (n>1), the
coefficient of z** of the Conway polynomial of K is even.

THEOREM B. For any natural number n with n>1, there exist
infinitely many knots K’'s with O(K)=mn.

Moreover in the case O(K)=8 we show the following.

THEOREM C. Let f(2)=1+3l.,a,2", where a, (2=i=<l) are integers.
If a, is odd, there is a knot K such that OK)=8 and the Conway
polynomial of K 1is f(2).

Throughout this paper, we work in PL-category and refer to Burde
and Zieschang [1] and Rolfsen [8] for the standard definitions and results
of knots and links.

§2. Definitions and facts.

The Conway polynomial 7,(z) ([2]) and the Jones polynomial V.(t)
([8]) are invariants of the isotopy type of an oriented knot or link in a
3-sphere S°. The Conway polynomial is defined by the following formulas:
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Vy(2)=1 for the trivial knot U,
Vi, —Vi_ =2V, .

And the Jones polynomial is defined by the followings:

Vy(t)=1 for the trivial knot U,
TV, @)tV @)= =tV (D) ,

where L., L_ and L, are identical except near one point where they are

A X

L. L . L,

FIGURE 2-1
We defined the following number in [6].

NOTATION. Let L be a link, and I a diagram of L with the set of
crossing points D(L)={c, ¢, ***, ¢.}. For a subset D={c,, ¢, ", i, ) of
D(L), we denote by L, the diagram obtained from L by changing the
crossing at all points of D.

DEFINITION. Let K be a knot and K a diagram of K with the set
of crossing points D(K). Let A, A, ---, A, be nonempty subsets of
D(R) with A,NA,=@ for i#j. For any nonempty subfamily &=
{A;, Ajp -+, A} of {4, A, -, A}, we ~denote the set A; UA,U---UA4;
by .o for convenience. We say that K is an n-trivial diagram of K with
respect to {A, 4,, ---, A,} if for any nonempty (not necessarily proper)
subfamily .o~ of {4, 4,, -+, A,}, K, is a diagram of the trivial knot.

If a knot K has an nm-trivial diagram and has no (n-1)-trivial
diagrams, we denote the number = by O(K), and call it the triviality
index of K. If a knot K has an n-trivial diagram for any natural
number n, we define O(K)=oo.

In our notation, Lemma 2 of Yamamoto [9] is stated as follows.
PROPOSITION. For any knot K, O(K)=2.
In [6], we showed the following theorem and corollary.

THEOREM 2. If a knot K has an n-trivial diagram, then the Conway
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polynomial V(2) of K is of the following form;
(1) <f n 18 odd, then

Vx(z)=1+an+1z“+1+an+azn+3+ cee,

and
(2) f n 18 even, then

Ve(@)=1+a,2"+a, 2" 240

COROLLARY. If the Conway polynomial of K is not one, then O(K)
18 finite. '

Theorem 2 gives an upper bound of O(K) for a knot K, but it makes
no difference between the knot K with O(K)=2m—1 and the knot K’
with O(K')=2m. It arises a problem as to whether or not there exists
a knot K with O(K)=mn for any natural number n with n>1.

At first we show Theorem A to distinguish between the knot K with
O(K)=2m—1 and the knot K’ with O(K’)=2m.

§3. Proof of Theorem A.

Step 1. We define the following model. Let K be a knot, K a
diagram of K, and K the projection of K associated to K, i.e. K has no
information of over and under crossings. And let C={c, ¢, **-, ¢;:.} be
a subset of the set of crossing points D(XK). Since K is a knot projection,
there is an immersion f of S* in R? such that f (SHY=K. By c, we de-
note also a point of K associated to ¢, of K. Let f~'c,)={d, di} and
S'=0=0D*. We have the model ¢ as shown in Fig. 3-1.

FiGure 3-1

Let §,, 6; be regular neighborhoods of d, d; in ¢ and mutually disjoint
(1=i=2n). Let B, be a band and oB,=a;Ua;UB;UQG: as shown in Fig.
3-2.
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FIGURE 3-2

We make B, full twisted and attach 5, and B; to 6, and §; in D?
then we have an orientable surface S=(U~, B,)U D* as shown in Fig. 3-3.

8,

FiGURE 3-3

And let 6S=L. Then L is a link or a knot. We call LL a band
model of K with respect to C. Let L be a diagram of L and a, one of
two crossing points of the boundary of the full-twisted band B, in L.
For any subset C'={x, x,, ---, x,} of C, we denote the link diagram and
also link type obtained from K smoothing at the points of C’ by K(C’
or Kz, ,, +++, #,) and denote the number of components of the link L
by #L. Then we have Proposition 3.1.

PROPOSITION 3.1. Let M={1,2, --+,2n} and N be a subset of M.
For a knot K and the band model L of K with respect to C={c,, C,, ** *, Csn},
we have

#L{a;|ie M—N)=pK({c.| i€ N}) .

Step 2. For a set X, we denote the number of elements of X by
#X. Let K be a knot diagram with the set of crossing points D(K),
and C={c, ¢, + -, ¢,,} & subset of D(K). We show the following lemma.
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LEMMA 8.2. Let M={1, 2, -+-, 20}, v={M, M, ---, M.} | M,.CM,
M, =2 (1=1,2, :++, n), U, M,=M}. And let £, be a subset of v such
that for any © (1=i=n) pK({{c,; c;} | M,={4, '}})=1, then we have that
pR(C)=1 if and only if £Kk, is odd.

ProOF. We prove Lemma 3.2 by the induction on n. In the case
n=1, C={c, ¢,}, M={1,2} and v={{M}}. If K(C) is a knot, we have
#k,=1 since k,={{M}}. If K(C) is a link, #x£,=0 since xk,=@. Then
we have Lemma 3.2.

Let n>1 and C’ be a subset of C where #C'=2m (n>m). It is
supposed that pK(C’)=1 if and only if #x., is odd. We consider the
band model L of K with respect to C as defined in Step 1. Let B, be

an outermost band in B, B,, :---, B,,, namely when we separate ¢ into
two parts o,, o, where ¢,U0,=0, d,No,={d,, d;}, and one of ¢, (1=1, 2)
does not contain both d; and d; for any j (j#1, j=1,2, ---, 2n). Let g,

be a part of ¢ satisfying the above condition as shown in Fig. 3-4.

92

FISURE 3-4

Let N={j € M |there is d; or d; on the ¢,}. Since pK(e;, ¢,)=8 for
ke M—N—{i} by Proposition 3.1, any element of k., has {i, j} (€ N) as
an element. Let C(y)={c,} (¢ € M—{2, 7}), then we have

3.1) tKc :%#KC(J‘) .

By the hypothesis of induction, we have xK(C(j))=1 if and only if #x,;
is odd. Then we show the relation between #£, and ¢K(C) by considering
pK(C(5)) and £#N. By Proposition 3.1, we have uK(C()))=pL(a, a;). We
consider two cases on the number of components of L(a,). We note that,
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since pul(a)=pK({c,| ke M—{i}}), pL(a,) is even.

Case 1. pl(a)=4. Since pl(a, a;)=3 for any je€ N, we have
1R(C(j))=38. By the hypothesis of induction, #x,; is even. By (8.1),
we have #£, is even. And since uL.=3, we have pK(C)=8. Therefore
we have that K(C) is a link and #x, is even.

Case 2. pL(a)=2. Let N'={jeN|a; and o} are contained in dif-
ferent components on L(a,)}. We have by (3.1)

3.2) #’50=§N#’50(:‘>
=_Z #’50(,’)"'_ > #ro
JeEN’ JeEN—-N'
Since uL(a,, a;)=1 for any je N’, we have #K(C(j))=1 and by the hy-

pothesis of induction #«.; is odd. Since p#L(a, a;)=8 for any je N—N’,
we have pK(C(j))=3 and #x,,, is even. Therefore we have by (3.2)

3.3) #'CGE,-;‘WI +,-e§im0
=4#N’ (mod 2) .

In the case K(C) is a knot, considering there is two points d,, d; on the
I(a)), d, and d; are contained in different components of L(a,). Moreover
for je N', a; and aj (a;, a;€0B;) are contained in different components
of Il(a,). Therefore #N’ is odd when #K(C)=1. In the same way when
K(C) is a link and p#L=3, d, and d; are contained in the same component
in L(a,). Therefore we have #N’ is even when K(C) is a link. By (3.3),
we have when K(C) is a knot #x, is odd, and when K(C) is a link #x,
is even.

By Case 1 and Case 2, we have that when K(C) is a knot #x, is
odd, and when K(C) is a link #x, is even. This completes the proof of
Lemma 3.2.

Step 3. In this Step, we complete the proof of Theorem A by
making use of Lemma 3.2 and the following Lemma 3.3.
Let K be an n-trivial diagram of K with respect to {4,, A,, --+, A,}.

N /
NS

+ 1 -1

FIGURE 3-5
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Let A,={C, Ci» * * *» Cimivy}> and &;; the sign of ¢,; defined as shown in Fig.
8.6 (1=1,2, -+, m).

By K(i ff ), we denote the link which is obtained from K by
1 ©2 k

changing the crossing at ¢y, i ** ¢, Cii;1s Coty Cooy ** 5 Caip—10 ***» Ciwy Ciias ** *»
Crip— @nd smoothing at ¢,;, C.ip ***5 Chyye In [6], we showed the following
lemma.

LEMMA 3.3. If a knot K has an m-trivial diagram with respect to
{4, A,,++-, A}, then the Conway polynomial V(z) of K 18 of the following
form.
(3.4) Ve@=142" 3. &5, EnsJx( 20 )(?) -

1sijsad) trége
F=132,%+%,7m

Let K be a 2n-trivial diagram with respect to {4, A, ---, 4,,} of
K, and A,={c,, Cipy ", Ciniey} 3=1,2, -++, 2n). We note that K is a 2-
trivial diagram with respect to {4,, 4,} for any j,k (§ <k, j,k=1,2,--+,2n).
Let a,, be the coefficient of 2" of Conway polynomial of K (m=1,2,---),
then we have by Lemma 3.3

a.=#{K(] ¥) pK(Z-;_ #)=1, 1=4,5a0), 1SS ek}

1 U %
E#{K(cv:,-; cik) | F‘K(ci,-y cik)’:l’ léi,-_f__a(j), 1=, =2 alk)} (mod 2) .

Therefore we have
a,=#{(d;, d,) € A;x A, | pK(@;, d) =1} (mod 2) .

Since K is a 2n-trivial diagram (n>1), we have a,=0, then we have for
any j, k <k, j, k=12, -+, 2n)

(3.5) £((d,, dy) € A;x A, | pR(d;, d)=1}=0  (mod?2).

Similarly, we have by Lemma 3.3

=K, 1R [ G )=

léi:}éa(j), j—:l, 2, 27”}
E#{K(ctly cig’ R ciz.n) | #K(cily cig’ R cign)=1 ’
1<i;2a(d), §=1,2 +--,2n}  (mod2).

Then we have
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(3.6) . =#d, d,, -+, d;,) €A, XA, X - XA,,|
#Iz(du dzv %y d2n) =1} (mOd 2) .

By Lemma 3.2, we have 1K, d,, -, d,,)=1 if and only if #ry 4.4,
is odd for {d, d,, -+, d,,}. Therefore we have

a’2nE#{(d1y d".y % dzn) € 44~1><‘4-?.>< et XAZn l nuK~(d1y dz: tt %y d2n)=1}
= > $K (0, dp, ) (mod 2) .

(dl'd2""vd2’n) €Ay X AgX s XAgy

Let M,={m(z), m’(1)} 1<i=<n), then we have

(3'7) W2, #{(Mn Mz: % Mn) ‘

(dy,dg,se-, dap)€ Ay X AgX eeo X dgy

LK)y Q) =1, 1215 n}
B "Z #{(dm(l)’ dm’(l)) dm(z)’ °t %y dm(n)’ dm’(n)) € Am(l) x Am'(l) X

ce e XA | #K(dm(i)! dnw)=1,1=1=m} (mod2).

We fix one of {M,, M,, ---, M,} €p, then

(3'8) #{(dm(l)f dm’(l)r dm(2)s MY dm(n)’ dm’(n)) € Am(l) X Am’(l) X
M XAm'(n) l :L‘K(dm(i); dm'(i))=19 1§i§n}

=£Il #{(dm(i)’ dm‘(i)) € Am(i) X Am’(i) l #K(dm(i)’ dm’(i))=1} .
By (38.5), we have
(3.9) i=f11 #{(dm(t)’ dm’(z‘)) € Am(t) X A‘m’(i) ] #K(dm(i)) dm'(i))=1}
=0 (mod 2) .

By (3.7), (3.8) and (8.9), we have
a,,=0 (mod 2) .
This completes the proof of Theorem A.

S4. Proof of Theorem B.

The knot K, in Fig. 4-1 has an n-trivial diagram ([6]). It is not
hard to see that it is an alternating knot. The Conway polynomial of
the knot K, in Fig. 4-1 is of the following form:

If n=2m (m=1), Vg ()=1—-22""+-...

If n=2m—-1(m=2), Vg (2)=1—Cm—1)2""+---.

By Theorem 2, if a knot K has a 2m-trivial diagram and a,,+0,
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FIGURE 4-1

O(K)=2m. And by Theorem A, if K has a (2m—1)-trivial diagram and
a,, is odd, O(K)=2m —1. Therefore we have

OK,)=n (n=2) .

Let K! be the knot as in Fig. 4-2, where the rectangle labelled ! stands
for a 2-string integral tangle with [ full twists as shown in Fig. 4-3.
Since the Conway polynomial of K} is the same as that of K,, and K,
has an n-trivial diagram, we have

OK)H=n (n=2) .

The relation between the Jones polynomial of K., Vii(?), and that of
K,, Vi (t), is calculated as follows in [4]:

Vit =t =DV, ()~ 1) 5 £+ Vi, )

The knot K, is an alternating knot and the minimal crossing number
of K, is 3n by Murasugi [5]. And the reduced degree of V,(f) is equal
to the minimal crossing number of K for an alternating knot K ([5)).
Then we have

Vi, &) #1 .
Therefore we have for [ and I’ (<)
Vi (@) Vev(t) .

This completes the proof of Theorem B.
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§5. Proof of Theorem C.

We consider the knot K,,1 5,0, @8 shown in Fig. 5-1 ([7]). By rec-
tangle labelled p, (=1, 2, l), we denote the integral 2-string tangle
as shown in Fig. 4-3. The Conway polynomial 7 of K, ,,...5 18
the following:

Kp,,p2,°+,91

i
prx»i’z-'",m =1 +¢§f (—1)~'p,,, 2
=14p2—Dp,_2*+ -+ +(—1)""pz* .

Let p,=0 and p, , be an odd integer, then we have
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7 kppgno= L= Pri@ + D52+« -« +(— 1) 'p,2
Let — D, =Q, and (”‘l)i_lplﬂ—i:a'zi (323, 4, e, l). Therefore we have

VKpl,pz,---,o =f(z) .

And K, ,,..., has a 3-trivial diagram with respect to {A4,, A, A,} as shown
in Fig. 5-2. This completes the proof of Theorem C.

REMARK. For prime knots whose minimal crossing numbers are less
than or equal to 9, the triviality indices of them are 2 except for the
following knots; O(8,)=2, or 3. 0O(8,)=38, or 4. 0(8,)=3. 0(9,)=2, 3,
or 4. 0(9;)=2, or 3. 0(9,)=0(9,,)=0(9,)=0(9,,)=3.
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