On Some Differential Geometric Characterizations of the Center of a Lie Group

Tohru GOTOH

Chiba University
(Communicated by T. Nagano)

1. Introduction.

Let G be a Lie group and g its Lie algebra. Then J. Milnor [1] and K. Uesu [3] proved an interesting characterization of the center of g which asserts that an element X in g belongs to the center of g if and only if for any left invariant Riemannian metric on G, the inequality $K(X, Y) \ge 0$ holds for all Y in g, where K(X, Y) denote the sectional curvature of the plane section spanned by X and Y.

In this article we shall prove two analogous characterizations of the center of a Lie group:

THEOREM A. For a connected Lie subgroup H of G, the following conditions (A-1) and (A-2) are equivalent;

- (A-1) H is contained in the center of G,
- (A-2) H is totally geodesic with respect to any left invariant Riemannian metric on G.

THEOREM B. If G is nilpotent or compact, then for each $X \in \mathfrak{g}$ the following conditions (B-1) and (B-2) are equivalent;

- (B-1) X belongs to the center of \mathfrak{g} ,
- (B-2) the inequality $Ric(X) \ge 0$ holds for any left invariant Riemannian metric on G, where Ric(X) denotes the Ricci curvature in the direction X.

2. Proof of Theorem A.

In this section the following range of indices will be used;

$$A, B, C, \dots = 1, 2, 3, \dots, n = \dim G,$$

 $i, j, k, \dots = 1, 2, 3, \dots, p = \dim H,$
 $\alpha, \beta, \gamma, \dots = p + 1, \dots, n.$

A basis $\{X_A\}$ of g is called *adapted* provided that $X_i \in \mathfrak{h}$. We denote the corresponding structure constants by ξ_{ABC} . If G is equipped with a left invariant Riemannian metric and if $\{X_A\}$ is an orthonormal adapted basis, then the second fundamental form σ is given by ([2])

(2.1)
$$\sigma(X_i, X_j) = \frac{1}{2} \sum (\xi_{\alpha ij} + \xi_{\alpha ji}) X_{\alpha}.$$

Thus we easily obtain

PROPOSITION 2.2. The following (1) and (2) are equivalent;

- (1) H is totally geodesic with respect to any left invariant Riemannian metric on G,
- (2) the structure constants satisfy equalities $\xi_{\alpha ij} + \xi_{\alpha ji} = 0$ for each adapted basis of g.

This proposition shows the implication $(A-1) \Rightarrow (A-2)$.

For the converse, we make the following change of basis, for an arbitrary fixed adapted basis $\{X_A\}$:

(2.3)
$$\bar{X}_{i} = \sum b_{i}^{i} X_{j},$$

$$\bar{X}_{\alpha} = \sum a_{\alpha}^{j} X_{i} + \sum c_{\alpha}^{\beta} X_{\beta},$$

where (b_i^j) and (c_α^β) are non-singular matrices of degree p and n-p respectively and (a_α^j) is a (p, n-p)-matrix. Then $\{\bar{X}_A\}$ also is an adapted basis and we denote the corresponding structure constants by ξ_{ABC} . By a simple calculation, we have the following relation between $\xi_{\alpha ij}$ and $\xi_{\alpha ij}$:

(2.4)
$$\xi_{\alpha ij} = \sum \{ (a^h_{\alpha} b^k_i \xi_{hkl} + b^k_i c^{\beta}_{\alpha} \xi_{\beta kl}) \overline{b}^j_l - a^p_{\varepsilon} b^k_i \overline{b}^j_p c^{\beta}_{\alpha} \overline{c}^{\varepsilon}_{\gamma} \xi_{\beta k\gamma} \} ,$$

here (\bar{b}_i^j) (resp. $(\bar{c}_{\gamma}^{\epsilon})$) denote the inverse matrix of (b_i^j) (resp. (c_{γ}^{ϵ})). Since the equalities $\bar{\xi}_{\alpha ij} + \bar{\xi}_{\alpha ji} = 0$ hold for all (a_{α}^j) , (b_i^j) and (c_{α}^{β}) by assumption for H and Proposition 2.2, we obtain $\xi_{iAB} = 0$. This completes the proof of Theorem A. (q.e.d.)

3. Proof of Theorem B.

We first give some criterion for the existence of a left invariant Riemannian metric such that Ric(X) < 0 for a given $X \in \mathfrak{g}$. Assume that X does not belong to the center of \mathfrak{g} , and let $\{X_i\}$ be a basis of \mathfrak{g} with $X_1 = X$. For each n-tuple $\Theta = (\theta_1, \dots, \theta_n)$ of positive real numbers, we set $X_i^{\Theta} = X_i / \sqrt{\theta_i}$. Then we have ([1])

(3.1)
$$\operatorname{Ric}_{\boldsymbol{\theta}}(X_{1}^{\boldsymbol{\theta}}) = \sum_{i \geq 2, k \geq 1} \frac{1}{4\theta_{1}\theta_{i}} \left\{ -3\theta_{k}\xi_{1ik}^{2} + 2\xi_{1ik}(\theta_{1}\xi_{ik1} + \theta_{i}\xi_{k1i}) + \frac{1}{\theta_{k}} (\theta_{1}\xi_{ik1} - \theta_{i}\xi_{k1i})^{2} - \frac{4\theta_{1}\theta_{i}}{\theta_{k}} \xi_{k11}\xi_{kii} \right\},$$

where Ric_{θ} denotes the Ricci curvature of the left invariant Riemannian metric for which the basis $\{X_i^{\theta}\}$ is orthonormal. If we set

$$N(X) = \{ Y \in \mathfrak{g} \mid [X, Y] \neq 0 \},$$

$$A(X) = \{ Y \in N(X) \mid X, Y, [X, Y] \text{ are linerly independent} \},$$

$$B(X) = \{ Y \in N(X) \mid [X, Y] = \alpha X + \beta Y \text{ and } \beta \neq 0 \},$$

$$C(X) = \{ Y \in N(X) \mid [X, Y] = \alpha X \},$$

then $N(X) \neq \emptyset$ and $N(X) = A(X) \cup B(X) \cup C(X)$ (disjoint).

In the case where $A(X) \cup B(X) \neq \emptyset$, if we take X_2 in $A(X) \cup B(X)$, the inequality $\text{Ric}_{\Theta}(X_1^{\Theta}) < 0$ holds for suitable Θ by (3.1).

In the case where $A(X) \cup B(X) = \emptyset$, we define real valued functions λ_X and Λ_X by

$$[X, Y] = \lambda_{x}(Y)X,$$

(3.3)
$$\Lambda_X(Y) = \lambda_X(Y) \cdot \text{trace ad}(Y), \qquad Y \in \mathfrak{g}.$$

Then $g = C(X) \cup \mathfrak{Z}_X$ (disjoint), here \mathfrak{Z}_X denote the centralizer of $\{X\}$. Now let us take X_2 in C(X) = N(X) and set $\theta_1 = \theta$, $\theta_3 = \cdots = \theta_n = \theta^2$. Then (3.1) implies

$$\lim_{\theta \to \infty} \operatorname{Ric}_{\theta}(X_1^{\theta}) = \frac{1}{\theta_2} \Lambda_X(X_2).$$

Therefore if $\Lambda_X(Y) < 0$ holds for some $Y \in C(X)$, there exists a certain Θ such that $\operatorname{Ric}_{\Theta}(X_1^{\Theta}) < 0$. Conversely assume that there exists a left invariant Riemannian metric such that $\operatorname{Ric}(X) < 0$. If we take an orthonormal basis $\{X_1 (=X), X_2, \dots, X_n\}$ with $X_2 \in C(X)$ and $X_{\alpha} \in \mathfrak{Z}_X$, $\alpha \ge 3$, the corresponding structure constants ξ_{ijk} satisfy $\xi_{12i} = \xi_{1\alpha k} = 0$ for $i \ge 2$, $k \ge 1$ and $\alpha \ge 3$. Thus we obtain from (3.1)

$$\operatorname{Ric}(X) = \Lambda_X(X_2) + \frac{1}{4} \left(\sum_{\beta \geq 3} \xi_{2\beta_1^2} + \sum_{\alpha \geq 3} \xi_{\alpha 2_1^2} + \sum_{\alpha \geq 3, \beta \geq 3} \xi_{\alpha \beta_1^2} \right),$$

so that $\Lambda_X(X_2) < 0$.

Summarizing the above argument, we obtain

LEMMA 3.4. For each X not belonging to the center of g, the following conditions (1) and (2) are equivalent;

- (1) there exists a left invariant Riemannian metric on G such that Ric(X) < 0,
- (2) $N(X) \neq C(X)$ or N(X) = C(X) and $\Lambda_X(Y) < 0$ for some $Y \in C(X)$.

Now if G is nilpotent or compact, its Lie algebla g does not admit such an element X as is not contained in the center and satisfies the condition N(X) = C(X). Therefore Lemma 3.4 implies Theorem B. (q.e.d.)

REMARK. In general, Theorem B does not hold for unimodular or solvable Lie groups.

References

- [1] J. MILNOR, Curvature of left invariant metrics on Lie groups, Adv. in Math., 21 (1976), 293-329.
- [2] R. TAKAGI and S. YOROZU, Minimal foliations on Lie groups, Tôhoku Math. J., 36 (1984), 541-554.
- [3] K. Uesu, Left invariant metrics on Lie groups, Mem. Fac. Sci. Kyushu Univ., 35 (1981), 99-116.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIBA UNIVERSITY YAYOICHO, CHIBA 260, JAPAN