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\S 1. Introduction.

In [6] the first author derived a new numerical invariant, denoted
by $0(K)$ , of knots from their diagrams and showed that if the Conway
polynomial of a knot $K$ is not one, then $0(K)$ is finite ([6] Corollary 2.4).
In this paper, we call $0(K)$ the triviality index of $K$. It arises a problem
as to whether or not there exists a knot $K$ such that $0(K)=n$ for any
natural number $n$ .

In this paper, we show the following theorems.

THEOREM A. If a knot $K$ has a $2n$-trivial diagram $(n>1)$ , the
coefficient of $z^{2n}$ of the Conway polynomial of $K$ is even.

THEOREM B. For any natural number $n$ with $n>1$ , there exist
infinitely many knots $K’ s$ with $0(K)=n$ .

Moreover in the case $0(K)=3$ we show the following.

THEOREM C. Let $f(z)=1+\sum_{i=2}^{l}a_{2i}z^{2\ell}$ , where $a_{2t}(2\leqq i\leqq l)$ are integers.
If $a_{4}$ is odd, there is a knot $K$ such that $0(K)=3$ and the Conway
polynomial of $K$ is $f(z)$ .

Throughout this paper, we work in PL-category and refer to Burde
and Zieschang [1] and Rolfsen [8] for the standard definitions and results
of knots and links.

\S 2. Definitions and facts.

The Conway polynomial $\nabla_{L}(z)$ ([2]) and the Jones polynomial $V_{L}(t)$

([3]) are invariants of the isotopy type of an oriented knot or link in a
3-sphere $S^{8}$ . The Conway polynomial is defined by the following formulas:
Received August 23, 1989
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$\nabla_{U}(z)=1$ for the trivial knot $U$ ,
$\nabla_{L+}-\nabla_{L-}=z\nabla_{L_{0}}$ .

And the Jones polynomial is defined by the followings:

$V_{\sigma}(t)=1$ for the trivial knot $U$ ,
$t^{-1}V_{L-}(t)-tV_{L+}(t)=(t^{1/2}-t^{-1/2})V_{L_{0}}(t)$ ,

where $L_{+},$ $L_{-}$ and $L_{0}$ are identical except near one point where they are
as in Fig. 2-1.

$L+$ $L-$ $Lo$

FIGURE 2-1

We defined the following number in [6].

NOTATION. Let $L$ be a link, and $\tilde{L}$ a diagram of $L$ with the set of
crossing points $D(\tilde{L})=\{c_{1}, c_{2}, \cdots, c_{n}\}$ . For a subset $ D=\{c_{k_{1}}, c_{k_{2}}, \cdots, c_{k_{n}}\}\sim$ of
$D(\tilde{L})$ , we denote by $\tilde{L}_{D}$ the diagram obtained from $L$ by changing the
crossing at all points of $D$ .

DEFINITION. Let $K$ be a knot and $\tilde{K}$ a diagram of $K$ with the 8et
of crossing points $D(\tilde{K})$ . Let $A_{1},$ $A_{2},$ $\cdots,$

$A_{n}$ be nonempty subsets of
$D(\tilde{K})$ with $ A_{i}\cap A_{j}=\emptyset$ for $i\neq j$ . For any nonempty subfamily $\mathscr{A}=$

$\{A_{j}, A_{j_{2}}, \cdots, A_{j_{l}}\}$ of $\{A_{1}, A_{2}, \cdots, A_{n}\}$ , we denote the set $A_{\dot{g}_{1}}\cup A_{\dot{J}2}\cup\cdots\cup A_{i_{l}}$

by $\ovalbox{\tt\small REJECT}$

$1$

for convenience. We say that $\tilde{K}$ is an n-trivial diagram of $K$ with
respect to $\{A_{1}, A_{2}, \cdots, A_{n}\}$ if for any nonempty (not necessarily proper)

subfamily $\mathscr{A}$ of $\{A_{1}, A_{2}, \cdots, A_{n}\},\tilde{K}_{\vee}$ is a diagram of the trivial knot.
If a knot $K$ has an n-trivial diagram and has no $(n+1)$-trivial

diagrams, we denote the number $n$ by $0(K)$ , and call it the triviality

index of $K$. If a knot $K$ has an n-trivial diagram for any natural
number $n$ , we define $ 0(K)=\infty$ .

In our notation, Lemma 2 of Yamamoto [9] is stated as follows.

PROPOSITION. For any knot $K,$ $O(K)\geqq 2$ .
In [6], we showed the following theorem and corollary.

THEOREM 2. If a knot $K$ has an n-trivial diagram, then the Conway
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polynomial $\nabla_{K}(z)$ of $K$ is of the following form;
(1) if $n$ is odd, then

$\nabla_{K}(z)=1+a_{n+1}z^{n+1}+a_{n+3}z^{n+3}+\cdots$ ,

and
(2) if $n$ is even, then

$\nabla_{K}(z)=1+a_{n}z^{n}+a_{n+2}z^{n+2}+\cdots$ .
COROLLARY. If the Conway polynomial of $K$ is not one, then $0(K)$

is finite.
Theorem 2 gives an upper bound of $0(K)$ for a knot $K$, but it makes

no difference between the knot $K$ with $0(K)=2m-1$ and the knot $K^{\prime}$

with $0(K’)=2m$ . It arises a problem as to whether or not there exists
a knot $K$ with $0(K)=n$ for any natural number $n$ with $n>1$ .

At first we show Theorem A to distinguish between the knot $K$ with
$0(K)=2m-1$ and the knot $K$ with $0(K)=2m$ .

\S 3. Proof of Theorem A.

Step 1. We define the following model. Let $K$ be a knot, $\tilde{K}$ a
diagram of $K$, and $\hat{K}$ the projection of $K$ associated to $\tilde{K}$, i.e. $\hat{K}$ has no
information of over and under crossings. And let $C=\{c_{1}, c_{2}, \cdots, c_{2n}\}$ be
a subset of the set of crossing points $D(\tilde{K})$ . Since $\hat{K}$ is a knot projection,
there is an immersion $f$ of $S^{1}$ in $R^{2}$ such that $f(S^{1})=\hat{K}$ . By $c_{i}$ , we de-
note also a point of $\hat{K}$ associated to $c_{i}$ of $\tilde{K}$. Let $f^{-1}(c_{l})=\{d_{i}, d_{i}^{\prime}\}$ and
$S^{1}=\sigma=\partial D^{2}$ . We have the model $\sigma$ as shown in Fig. 3-1.

$d_{1}^{\prime}$

FIGURE 3-1

Let $\delta_{i},$
$\delta_{i}^{\prime}$ be regular neighborhoods of $d_{i},$ $d_{i}^{\prime}$ in $\sigma$ and mutually di8joint

$(1\leqq i\leqq 2n)$ . Let $B_{t}$ be a band and $\partial B_{i}=\alpha_{i}\cup\alpha_{i}^{\prime}\cup\beta_{i}\cup\beta_{i}^{\prime}$ as shown in Fig.
3-2.
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$\alpha_{1}$

$\mathfrak{g}_{i}$
$6_{i}^{\prime}$

$B1$

FIGURE 3-2

We make $B_{i}$ full twisted and attach $\beta_{l}$ and $\beta_{l}^{\prime}$ to $\delta_{l}$ and $\delta_{i}$ in $D^{2}$ ,
then we have an orientable surface $S=(\bigcup_{i=1}^{2n}B_{i})\cup D^{2}$ as shown in Fig. 3-3.

$\epsilon_{1}$

$\delta_{2}$

$6_{1}^{\prime}$

FIGURE 3-8

And let $\partial S=L$ . Then $L$ is a link or a knot. We call $L$ a band
model of $\tilde{K}$ with respect to $C$ . Let $\tilde{L}$ be a diagram of $L$ and $a_{i}$ one of
two crossing points of the boundary of the full-twisted band $B_{l}$ in $\tilde{L}$ .
For any 8ubset $C’=\{x_{1}, x_{2}, \cdots, x_{q}\}$ of $C$ , we denote the link diagram and
also link type obtained from $\tilde{K}$ smoothing at the points of $C^{\prime}$ by $\tilde{K}(C^{\prime})$

or $\tilde{K}(x_{1}, x_{2}, \cdots, x_{q})$ and denote the number of components of the link $L$

by $\mu L$ . Then we have Proposition 3.1.

PROPOSITION 3.1. Let $M=\{1,2, \cdots, 2n\}$ and $N$ be a subset of $M$.
For a knot $K$ and the band model $L$ of $\tilde{K}$ with respect to $C=\{c_{1}, c_{2}, \cdots, c_{2n}\}$ ,
we have

$\mu\tilde{L}(\{a_{l}|i\in M-N\})=\mu\tilde{K}(\{c_{i}|i\in N\})$ .
Step 2. For a set $X$, we denote the number of elements of $X$ by

$\# X$. Let $\tilde{K}$ be a knot diagram with the set of crossing points $D(\tilde{K})$ ,
and $C=\{c_{1}, c_{2}, \cdots, c_{2n}\}$ a subset of $D(\tilde{K})$ . We show the following lemma.
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LEMMA 3.2. Let $M=\{1,2, \cdots, 2n\}$ , $\nu=\{\{M_{1}, M_{2}, \cdots, M_{n}\}|M_{i}\subset M$,
$\# M_{i}=2(i=1,2, \cdots, n),$ $\bigcup_{i=1}^{n}M_{i}=M$ }. And let $\kappa_{c}$ be a subset of $\nu$ such
that for any $i(1\leqq i\leqq n)\mu K(\{\{c_{j}, c_{j^{\prime}}\}|M_{i}=\{j, j^{\prime}\}\})=1$ , then we have that
$\mu\tilde{K}(C)=1$ if and only if $\#\kappa_{c}$ is odd.

PROOF. We prove Lemma 3.2 by the induction on $n$ . In the case
$n=1,$ $C=\{c_{1}, c_{2}\},$ $M=\{1,2\}$ and $\nu=\{\{M\}\}$ . If $\tilde{K}(C)$ is a knot, we have
$\#\kappa_{c}=1$ since $\kappa_{c}=\{\{M\}\}$ . If $\tilde{K}(C)$ is a link, $\#\kappa_{c}=0$ since $\kappa_{c}=\emptyset$ . Then
we have Lemma 3.2.

Let $n>1$ and $C^{\prime}$ be a subset of $C$ where $\# C’=2m(n>m)$ . It is
supposed that $\mu\tilde{K}(C^{\prime})=1$ if and only if $\#\kappa_{C^{\prime}}$ is odd. We consider the
band model $L$ of $K$ with respect to $C$ as defined in Step 1. Let B. be
an outermost band in $B_{1},$ $B_{2},$

$\cdots,$ $B_{2n}$ , namely when we separate $\sigma$ into
two parts $\sigma_{1},$ $\sigma_{2}$ where $\sigma_{1}\cup\sigma_{2}=\sigma,$ $\sigma_{1}\cap\sigma_{2}=\{d_{\tau}, d_{i}^{\prime}\}$ , and one of $\sigma_{i}(i=1,2)$

does not contain both $d_{j}$ and $d_{j}^{\prime}$ for any $j(j\neq i, j=1,2, \cdots, 2n)$ . Let $\sigma_{1}$

be a part of $\sigma$ satisfying the above condition as shown in Fig. 3-4.

$d_{1}^{\prime}$

$FI_{\overline{J}}\backslash URE3-4$

Let $N=$ {$j\in M|$ there is $d_{j}$ or $d_{j}^{\prime}$ on the $\sigma_{1}$ }. Since $\mu\tilde{K}(c_{i}, c_{k})=3$ for
$k\in M-N-\{i\}$ by Proposition 3.1, any element of $\kappa_{c}$ has $\{i, i\}(jeN)$ as
an element. Let $C(j)=\{c_{q}\}(q\in M-\{i, j\})$ , then we have

(3.1) $\#\kappa_{c}=\sum_{jeN}\#\kappa_{C(j)}$ .
By the hypothesis of induction, we have $\mu\tilde{K}(C(j))=1$ if and only if $\#\kappa_{C(j)}$

is odd. Then we show the relation between $\#\kappa_{c}$ and $\mu\tilde{K}(C)$ by considering
$\mu\tilde{K}(C(j))$ and $\# N$. By Proposition 3.1, we have $\mu\tilde{K}(C(j))=\mu\tilde{L}(a_{i}, a_{j})$ . We
consider two cases on the number of components of $\tilde{L}(a_{i})$ . We note that,
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since $\mu\tilde{L}(a_{i})=\mu\tilde{K}(\{c_{k}|k\in M-\{i\}\}),$ $\mu\tilde{L}(a_{i})$ is even.
Case 1. $\mu\tilde{L}(a_{i})\geqq 4$ . Since $\mu\tilde{L}(a_{i}, a_{\dot{f}})\geqq 3$ for any $jeN$, we have

$\mu\tilde{K}(C(j))\geqq 3$ . By the hypothesis of induction, $\#\kappa_{C(j)}$ is even. By (3.1),
we have $\#\kappa_{c}$ is even. And since $\mu\tilde{L}\geqq 3$ , we have $\mu\tilde{K}(C)\geqq 3$ . Therefore
we have that $\tilde{K}(C)$ is a link and $\#\kappa_{c}$ is even.

Case 2. $\mu\tilde{L}(a_{i})=2$ . Let $N’=\{jeN|\alpha_{j}$ and $\alpha_{\acute{\dot{f}}}$ are contained in dif-
ferent components on $\tilde{L}(a_{i})$ }. We have by (3.1)

(3.2) $\#\kappa_{c}=\sum_{jeN}\#\kappa_{G(j)}$

$=\sum_{\dot{g}eN^{\prime}}\#\kappa_{C(j)}+\sum_{jeN-N^{\prime}}\#\kappa_{C(j)}$ .
Since $\mu\tilde{L}(a_{i}, a_{\dot{f}})=1$ for any $jeN’$ , we have $\mu\tilde{K}(C(J))=1$ and by the hy-
pothesis of induction $\#\kappa_{ctj)}$ is odd. Since $\mu\tilde{L}(a_{i}, a_{\dot{f}})\geqq 3$ for any $jeN-N’$ ,
we have $\mu\tilde{K}(C(j))\geqq 3$ and $\#\kappa_{Ctj)}$ is even. Therefore we have by (3.2)

(3.3) $\#\kappa_{c}\equiv\sum_{\dot{g}eN^{\prime}}1+\sum_{\dot{g}eN-N^{\prime}}0$

$\equiv\# N^{\prime}$ $(mod 2)$ .
In the case $\tilde{K}(C)$ is a knot, considering there is two points $d_{l},$ $d_{i}^{\prime}$ on the
$\tilde{L}(a_{i}),$ $d$ and $d^{\prime}$ are contained in different components of $\tilde{L}(a)$ . Moreover
for $jeN,$ $a_{j}$ and $\alpha_{\dot{f}}^{\prime}(\alpha_{j}, \alpha_{\dot{f}}^{\prime}e\partial B_{\dot{f}})$ are contained in different components
of $\tilde{L}(a_{i})$ . Therefore $\# N$

’ is odd when $\mu\tilde{K}(C)=1$ . In the same way when
$\tilde{K}(C)$ is a link and $\mu\tilde{L}=3,$ $d$ and $d^{\prime}$ are contained in the 8ame component
in $\tilde{L}(a_{i})$ . Therefore we have $\# N$

’ is even when $\tilde{K}(C)$ i8 a link. By (3.3),

we have when $\tilde{K}(C)$ is a knot $\#\kappa_{c}$ is odd, and when $\tilde{K}(C)$ is a link $\#\kappa_{c}$

is even.
By Ca8e 1 and Case 2, we have that when $\tilde{K}(C)$ is a knot $\#\kappa_{c}$ is

odd, and when $\tilde{K}(C)$ is a link $\#\kappa_{C}$ is even. Thi8 completes the proof of
Lemma 3.2.

Step 3. In this Step, we complete the proof of Theorem A by
making use of Lemma 3.2 and the following Lemma 3.3.

Let $\tilde{K}$ be an n-trivial diagram of $K$ with respect to $\{A_{1}, A_{2}, \cdots, A_{n}\}$ .

$+$ 1 1
FIGURE 3-5
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Let $A_{i}=\{c_{i1}, c_{i2}, \cdots, c_{t\alpha(i)}\}$ , and $\epsilon_{ij}$ the sign of $c_{ij}$ defined as shown in Fig.

3.5 $(i=1,2, \cdots, n)$ .
By $K\left(\begin{array}{llll}1 & 2 & \cdots & k\\i_{1}i_{2} & \cdots & \cdots & i_{k}\end{array}\right)$ , we denote the link which is obtained from $K$ by

changing the crossing at $c_{11},$ $c_{12},$ $\cdots,$ $c_{1i_{1}-1},$ $c_{21},$ $c_{22},$ $\cdots,$ $c_{2:_{2}-1},$ $\cdots,$ $c_{k1},$ $c_{k2},$
$\cdots$ ,

$c_{ki_{k}-1}$ and smoothing at $c_{1i_{1}},$ $c_{2i_{2}},$ $\cdots,$ $c_{ki_{k}}$ . In [6], we showed the following

lemma.

LEMMA 3.3. If a knot $K$ has an n-trivial diagram with respect to
$\{A_{1}, A_{2}, \cdots, A_{n}\}$ , then the Conway polynomial $\nabla_{K}(z)$ of $K$ is of the following

form.
(3.4)

$\nabla_{K}(z)=1+Z^{n}\sum_{1\leqq i_{\dot{f}}\leq\alpha.(\dot{g})\dot{g}=1.2,\cdot,n}.\epsilon_{1i_{1}}\epsilon_{2i_{2}}\cdots\epsilon_{nt_{n}}\nabla_{K(i_{1}i_{2}\cdots i_{\hslash})^{(z)}}12\cdots n$

.

Let $\tilde{K}$ be a $2n$-trivial diagram with respect to $\{A_{1}, A_{2}, \cdots, A_{2n}\}$ of
$K$, and $A_{i}=\{c_{i1}, c_{i2}, \cdots, c_{i\alpha(t)}\}(i=1,2, \cdots, 2n)$ . We note that $\tilde{K}$ is a 2-
trivial diagram with respect to $\{A_{j}, A_{k}\}$ for any $j,$ $k(j<k, j,k=1,2, \cdots, 2n)$ .
Let $a_{2m}$ be the coefficient of $z^{2m}$ of Conway polynomial of $K(m=1,2, \cdots)$ ,

then we have by Lemma 3.3

$a_{2}\equiv\#\{K\left(\begin{array}{ll}j & k\\i_{j}\prime i_{k} & \end{array}\right)|\mu K\left(\begin{array}{ll}j & k\\i_{j}i_{k} & \end{array}\right)=1,1\leqq i_{j}\leqq\alpha(j),$
$1\leqq i_{k}\leqq\alpha(k)\}$

$\equiv\#\{\tilde{K}(c_{t_{j}}, c_{i_{k}})|\mu\tilde{K}(c_{\iota_{j}}, c_{t_{k}})=1,1\leqq i_{j}\leqq\alpha(j), 1\leqq i_{k}\leqq\alpha(k)\}$ $(mod 2)$ .
Therefore we have

$a_{2}\equiv\#\{(d_{j}, d_{k})\in A_{j}\times A_{k}|\mu\tilde{K}(d_{j}, d_{k})=1\}$ $(mod 2)$ .
Since $\tilde{K}$ is a $2n$-trivial diagram $(n>1)$ , we have $a_{2}=0$ , then we have for
any $j,$ $k(j<k, j, k=1,2, \cdots, 2n)$

(3.5) $\#\{(d_{j}, d_{k})\in A_{j}\times A_{k}|\mu\tilde{K}(d_{j}, d_{k})=1\}\equiv 0$ $(mod 2)$ .
Similarly, we have by Lemma 3.3

$ a_{2n}\equiv\#\{K\left(\begin{array}{llll}1 & 2 & \cdots & 2n\\i_{1} & i_{2} & \cdots & i_{2n}\end{array}\right)|\mu K(i_{1}1i_{2}\prime i_{2n}2\cdot$.
$\cdot$

.
$\cdot$

. $2n)=1$ ,

$1\leqq i_{j}\leqq\alpha(j),$ $j=1,2,$ $\cdots,$ $2n\}$

$\equiv\#\{\tilde{K}(c_{i_{1}}, c_{i_{2}}, \cdots, c_{t_{2n}})|\mu\tilde{K}(c_{l_{1}}, c_{i_{2}}, \cdots, c_{i_{2n}})=1$ ,
$1\leqq i_{j}\leqq\alpha(j),$ $j=1,2,$ $\cdots,$

$2n$} $(mod 2)$ .
Then we have
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(3.6) $a_{2n}\equiv\#\{(d_{1}, d_{2}, \cdots, d_{2n})\in A_{1}\times A_{2}\times\cdots\times A_{2n}|$

$\mu\tilde{K}(d_{1}, d_{2}, \cdots, d_{2n})=1\}$ $(mod 2)$ .
By Lemma 3.2, we have $\mu\tilde{K}(d_{1}, d_{2}, \cdots, d_{2n})=1$ if and only if $\#\kappa_{\{d_{1},d_{2},\cdots,d_{2n}\}}$

is odd for $\{d_{1}, d_{2}, \cdots, d_{2n}\}$ . Therefore we have

$a_{2n}\equiv\#\{(d_{1}, d_{?}, \cdots, d_{2n})eA_{1}\times A_{2}\times\cdots\times A_{2n}|\mu\tilde{K}(d_{1}, d_{2}, \cdots, d_{2n})=1\}$

$\equiv\sum_{td_{1}.d_{2},\ldots,d_{2n})eA_{1}xA_{2}\times\cdot\cdot\times A_{2n}}\#\kappa_{(d_{1}.d_{2}\ldots.,d_{2n}|}$ $(mod 2)$ .
Let $M_{i}=\{m(i), m(i)\}(1\leqq i\leqq n)$ , then we have

(3.7)
$a_{2n}\equiv\sum_{td_{1},d_{2}\ldots.,d_{2n})eA_{1}\times A_{2}\times\cdots xA_{2n}}\#\{(M_{1}, M_{2}, \cdots, M_{n})|$

$\mu K(d_{m(i)}, d_{mtt)})=1,1\leqq i\leqq n\}$

$\equiv,,\sum_{\{1’ 1tf2}$
$\#\{(d_{m(1)}, d_{m^{\prime}11)}, d_{m(2)}, \cdots, d_{m(n)}, d_{n^{\prime}(n)})\in A_{n(1)}\times A_{n^{\prime}(1)}\times$

. . $.\times A_{m^{\prime}(n)}|\mu\tilde{K}(d_{n(i)}, d_{n^{\prime}(i)})=1,1\leqq i\leqq n$} (mod2).

We fix one of $\{M_{1}, M_{2}, \cdots, M_{n}\}\in\nu$ , then

(3.8) $\#\{(d_{m(1)}, d_{n^{\prime}(1)}, d_{nt2)}, \cdots, d_{n(n)}, d_{n^{\prime}(n)})\in A_{n(1)}\times A_{n^{\prime}(1)}\times$

$\times A_{n^{\prime}(n)}|\mu\tilde{K}(d_{n(i)}, d_{m^{\prime}(i)})=1,1\leqq i\leqq n\}$

$=\prod_{l=1}^{n}\#\{(d_{mti)}, d_{m^{\prime}(t)})eA_{m(i)}\times A_{m^{\prime}(i)}|\mu\tilde{K}(d_{m(i)}, d_{m^{\prime}(i)})=1\}$ .
By (3.5), we have

(3.9) $\prod_{\mathfrak{i}=1}^{n}\#\{(d_{ntt)}, d_{m^{\prime}(i)})\in A_{m(i)}\times A_{m^{\prime}(i)}|\mu\tilde{K}(d_{n(i)}, d_{n^{\prime}(i)})=1\}$

$\equiv 0$ $(mod 2)$ .
By (3.7), (3.8) and (3.9), we have

$a_{2n}\equiv 0$ $(mod 2)$ .
This completes the proof of Theorem A.

\S 4. Proof of Theorem B.

The knot $K_{n}$ in Fig. 4-1 has an n-trivial diagram ([6]). It i8 not
hard to see that it is an alternating knot. The Conway polynomial of
the knot $K_{n}$ in Fig. 4-1 is of the following form:

If $n=2m(m\geqq 1),$ $\nabla_{K_{n}}(z)=1-2z^{2’ n}+\cdots$ .
If $n=2m-1(m\geqq 2),$ $\nabla_{K_{n}}(z)=1-(2m-1)z^{-m}+\cdots$ .

By Theorem 2, if a knot $K$ has a $2m$-trivial diagram and $a_{2m}\neq 0$ ,
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FIGURE 4-1

$0(K)=2m$ . And by Theorem $A$ , if $K$ has a $(2m-1)$-trivial diagram and
$a_{2m}$ is odd, $0(K)=2m-1$ . Therefore we have

$O(K_{n})=n$ $(n\geqq 2)$ .

Let $K_{n}^{l}$ be the knot as in Fig. 4-2, where the rectangle labelled $l$ stands
for a 2-string integral tangle with $l$ full twists as shown in Fig. 4-3.
Since the Conway polynomial of $K_{n}^{l}$ is the same as that of $K_{n}$ , and $K_{n}^{l}$

has an n-trivial diagram, we have

$O(K_{n}^{l})=n$ $(n\geqq 2)$ .
The relation between the Jones polynomial of $K_{n}^{l},$ $V_{K_{n}^{l}}(t)$ , and that of
$K_{n},$ $V_{K_{n}}(t)$ , is calculated as follows in [4]:

$V_{K_{n}^{l}}(t)=(t^{2}-1)(V_{K_{n}}(t)-1)\sum_{i=0}^{l-1}t^{2i}+V_{K_{n}}(t)$ .

The knot $K_{n}$ is an alternating knot and the minimal crossing number
of $K_{n}$ is $3n$ by Murasugi [5]. And the reduced degree of $V_{K}(t)$ is equal
to the minimal crossing number of $K$ for an alternating knot $K$ ([5]).

Then we have

$V_{K_{n}}(t)\neq 1$ .
Therefore we have for $l$ and $l’(l<l’)$

$V_{K_{n}^{l}}(t)\neq V_{K_{n}^{l^{\prime}}}(t)$ .
This completes the proof of Theorem B.
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FIGURE 4-2

$s<0$ ! $!!$

$A\rangle$ $O$ :::: $|$

FIGURE 4-3

\S 5. Proof of Theorem C.

We consider the knot $K_{p_{1}.p_{2}\ldots.,p_{l}}$ as shown in Fig. 5-1 ([7]). By rec-
tangle labelled $p_{i}(i=l, 2, \cdots, l)$ , we denote the integral 2-8tring tangle
as shown in Fig. 4-3. The Conway polynomial $\nabla_{K_{p_{1},p_{2},\cdots.p_{l}}}$ of $K_{p_{1},p_{2},\cdots,p_{l}}$ is
the following:

$\nabla_{K_{p_{1},p_{2},\cdots,p_{l}}}=1+\sum_{i=1}^{l}(-1)^{i-1}p_{l+1-i}z^{2i}$

$=1+p_{l}z^{2}-p_{l-1}z^{4}+\cdots+(-1)^{l-1}p_{1}z^{2l}$

Let $p_{l}=0$ and $p_{l-1}$ be an odd integer, then we have
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$P2$

$P1$

FIGURE 5-1

FIGURE 5-2
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$\nabla_{K_{p_{1},p_{2},\cdots,0}}=1-p_{l-l}z^{4}+p_{l-2}z^{6}+\cdots+(-1)^{1-1}p_{1}z^{2l}$ .
Let - $p_{l-1}=a_{4}$ and $(-1)^{\iota-1}p_{l+1-i}=a_{2i}(i=3,4, \cdots, l)$ . Therefore we have

$\nabla_{Kp_{1},p_{2,\prime}0}=f(z)$ .
And $K_{p_{1},p_{2,\cdots,0}}$ has a 3-trivial diagram with respect to $\{A_{1}, A_{2}, A_{3}\}$ as shown
in Fig. 5-2. Thi8 completes the proof of Theorem C.

REMARK. For prime knots whose minimal crossing numbers are less
than or equal to 9, the triviality indices of them are 2 except for the
following knots; $O(8_{2})=2$ , or 3. $O(8l4)=3$ , or 4. $O(8_{21})=3$ . $O(9_{8})=2,3$ ,
or 4. $0(9_{25})=2$ , or 3. $O(9_{26})=O(9_{27})=O(9_{41})=O(9_{u})=3$ .
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