The C^1 Uniform Pseudo-Orbit Tracing Property

Kazuhiro SAKAI

Kisarazu National College of Technology (Communicated by J. Tomiyama)

Introduction.

Let M be a closed C^{∞} manifold and denote by $\mathrm{Diff}^1(M)$ the set of all diffeomorphisms of M endowed with the C^1 topology. For $\delta>0$, a sequence $\{x_i\}_{i=a}^{b-1}$ $(-\infty \le a < b \le \infty)$ is called a δ -pseudo-orbit for $f \in \mathrm{Diff}^1(M)$ if $d(f(x_i), x_{i+1}) < \delta$ for $a \le i \le b-1$, where d is a Riemannian distance on M. Given $\varepsilon>0$, a sequence $\{x_i\}_{i=a}^b$ is said to be f- ε -traced by a point $x \in M$ if $d(f^i(x), x_i) < \varepsilon$ for $a \le i \le b$. We say that f has the pseudo-orbit tracing property (abbrev. POTP) if for $\varepsilon>0$ there is $\delta>0$ such that every δ -pseudo-orbit for f can be f- ε -traced by some point in f. For compact spaces these are independent of the compatible metrics used. We say that f satisfies f0 uniform pseudo-orbit tracing property (abbrev. f0-1-UPOTP) if there is a f1 neighborhood f1 of f2 with the property that for f3 there is f4 such that every f5-pseudo-orbit of f5 with the property that for f5 there is f6 such that every f6-pseudo-orbit of f7 such that for f8 such that every f8-pseudo-orbit of f8 stronger than POTP.

Robinson [5] proved that if $f \in Diff^1(M)$ satisfies Axiom A and strong transversality, then f has POTP. We show the following.

THEOREM. If $f \in \text{Diff}^1(M)$ satisfies Axiom A and strong transversality, then f satisfies C^1 -UPOTP.

Combining the above theorem and a result proved in [6] we have the following corollary.

COROLLARY. If the dimension of M is ≤ 3 , then the set of all diffeomorphisms having C^1 -UPOTP is characterized as the set of all Axiom A diffeomorphisms satisfying strong transversality.

§1. Preliminary results.

Let $\Omega(f)$ be the non-wandering set of an Axiom A diffeomorphism f. The *local stable* and *unstable manifolds* are defined by

$$W_{\varepsilon}^{s}(x,f) = \{ y \in M : d(f^{n}(x), f^{n}(y)) \le \varepsilon \text{ for all } n \ge 0 \},$$

$$W_{\varepsilon}^{u}(x,f) = \{ y \in M : d(f^{-n}(x), f^{-n}(y)) \le \varepsilon \text{ for all } n \ge 0 \}$$

for $x \in \Omega(f)$. It is well known that there are $0 < \lambda < 1$ and $\varepsilon_0 > 0$ such that for every $0 < \varepsilon \le \varepsilon_0$ and $x \in \Omega(f)$,

$$\begin{split} &d(f^n(y),f^n(z))\leq \lambda^n d(y,z) & \text{for } y,z\in W^s_\varepsilon(x,f) \text{ and } n\geq 0\;,\\ &d(f^{-n}(y),f^{-n}(z))\leq \lambda^n d(y,z) & \text{for } y,z\in W^u_\varepsilon(x,f) \text{ and } n\geq 0\;. \end{split}$$

For $x \in \Omega(f)$ the stable and unstable manifolds are defined by

$$W^{s}(x,f) = \bigcup_{n \geq 0} f^{-n}(W^{s}_{\varepsilon_{0}}(f^{n}(x),f)),$$

$$W^{u}(x,f) = \bigcup_{n \geq 0} f^{n}(W^{u}_{\varepsilon_{0}}(f^{-n}(x),f)).$$

The $\Omega(f)$ is decomposed as a union $\Omega(f) = \Lambda_1(f) \cup \cdots \cup \Lambda_l(f)$ of basic sets $\Lambda_i(f)$. Then it is well known that $W^s(\Lambda_i(f), f) \cap W^u(\Lambda_i(f), f) = \Lambda_i(f)$ for $1 \le i \le l$ and $M = \bigcup_{i=1}^l W^\sigma(\Lambda_i(f), f)$, where

$$W^{\sigma}(\Lambda_i(f), f) = \bigcup_{x \in \Lambda_i(f)} W^{\sigma}(x, f)$$
 for $\sigma = s, u$.

An Axiom A diffeomorphism f satisfies $strong\ transversality$ if and only if the stable manifold $W^s(x,f)$ and the unstable manifold $W^u(x,f)$ are transversal for all $x \in M$ (i.e. $T_x W^s(x,f) + T_x W^u(x,f) = T_x M$). A cycle for a family $\{\Lambda_i(f)\}_{i=1}^l$ is a subsequence $\Lambda_{i_1}(f), \dots, \Lambda_{i_k}(f)$ such that $\Lambda_{i_1}(f) = \Lambda_{i_k}(f)$ and $W^u(\Lambda_{i_j}(f), f) \cap W^s(\Lambda_{i_{j+1}}(f), f) \neq \emptyset$ for $1 \le j < k$. Recall that the chain recurrent set for f, R(f), is the set of $x \in M$ such that for every $\delta > 0$ there is a δ -pseudo-orbit of f from f to f. Strong transversality implies no cycles (see [7]). Thus f is f-stable and f-stable and f-stable with f-stable f-stable f-stable and f-stable f-st

Let λ be as above. For $\varepsilon > 0$ with $0 < \varepsilon + \lambda < 1$, there is a compact neighborhood V_i of $\Lambda_i(f)$ $(1 \le i \le l)$ on which there exists an extended continuous splitting

$$T_{V_i}M = \tilde{E}_i^s \oplus \tilde{E}_i^u$$

of $T_{A_i(f)}M = E_i^s \oplus E_i^u$ (see [3]), and there is a C^1 neighborhood $\mathfrak{U}(f) \subset \mathrm{Diff}^1(M)$ of f such that for every $g \in \mathfrak{U}(f)$ and $x \in V_i \cap g^{-1}(V_i)$, $D_x g$ can be written as

$$D_{x}g = \begin{pmatrix} A_{x} & B_{x} \\ C_{x} & K_{x} \end{pmatrix} : \quad \tilde{E}_{i}^{s}(x) \oplus \tilde{E}_{i}^{u}(x) \longrightarrow \tilde{E}_{i}^{s}(g(x)) \oplus \tilde{E}_{i}^{u}(g(x))$$

satisfying $\max\{\|A_x\|, \|K_x^{-1}\|\} < \lambda$ and $\max\{\|B_x\|, \|C_x\|\} < \varepsilon$. By choosing $\mathfrak{U}(f)$ small enough, we may assume that there is a compact neighborhood U_i of $\Lambda_i(f)$ $(1 \le i \le l)$ such that for every $g \in \mathfrak{U}(f)$, we have $\Lambda_i(f) \subset U_i \subset V_i \cap g^{-1}(V_i)$.

Put $\delta = \min \frac{1}{4} \{1 - (\lambda + \varepsilon), \lambda^{-1} - \varepsilon - 1\} > 0$. Then there are a C^1 neighborhood

 $\mathfrak{U}_1(f) \subset \mathfrak{U}(f)$ and $\alpha_1 > 0$ such that for every $g \in \mathfrak{U}_1(f)$, if $0 < \alpha \le \alpha_1$ and $||v|| < \alpha$ $(v \in T_x M, x \in M)$, then

$$\|\exp_{g(x)}^{-1} \circ g \circ \exp_x v - D_x g(v)\| \le \delta \|v\|.$$

For $\alpha > 0$, define $\tilde{E}_i(x, \alpha) = \tilde{E}_i^s(x, \alpha) \times \tilde{E}_i^u(x, \alpha)$, where $\tilde{E}_i^{\sigma}(x, \alpha) = \{v \in \tilde{E}_i^{\sigma}(x) : ||v|| \le \alpha\}$ $(\sigma = s, u)$. Then there is $0 < \alpha_2 < \alpha_1$ such that for every $x \in \bigcup_{i=1}^l U_i$,

$$\widetilde{B}_i(x,\alpha_2) \subset \{v \in T_x M : ||v|| \le \alpha_1\}$$

and

$$g(\exp_x \tilde{B}_i(x, \alpha_2)) \subset \exp_{g(x)} \tilde{B}_i(g(x), \alpha_1)$$
 $(g \in \mathfrak{U}_1(f))$.

PROPOSITION 1.1. Under the above notations, for every $0 < \alpha \le \alpha_2$ there exists $\beta > 0$ such that if $\{x_j\}_{j=0}^{\infty} \subset U_i$ $(1 \le i \le l)$ is a β -pseudo-orbit of $g \in \mathfrak{U}_1(f)$, then there is $y \in M$ such that $d(g^j(y), x_j) < \alpha$ for all j.

PROOF. Fix $1 \le i \le l$. For $0 < \alpha \le \alpha_2$ and $x \in U_i$ put $B_i(x, \alpha) = \exp_x \tilde{B}_i(x, \alpha)$ and $\beta' = \min \frac{1}{8} \{1 - \lambda - \varepsilon, \lambda^{-1} - \varepsilon - 1\} \alpha > 0$. Then there is $0 < \beta \le \beta'$ such that $d(x, y) < \beta$ $(x, y \in U_i)$ implies

$$\rho_1(\exp_x \tilde{E}_i^{\sigma}(x, \alpha), \exp_y \tilde{E}_i^{\sigma}(y, \alpha)) < \beta' \qquad (\sigma = s, u),$$

where ρ_1 denotes the standard C^1 metric.

Let $\{x_j\}_{j=0}^{\infty} \subset U_i$ be a β -pseudo-orbit of $g \in \mathfrak{U}_1(f)$. Then $g(B_i(x_j, \alpha))$ stretches across the box $B_i(x_{j+1}, \alpha)$ in the unstable direction and contracts on the stable direction. The choice of β implies

$$z_k \in g(g(\cdots g(g(B_i(x_0,\alpha)) \cap B_i(x_1,\alpha)) \cap B_i(x_2,\alpha) \cdots) \cap B_i(x_{k-1},\alpha)) \cap B_i(x_k,\alpha) \neq \emptyset$$
 for $k > 0$. Put $y_k = g^{-k}(z_k)$. Then $y_k \in B_i(x_0,\alpha)$, $g(y_k) \in B_i(x_1,\alpha)$, \cdots , $g^k(y_k) \in B_i(x_k,\alpha)$. Therefore $d(g^j(y), x_j) \le \alpha$ for all $j \ge 0$ where $y = \lim_{k \to \infty} y_k$.

Since f is Ω -stable, every $g \in \mathfrak{U}_1(f)$ has the spectral decomposition $\Omega(g) = \Lambda_1(g) \cup \cdots \cup \Lambda_l(g)$. It is known (see [3]) that there exist a C^1 neighborhood $\mathfrak{U}_2(f) \subset \mathfrak{U}_1(f)$ and a compact neighborhood $\hat{U}_i \subset U_i$ of $\Lambda_i(f)$ $(1 \le i \le l)$ satisfying the following properties (1.1), (1.2) and (1.3).

For every $g \in \mathfrak{U}_2(f)$ each of \hat{U}_i contains $\Lambda_i(g)$ and

- $(1.1) \quad \text{there is a continuous extension } T_{\hat{U}_{i}}M = \hat{E}_{i,g}^{s} \oplus \hat{E}_{i,g}^{u} \text{ of } T_{A_{i}(g)}M = E_{i,g}^{s} \oplus E_{i,g}^{u} \text{ such that} \\ \begin{cases} D_{x}g(\hat{E}_{i,g}^{s}(x)) = \hat{E}_{i,g}^{s}(g(x)) & \text{and} & \|D_{x}g\|_{\hat{E}_{i,g}^{s}(x)}\| < \lambda & \text{if } x \in \hat{U}_{i} \cap g^{-1}(\hat{U}_{i}) \text{ , and} \\ D_{x}g^{-1}(\hat{E}_{i,g}^{u}(x)) = \hat{E}_{i,g}^{u}(g^{-1}(x)) & \text{and} & \|D_{x}g^{-1}\|_{\hat{E}_{i,g}^{u}(x)}\| < \lambda & \text{if } x \in \hat{U}_{i} \cap g(\hat{U}_{i}) \text{ .} \end{cases}$
- (1.2) There exist $\eta > 0$ and submanifolds $\hat{W}_{\eta}^{\sigma}(x, g)$ $(x \in \hat{U}_{i})$ for $\sigma = s, u$ such that

$$\begin{cases} g(\hat{W}^{s}_{\eta}(x,g)) \subset \hat{W}^{s}_{\eta}(g(x),g) & \text{and} \quad d(g(x),g(y)) < \lambda d(x,y) \ (y \in \hat{W}^{s}_{\eta}(x,g)) \\ & \text{if} \ x \in \hat{U}_{i} \cap g^{-1}(\hat{U}_{i}) \ , \quad \text{and} \\ g^{-1}(\hat{W}^{u}_{\eta}(x,g)) \subset \hat{W}^{u}_{\eta}(g^{-1}(x),g) & \text{and} \quad d(g^{-1}(x),g^{-1}(y)) < \lambda d(x,y) \ (y \in \hat{W}^{u}_{\eta}(x,g)) \\ & \text{if} \ x \in \hat{U}_{i} \cap g(\hat{U}_{i}) \ . \end{cases}$$

(1.3) There exists $\gamma > 0$ such that if $d(x, y) < \gamma$ $(x, y \in \hat{U}_i)$, then $\hat{W}_{\eta}^{s}(x, g)$ and $\hat{W}_{\eta}^{u}(y, g)$ meet transversely.

Let $B(\Lambda_i(f))$ be a compact neighborhood such that $\Lambda_i(f) \subset B(\Lambda_i(f)) \subset \widehat{U}_i \cap g^{-1}(\widehat{U}_i) \cap g(\widehat{U}_i)$ for $g \in \mathfrak{U}_2(f)$. For subspaces E and F of T_xM $(x \in B(\Lambda_i(f)))$ define

$$\tan (F, E) = \sup \{ \|w_2\|/\|w_1\| : w_1 \in E, w_2 \in E^\perp \text{ and } w_1 + w_2 \in F - \{0\} \}.$$

Then we can find $\theta_{1,i} > 0$ such that for every $g \in \mathfrak{U}_2(f)$, $\tan (E_{i,g}^u, E_{i,g}^{s\perp}) < \theta_{1,i}$ (see [4]). Thus, by (1.1) there exists $\theta_{2,i} > 0$ such that

$$\tan \not \prec (\hat{E}_{i,g}^u, \hat{E}_{i,g}^{s\perp}) < \theta_{2,i} \qquad (g \in \mathfrak{U}_2(f)).$$

LEMMA 1.2. Let $\theta_2 = \max\{\theta_{2,i}: 1 \le i \le l\}$. For $0 < \theta < \theta_2^{-1}(2+\theta_2)^{-1}$ there is $K(\theta) > 0$ such that for every $v \in T_x M$ $(x \in B(\Lambda_i(f)))$ and $g \in \mathfrak{U}_2(f)$, if $\tan \not< (v, \hat{E}^s_{i,g}(x)) < \theta$ and $\{x, g(x), \dots, g^N(x)\} \subset B(\Lambda_i(f))$ for some N > 0, then

$$\tan \not\preceq (D_x g^{-N}(v), \hat{E}_{i,\sigma}^s(g^{-N}(x))) \leq K(\theta) \cdot \lambda^{2N}$$
.

For the proof see [6, Claim 1].

Since $\mathfrak{U}_2(f)$ is very small, we take it satisfying $\operatorname{Ind} \Lambda_i(f) = \operatorname{Ind} \Lambda_i(g)$ $(1 \le i \le l)$ for all $g \in \mathfrak{U}_2(g)$. Here $\operatorname{Ind} \Lambda$ denotes the dimension of the stable subbundle E^s of a basic set Λ . Let $B_r(\Lambda)$ denote the closed neighborhood of a compact set Λ of M with radius r > 0.

- Lemma 1.3. There are a C^1 neighborhood $\mathfrak{U}_3(f)\subset \mathfrak{U}_2(f)$ and constants $\theta>0$ and $r_0>0$ $(B_{r_0}(\Lambda_i(f))\subset B(\Lambda_i(f))$ for $1\leq i\leq l)$ such that for $g\in \mathfrak{U}_3(f)$ and $1\leq i\neq j\leq l$ (Ind $\Lambda_i(g)\geq \operatorname{Ind}\Lambda_j(g)$), if $x\in \Lambda_j(g)$ and $y\in W^u(x,g)\cap B_{r_0}(\Lambda_i(f))$, then there is a linear subspace $H_y\subset T_yW^u(x,g)$ (dim $H_y=\dim M-\operatorname{Ind}\Lambda_i(g)$) such that
 - (i) if $\operatorname{Ind} \Lambda_i(g) \ge \dim M \operatorname{Ind} \Lambda_i(g)$, then $\tan (H_y, \tilde{E}_i^s(y)) \ge \theta$ and
 - (ii) if Ind $\Lambda_i(g) < \dim M \operatorname{Ind} \Lambda_i(g)$, then $\tan \not \prec (H_y, \tilde{E}_i^{s\perp}(y)) \le \theta^{-1}$.

PROOF. If this is false, for every n>0 there are $g_n \in \text{Diff}^1(M)$ $(\rho_1(g_n, f) < 1/n)$, $1 \le i_n \ne j_n \le l$ (Ind $\Lambda_{i_n}(g_n) \ge \text{Ind } \Lambda_{j_n}(g_n)$), $x_n \in \Lambda_{j_n}(g_n)$ and $y_n \in W^u(x_n, g_n) \cap B_{1/n}(\Lambda_{i_n}(f))$ such that for every linear subspace $H_{y_n} \subset T_{y_n} W^u(x_n, g_n)$ (dim $H_{y_n} = \dim M - \text{Ind } \Lambda_{i_n}(g_n)$),

$$\tan \not \prec (H_{y_n}, \tilde{E}_{i_n}^s(y)) < \frac{1}{n}$$
 if $\operatorname{Ind} \Lambda_{i_n}(g_n) \ge \dim M - \operatorname{Ind} \Lambda_{i_n}(g_n)$

and

$$\tan \not \prec (H_{y_n}, \, \widetilde{E}_{i_n}^{s \perp}(y_n)) > n \qquad \text{if } \operatorname{Ind} \Lambda_{i_n}(g_n) < \dim M - \operatorname{Ind} \Lambda_{i_n}(g_n) \; .$$

We assume, without loss of generality, that $i_n = i$, $j_n = j$ for all n > 0. By (1.2) and (1.3) there are $z_n \in \Lambda_i(g_n)$ and $w_n = \hat{W}^u_n(y_n, g_n) \cap \hat{W}^s_n(z_n, g_n)$. Notice that y_n converges to a point of $\Lambda_i(f)$. Since $\Lambda_i(g_n) \to \Lambda_i(f)$ $(n \to \infty)$ and $y_n \in W^u(\Lambda_j(g_n), g_n)$, we can find a strictly increasing sequence $J_n > 0$ such that $g_n^{-k}(y_n) \in B(\Lambda_j(f))$ $(0 \le k \le J_n)$ and $g_n^{-J_n-1}(y_n) \notin B(\Lambda_i(f))$. Let us put

$$r_1 = \inf_{g \in \mathfrak{U}_2(f)} \{ d(x, \Lambda_i(f)) : x \in B(\Lambda_i(f)) \text{ and } g^{-1}(x) \notin B(\Lambda_i(f)) \}.$$

Since

$$(1.4) d(g_n^{-j}(y_n), g_n^{-j}(w_n)) \le \lambda^j d(y_n, w_n)$$

for $0 \le j \le J_n$, there is N > 0 such that for all $n \ge N$, $g_n^{-J_n}(y_n) \in B(\Lambda_i(f)) \setminus B_{r_1}(\Lambda_i(f))$ and $g_n^{-J_n}(w_n) \notin B_{r_1/2}(\Lambda_i(f))$. Thus there exists c > 0 such that

(1.5)
$$\begin{cases} g_n^{-j}(B_c(g_n^{-J_n}(y_n))) \cap B_c(g_n^{-J_n}(y_n)) = \emptyset, \\ g_n^{j}(B_c(g_n^{-J_n}(w_n))) \cap B_c(g_n^{-J_n}(w_n)) = \emptyset \end{cases}$$

for every n>0 and j>0.

We deal with only the case $\operatorname{Ind} \Lambda_i(g_n) \ge \dim M - \operatorname{Ind} \Lambda_i(g_n)$ for all n > 0 (since the other case follows in a similar way). For every n > 0, let $H_{y_n} \subset T_{y_n} W^u(x_n, g_n)$ be a linear subspace such that $\dim H_{y_n} = \dim M - \operatorname{Ind} \Lambda_i(g_n)$ and $H_{y_n} \notin \hat{E}^s_{i,g_n}(y_n)$. Take $0 < \theta' < \theta_2^{-1}(2+\theta_2)^{-1}$. Then there is N' > N such that for every $n \ge N'$, $\tan \not\prec (H_{y_n}, \hat{E}^s_{i,g_n}(y_n)) \le \theta'$ (since $\tan \not\prec (\hat{E}^s_{i,g_n}(y_n), \tilde{E}^s_i(y_n)) \to 0$ as $n \to \infty$). By lemma 1.2

$$\tan \neq (D_{y_n} g_n^{-J_n}(H_{y_n}), \hat{E}_{i,g_n}^s(g_n^{-J_n}(y_n))) \to 0$$

as $n \to \infty$, and so

$$\tan \bigstar (D_{y_n}g_n^{-J_n}(H_{y_n}),\,\delta_{g_n^{-J_n}(y_n)\circ g_n^{-J_n}(w_n)}\circ \hat{E}^s_{i,g_n}(g_n^{-J_n}(w_n)))\to 0$$

as $n \to \infty$, where $\delta_{x o y} : T_x M \to T_y M$ denotes the parallel transform. From (1.4) and (1.5) there are n > N' and \tilde{g}_n arbitrarily near to f such that $W^u(x_n, \tilde{g}_n) \cap W^s_{\eta}(z_n, \tilde{g}_n) \neq \emptyset$ and $W^u(x_n, \tilde{g}_n)$ does not meet transversally to $W^s_{\eta}(z_n, \tilde{g}_n)$, thus contradicting.

LEMMA 1.4. There are a C^1 neighborhood $\mathfrak{U}_4(f) \subset \mathfrak{U}_3(f)$ and compact neighborhoods $\Lambda_i(f) \subset B_i \subset B_{r_0/4}(\Lambda_i(f))$ $(1 \leq i \leq l)$ such that for every $0 \leq \epsilon \leq \epsilon_1$, there exists $0 < \delta \leq \epsilon$ such that $g \in \mathfrak{U}_4(f)$, $1 \leq i \neq j \leq l$ (Ind $\Lambda_i(g) \geq \operatorname{Ind} \Lambda_j(g)$), $y \in W^u(x, g) \cap B_i$ $(x \in \Lambda_j(g))$ and $d(z, y) < \delta$ $(z \in B_i)$ imply $C_y \cap \exp_z \tilde{E}_i^s(z, \epsilon) \neq \emptyset$. Here C_y denotes the connected component of y in $W^u(x, g) \cap B_{r_0}(\Lambda_i(f))$.

PROOF. If this is false, then there is $0 < \varepsilon \le \varepsilon_1$ such that for every n > 0 there are $g_n \in \text{Diff}^1(M)$, $1 \le i_n \ne j_n \le l$ (Ind $\Lambda_{i_n}(g_n) \ge \text{Ind } \Lambda_{j_n}(g_n)$), $x_n \in \Lambda_{j_n}(g_n)$, $y_n \in W^u(x_n, g_n) \cap B_{1/n}(\Lambda_{i_n}(f))$ and $z_n \in B_{1/n}(\Lambda_{i_n}(f))$ satisfying

$$\rho_1(g_n,f)<\frac{1}{n}, \qquad d(z_n,y_n)<\frac{1}{n}$$

and

$$(1.6) C_{\nu_n} \cap \exp_{z_n} \tilde{E}_{i_n}^s(z_n, \varepsilon) = \emptyset.$$

We assume, without loss of generality, that $i_n=i$, $j_n=j$ for all n>0 and put $w_n=\hat{W}^s_\eta(y_n,g_n)\cap\hat{W}^u_\eta(z_n,g_n)$. Thus $d(y_n,w_n)\to 0$ as $n\to\infty$ (since $d(z_n,y_n)\to 0$ as $n\to\infty$). Since z_n converges to $\Lambda_i(f)$, as in the proof of lemma 1.3, we can find a strictly increasing sequence $J_n>0$ such that $g_n^{-k}(y_n)\in B_{r_0/2}(\Lambda_i(f))$ $(0\le k\le J_n)$, $g_n^{-J_n-1}(y_n)\notin B_{r_0/2}(\Lambda_i(f))$. By lemma 1.3, for every n>0 there is an Ind $\Lambda_i(g_n)$ -dimensional subdisk $D(g_n^{-J_n}(y_n))\subset W^u(g_n^{-J_n}(x_n),g_n)$ centered at $g_n^{-J_n}(y_n)$ such that $\tan \not\prec (T_xD(g_n^{-J_n}(y_n)),\tilde{E}^s_i(x))\ge \theta$ or $\tan \not\prec (T_xD(g_n^{-J_n}(y_n),\tilde{E}^s_i(x))\le \theta^{-1}$ for $x\in D(g_n^{-J_n}(y_n))$. We can assume that $\inf_{n>0} \operatorname{diam} D(g_n^{-J_n}(y_n))>0$, where $\operatorname{diam} D(D\subset W^u(x))$ denotes the diameter of D with respect to the metric on $W^u(x)$ induced from $\|\cdot\|$. Put $C_\eta(g_n^{-J_n}(y_n))=D(g_n^{-J_n}(y_n))\cap B_\eta(g_n^{-J_n+j}(y_n))$ and let $C_\eta(g_n^{-J_n+j}(y_n))$ be the connected component of $g_n^{-J_n+j}(y_n)$ in $g_n(C_\eta(g_n^{-J_n+j-1}(y_n)))\cap B_\eta(g_n^{-J_n+j}(y_n))$ for $1\le j\le J_n$. Then, by (1.2) $C_\eta(y_n)$ converges to $\hat{W}^u(w_n,g_n)$ and so $C_{v_n}\cap \exp_{z_n}\tilde{E}^s_i(z_n,\varepsilon)\neq\emptyset$ for sufficiently large n, thus contradicting.

§ 2. The behavior of pseudo-orbits.

The purpose of this section is to investigate the behavior of pseudo-orbits of an Axiom A diffeomorphism f satisfying strong transversality. To do so we use a filtration, i.e. a sequence of a compact subsets $\{M_i\}_{i=0}^l$ of M and a sequence of integers $\{m_i\}_{i=1}^l$ such that

$$\emptyset = M_0 \subset M_1 \subset \cdots \subset M_l = M,$$

$$f(M_i) \subset \operatorname{int} M_i, \quad M_i \subset \bigcup_{1 \le j \le i} W^s(\Lambda_j(f)),$$

$$f^{m_i}(M_{i-1}) \subset \operatorname{int} M_i \quad \text{and}$$

$$\Lambda_i(f) \subset \operatorname{int} M_i \setminus f^{-m_i}(M_{i-1}) \subset B_i \quad \text{for} \quad 1 \le i \le l.$$

Fix $\beta_0 > 0$ such that for every $1 \le i \le l$

$$B_{\beta_0}(f(M_i)) \subset \operatorname{int} M_i \quad \text{and}$$

$$B_{\beta_0}(f(f^{-m_i}(M_{i-1}))) \subset \operatorname{int} f^{-m_i}(M_{i-1}),$$

and choose $\gamma_0 > 0$ such that $g \in \text{Diff}^1(M)$ $(d(f, g) < \gamma_0)$ imply

$$B_{\beta_0}(g(M_i)) \subset \operatorname{int} M_i$$
 and $B_{\beta_0}(g(f^{-m_i}(M_{i-1}))) \subset \operatorname{int} f^{-m_i}(M_{i-1})$

for every $1 \le i \le l$.

PROPOSITION 2.1. Under the above notations, there are constants $\gamma_3 > 0$, L > 0 and $\beta_3 > 0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_3)$, $2 \le j \le l-1$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_3)$, if there exists $i_1 \in \mathbb{Z}$ such that $x_i \in B_{j+1}$ $(i \le i_1)$ and $x_{i_1+1} \notin B_{j+1}$, then $x_{i_1+L} \in \text{int } M_j$ and

- (i) $x_{i_1+2L} \in \text{int } M_{i-1} \text{ when } x_{i_1+L} \in f^{-m_j}(M_{j-1}),$
- (ii) $x_{i_1+3L} \in \operatorname{int} M_{j-1}$ when $x_{i_1+L} \notin f^{-m_j}(M_{j-1})$ and $\operatorname{Ind} \Lambda_j(f) < \operatorname{Ind} \Lambda_{j+1}(f)$, and furthermore
- (iii) one of the following (a) and (b) holds when $x_{i_1+L} \notin f^{-m_j}(M_{j-1})$ and Ind $\Lambda_i(f) \ge \operatorname{Ind} \Lambda_{i+1}(f)$;
 - (a) $x_{i_1+L+n} \in B_j$ for all $n \ge 0$,
 - (b) there exists n>0 such that $x_{i_1+L+k} \in B_j$ (0 < k < n), and $x_{i_1+2L+n} \in \operatorname{int} M_{j-1}$.

The proof is divided into three lemmas.

LEMMA 2.2. There are $0 < \gamma_1 < \gamma_0$, $L_1 > 0$ and $0 < \beta_1 \le \beta_0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_1)$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_1)$, if there exist $i_1 \in \mathbb{Z}$ and $1 \le j \le l-1$ such that $x_i \in B_{j+1}$ $(i \le i_1)$ and $x_{i_1} \notin B_{j+1}$, then $x_{i_1+L_1} \in \text{int } M_j$.

PROOF. First we prove that there are $0 < \gamma_1 < \gamma_0$, $L_1 > 0$ and $0 < \beta_1 \le \beta_0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_1)$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_1)$, if there exist $1 \le j \le l-1$ and $i_1 \in \mathbb{Z}$ such that $x_i \in B_{j+1}$ $(i \le i_1)$, and $x_{i_1+1} \notin B_{j+1}$, then there exists $0 < l_1 \le L_1$ satisfying $x_{i_1+l_1} \in \text{int } M_j$.

Suppose that this is false. For every n>0 there are $g_n \in \text{Diff}^1(M)$ $(d(f,g_n)<1/n)$, $1 \le j_n \le l$, a (1/n)-pseudo-orbit $\{x_i^n\}$ of g_n and an integer i_i^n such that $x_i^n \in B_{j_n+1}$ $(i \le l_1^n)$, $x_{l_1^n+1}^n \notin B_{j_n+1}$ but $x_{l_1^n+1}^n \notin \text{int } M_{j_n}$ for all $0 < i \le n$. We may assume that $j_n = j$ for all n > 0 and

(2.1)
$$x = \lim_{n \to \infty} x_{i_n+1}^n \notin \Lambda_{j+1}(f).$$

Since $x_{-1} = \lim_{n \to \infty} x_{i_n}^n \in B_{j+1}$, we have

$$d(f(x_{-1}), x) \le d(f(x_{-1}), f(x_{i_n}^n)) + d(f(x_{i_n}^n, g_n(x_{i_n}^n)) + d(g_n(x_{i_n}^n), x_{i_n+1}) + d(x_{i_n+1}, x) \to 0 \qquad (n \to \infty)$$

and so $f(x_{-1}) = x$. Since $x_{-2} = \lim_{n \to \infty} x_{i_n-1}^n \in B_{j+1}$, we have $f(x_{-2}) = x_{-1}$, and so $f^2(x_{-2}) = x$. Inductively we have $f^{-i}(x) \in B_{j+1}$ for all $i \ge 0$ and so

$$(2.2) x \in W^{\mathsf{u}}(\Lambda_{j+1}(f)).$$

Put $x_i = \lim_{n \to \infty} x_{i_n+1+i}^n \notin \text{int } M_j \text{ for } i \ge 1$. As above we have for all i > 0

$$(2.3) fi(x) = xi \notin int Mj.$$

Since $x \in W^s(\Lambda_{j+1}(f))$ and $f^{-i}(x)$ converges to a point of $\Lambda_{j+1}(f) \subset \operatorname{int} M_{j+1}$ as $i \to \infty$,

we have $x \in M_{j+1}$. Thus $x \in \bigcup_{1 \le k \le j+1} W^s(\Lambda_k(f))$ (since $M_{j+1} \subset \bigcup_{1 \le k \le j+1} W^s(\Lambda_k(f))$). However $x \notin \bigcup_{1 \le k \le j} W^s(\Lambda_k(f))$. Indeed, if there is $1 \le k \le j$ such that $x \in W^s(\Lambda_k(f))$, then $f^i(x)$ converges to a point of $\Lambda_k(f) \subset \operatorname{int} M_k \subset \operatorname{int} M_j$ as $i \to \infty$, which is contrary to (2.3). Thus $x \in W^s(\Lambda_{j+1}(f)) \cap W^u(\Lambda_{j+1}(f)) = \Lambda_{j+1}(f)$ by (2.2). This is a contradiction since $x \notin \Lambda_{j+1}(f)$.

Thus there is $0 < l_1 \le L_1$ such that $x_{i_1+l_1} \in \text{int } M_j$, and so, by the choice of $\beta_0 > 0$, we have $x_{i_1+l_1+n} \in \text{int } M_j$ for all $n \ge 0$.

LEMMA 2.3. There are $0 < \gamma_2 \le \gamma_1$, $0 < \beta_2 \le \beta_1$ and $L_2 > 0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_2)$, $1 \le j \le l-1$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_2)$,

- (i) if there exists $k \in \mathbb{Z}$ such that $x_k \in \text{int } M_j$ and $x_i \notin f^{-m_j}(M_{j-1})$ $(i \ge k)$, then $x_i \in B_j$ for $i \ge k$, and
- (ii) if there exist $k \in \mathbb{Z}$ and $i_2 \ge k$ such that $x_k \in \text{int } M_j$ and $x_{i_2} \in f^{-m_j}(M_{j-1})$, then $x_{i_2+L_2} \in \text{int } M_{j-1}$.

PROOF. Take and fix $1 \le j \le l$. For $g \in \text{Diff}^1(M)$ $(d(f, g) < \gamma_1)$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_1)$, if there is $k \in \mathbb{Z}$ such that $x_k \in \text{int } M_j$ and $x_i \notin f^{-m_j}(M_{j-1})$ $(i \ge k)$, then we have $x_i \in B_j$ since

$$\Lambda_i(f) \subset \operatorname{int} M_i \setminus f^{-m_j}(M_{i-1}) \subset B_i$$
.

This proves (i).

To prove (ii), we check that there are $0 < \gamma_2 \le \gamma_1$, $0 < \beta_2 \le \beta_1$ and $L_2 > 0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_2)$, $1 \le j \le l-1$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_2)$, if there are $k \in \mathbb{Z}$ and $i_2 \ge k$ with $x_k \in \text{int } M_j$ and $x_{i_2} \in f^{-m_j}(M_{j-1})$, then there exists $0 < l_2 \le L_2$ such that $x_{i_2+l_2} \in \text{int } M_{j-1}$.

If this is false, for n>0 there are $g_n \in \text{Diff}^1(M)$ $(d(f,g_n)<1/n)$, $1 \le j_n \le l-1$, a (1/n)-pseudo-orbit $\{x_i^n\}$ of g_n and integers $k_n \in \mathbb{Z}$ and $i_2^n \ge k_n$ such that $x_{k_n}^n \in \text{int } M_{j_n}$, $x_{i_2}^n \in f^{-m_{j_n}}(M_{j_{n-1}})$ and

(2.4)
$$x_{i_2+i}^n \notin \text{int } M_{j_n-1} \quad \text{for } 0 < i \le n.$$

We may assume that $j=j_n$ for n>0. The choice of β_0 implies $x_{i_2+i}^n \in f^{-m_j}(M_{j-1})$ for $i\geq 0$, and so $x=\lim_{n\to\infty} x_{i_2}^n \in f^{-m_j}(M_{j-1})$. Thus

(2.5)
$$f^{m_j+1}(x) \in f(M_{j-1}) \subset \operatorname{int} M_{j-1} .$$

Since $d(f, g_n) < 1/n$ and $d(g_n(x_{i_2+i}^n), x_{i_2+i+1}) < 1/n$ for $i \ge 0$, we have $f^i(x) \notin \text{int } M_{j-1}$ for i > 0 by (2.4). This contradicts (2.5).

If there exists $0 < l_2 \le L_2$ with $x_{i_2+l_2} \in \text{int } M_j$, then $x_{i_2+l_2+i} \in \text{int } M_j$ for $i \ge 0$, and so $x_{i_2+L_2} \in \text{int } M_j$.

LEMMA 2.4. Let $2 \le j \le l-1$ and L_1 be as in lemma 2.2. Suppose that Ind $\Lambda_j(f) < \text{Ind } \Lambda_{j+1}(f)$. Then there are $0 < \gamma_j \le \gamma_2$, $0 < \beta_j \le \beta_2$ and $L_j > 0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_j)$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_j)$, if there exists $i_3 \in \mathbb{Z}$

satisfying $x_i \in B_{j+1}(i \le i_3)$ and $x_{i_3+1} \notin B_{j+1}$, then $x_{i_3+L_1+L_j} \in f^{-m_j}(M_{j-1})$.

PROOF. Under the assumption of this lemma, we see that there are $0 < \gamma_j \le \gamma_2$, $0 < \beta_j \le \beta_2$ and $L_j > 0$ such that for $g \in \text{Diff}^1(M)$ $(d(f, g) < \gamma_j)$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_j)$, if there exists $i_3 \in \mathbb{Z}$ satisfying $x_i \in B_{j+1}$ $(i \le i_3)$ and $x_{i_3+1} \notin B_{j+1}$, then there exists $0 < l_j \le L_i$ such that $x_{i_3+L_1+l_i} \in f^{-m_j}(M_{j-1})$.

If this is false, for n > 0 there are $g_n \in \text{Diff}^1(M)$ $(d(f, g_n) < 1/n)$, a (1/n)-pseudo-orbit $\{x_i^n\}$ of g_n and $i_3^n \in \mathbb{Z}$ such that $x_i^n \in B_{j+1}$ $(i \le i_3)$, $x_{i_3^n+1}^n \notin B_{j+1}$ and $x_{i_3^n+L_1+i}^n \notin f^{-m_j}(M_{j-1})$ for $0 < i \le n$.

By lemma 2.2, $x_{i3+L_1}^n \in \text{int } M_j$ and so $x_{i3+L_1+i}^n \in \text{int } M_j$ for $i \ge 0$. Thus for every $0 < i \le n$,

(2.6)
$$x_{i_1^n + L_1 + i}^n \in \operatorname{int} M_i \setminus f^{-m_j}(M_{i-1}) \subset B_i.$$

Put $x = \lim_{n \to \infty} x_{i3}^n$. Then $f^{-i}(x) \in B_{j+1}$ for every $i \ge 0$. On the other hand, by (2.6) we have $f^{L_1+i}(x) \in B_j$ for $i \ge 0$ and so $x \in W^s(\Lambda_j(f))$. Thus $x \in W^s(\Lambda_j(f)) \cap W^u(\Lambda_{j+1}(f)) \ne \emptyset$ and $\operatorname{Ind} \Lambda_i(f) \ge \operatorname{Ind} \Lambda_{j+1}(f)$. This is a contradiction.

By the choice of β_0 it is clear that $x_{i_3+L_1+l_j} \in f^{-m_j}(M_{j-1})$ implies $x_{i_3+L_1+L_j} \in f^{-m_j}(M_{j-1})$.

By the same manner stated in the proof of lemma 2.4 we can prove that for $2 \le i \ne j \le l-1$ (Ind $\Lambda_i(f) < \text{Ind } \Lambda_j(f)$), there are $0 < \gamma_{ij} \le \gamma_2$, $0 < \beta_{ij} \le \beta_2$ and $L_{ij} > 0$ such that for $g \in \text{Diff}^1(M)$ $(d(f,g) < \gamma_{ij})$ and a β -pseudo-orbit $\{x_i\}$ of g $(0 < \beta \le \beta_{ij})$, if there are $i_3, i_4 \in \mathbb{Z}$ $(i_3 < i_4)$ such that $x_i \in B_{j+1}$ $(i \le i_3)$ and $x_{i_4} \in \text{int } M_i$, then $x_{i_4 + L_{ij} + L_1} \in f^{-m_i}(M_{i-1})$. Now put

$$\begin{split} &\gamma_3 = \min\{\gamma_{ij}: 2 \leq i \neq j \leq l-1 \text{ with } \operatorname{Ind} \Lambda_i(f) < \operatorname{Ind} \Lambda_j(f)\} \;, \\ &\beta_3 = \min\{\beta_{ij}: 2 \leq i \neq j \leq l-1 \text{ with } \operatorname{Ind} \Lambda_i(f) < \operatorname{Ind} \Lambda_j(f)\} \;, \\ &L_3 = \max\{L_{ij}: 2 \leq i \neq j \leq l-1 \text{ with } \operatorname{Ind} \Lambda_i(f) < \operatorname{Ind} \Lambda_j(f)\} \quad \text{and} \quad L = \max\{L_1, L_2, L_3\} \;. \end{split}$$

Then Proposition 2.1 is concluded.

3. Proof of the theorem.

Let γ_3 , L and β_3 be as in proposition 2.1 and put L'=3lL. Take and fix $\mathfrak{U}(f)\subset\mathfrak{U}_4(f)\cap\{g\in\mathrm{Diff}^1(M):d(f,g)<\gamma_3\}$. Then there are $0<\beta_4\leq\beta_3$ and K>0 such that $g\in\mathfrak{U}(f),\ d(x,y)<\beta_4\ (x,y\in M)$ implies $d(g(x),g(y))\leq Kd(x,y)$. Fix $0<\varepsilon\leq\beta_4$ and take $0<\varepsilon_1\leq\varepsilon$ satisfying

$$(1+K+K^2+\cdots+K^{L'})\cdot 2\varepsilon_1<\varepsilon$$
.

For every $g \in \mathfrak{U}(f)$, $x \in \Lambda_j(g)$ $(1 < j \le l)$ and $y \in W^u(x, g) \cap B_j$, we denote by C_y the connected component of y in $B_{\varepsilon_1}(y) \cap W^u(x, g)$. Let d_u be a metric on $W^u(x, g)$ induced

from $\|\cdot\|$ and put $\delta' = \min_{1 < j \le l} \delta'_j$, where

$$\delta_{j}' = \inf_{\substack{g \in \mathcal{U}(f) \\ x \in \Lambda_{j}(g) \\ y \in W^{u}(x,g) \cap B_{j}}} \min_{0 \leq i \leq L'} d_{u}(g^{i}(\partial C_{y}), g^{i}(y)) > 0.$$

Let $\theta > 0$ and $0 < \delta(\varepsilon) \le \varepsilon$ be numbers given in lemmas 1.3 and 1.4 respectively. It is easy to see that for $\delta_1 = \sin(\theta/2) \cdot \min\{\delta', \delta(\varepsilon)\}$, if there are $x' \in B_{j'}$ $(1 \le j' < j \le l)$ and $0 < l' \le L'$ such that $d(g^{l'}(y), x') < \delta_1$, then for every $x \in \exp_{x'} \tilde{E}_{j'}^s(x', \delta_1)$,

$$\exp_x \tilde{E}_{i'}^s(x,\varepsilon) \cap g^{l'}(C_v) \neq \emptyset$$
.

Pick $0 < \delta_2 < \delta_1$ such that

$$(1+K+K^2+\cdots+K^{L'})\delta_2<\delta_1$$

and let $0 < \delta_3 = \delta_3(\delta_2/2) < \delta_2/2$ be a number as in proposition 1.1.

For every $g \in \mathfrak{U}(f)$ and a δ -pseudo-orbit $\{x_i\}$ of g $(0 < \delta \le \delta_3)$, we may assume that there are $1 \le j_1 \le l$ and $i_1 \in \mathbb{Z}$ such that $x_i \in B_{j_1}(i \le i_1)$ and $x_{i_1+1} \notin B_{j_1}$. Thus, by proposition 2.1 there are $1 \le j_1 \ne j_2 \le l$ (Ind $\Lambda_{j_2}(f) \ge \text{Ind } \Lambda_{j_1}(f)$) and $0 \le n_1 \le L$ such that $x_{i_1+n_1-1} \notin B_{j_2}$ and $x_{i_1+n_1} \in B_{j_2}$. Moreover, there exists $0 \le \bar{n}_1 = \bar{n}_1(\{x_i\}) \le \infty$ such that $x_{i_1+n_1+i} \in B_{j_2}$ for $0 \le i \le \bar{n}_1$. By proposition 1.1

$$D^{u}(x_{i}, \{x_{i}\}) = \{x \in M : d(g^{-i}(x), x_{i,-i}) \le \varepsilon \text{ for all } i \ge 0\}$$

contains a $(\dim M - \operatorname{Ind} \Lambda_{i_1}(g))$ -dimensional disk. Put

$$y = D^{u}(x_{i_1}, \{x_i\}) \cap \exp_{x_{i_1}} \tilde{E}^{s}_{j_1}(x_{i_1}, \varepsilon_1)$$
.

Then $d(y, x_{i_1}) < \delta_2$ and $d(g^{n_1}(y), x_{i_1+n_1}) < \delta_1$.

For every

$$z \in g(g^{n_1}(D^u(x_{i_1}, \{x_i\}))) \cap B_{i_2}(x_{i_1+n_1}, \varepsilon)$$
,

we have $z \in B_{j_2}(x_{i_1+n_1+1}, \varepsilon)$, $g^{-1}(z) \in B_{j_2}(x_{i_1+n_1}, \varepsilon)$ and $d(g^{-i-1}(z), x_{i_1+n_1-i}) < \varepsilon$ for all $i \ge 0$. By the same reason for every

$$z \in g(g(g^{n_1}(D^{u}(x_{i_1}, \{x_i\})) \cap B_{j_2}(x_{i_1+n_1+1}, \varepsilon)) \cap B_{j_2}(x_{i_1+n_1+2}, \varepsilon),$$

we have $z \in B_{j_2}(x_{i_1+n_1+2}, \varepsilon)$, $g^{-1}(z) \in B_{j_2}(x_{i_1+n_1+1}, \varepsilon)$, $g^{-2}(z) \in B_{j_2}(x_{i_1+n_1}, \varepsilon)$ and $d(g^{-2-i}(z), x_{i_1+n_1-i}) < \varepsilon$ for all $i \ge 0$. Repeating this way $\{x_i\}$ is g- ε -traced for $i \le i_1+n_1+\bar{n}_1$. For the case $0 \le \bar{n}_1 < \infty$, there are $0 < n_2 \le L'$ and $1 \le j_3 \ne j_2 \le l$ (Ind $A_{j_3}(f) \ge \text{Ind } A_{j_1}(f)$) such that $x_{i_1+n_1+\bar{n}_1+n_2-1} \notin B_{j_3}$ and $x_{i_1+n_1+\bar{n}_1+n_2} \in B_{j_3}$. Furthermore, by proposition 2.1 (iii) there is $0 < \bar{n}_2 = \bar{n}_2(\{x_i\}) \le \infty$ such that $x_{i_1+n_1+\bar{n}_1+n_2+i} \in B_{j_3}$ ($0 \le i \le \bar{n}_2$). Since δ is small enough, we can repeat the above arguments to get a g- ε -tracing point of $\{x_i\}$ for all $i \le i_1+n_1+\bar{n}_1+n_2+\bar{n}_2$. Thus, by induction $\{x_i\}$ is g- ε -traced.

References

- [1] J. E. Franke and J. F. Selgrade, Hyperbolicity and chain recurrence, J. Diff. Eqs., 26 (1977), 27-36.
- [2] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, *Global Analysis*, Proc. Sympos. Pure Math. AMS, 14 (1970), 133-163.
- [3] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math., 9 (1970), 121–134.
- [4] F. Przytycki, Anosov endomorphisms, Studia Math., 58 (1976), 249–285.
- [5] C. Robinson, Stability theorem and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 7 (1977), 425–437.
- [6] K. SAKAI, Diffeomorphisms with pseudo orbit tracing property, to appear in Nagoya J. Math.
- [7] S. SMALE, Differentiable dynamical systems, Bull. AMS, 73 (1967), 747-817.
- [8] S. SMALE, The Ω-stability theorem, Global Analysis, Proc. Sympos. Pure. Math. AMS, 14 (1970), 289–297.

Present Address:

Kisarazu National College of Technology Kisarazu, Chiba 292, Japan