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Introduction.

Let M be a closed C* manifold and denote by Diff'(M) the set of all
diffeomorphisms of M endowed with the C! topology. For 6>0, a sequence {x;}%Z2
(—o<a<b<owo) is called a S-pseudo-orbit for feDiff' (M) if d(f(x;), x;+,)<6 for
a<i<b-—1, where d is a Riemannian distance on M. Given ¢>0, a sequence {x;};2, is
said to be f-e-traced by a point xe M if d(fi(x), x;)<e for a<i<b. We say that f has
the pseudo-orbit tracing property (abbrev. POTP) if for e>0 there is § >0 such that
every J-pseudo-orbit for f can be f-e-traced by some point in M. For compact spaces
these are independent of the compatible metrics used. We say that f satisfies C! uniform
pseudo-orbit tracing property (abbrev. C'-UPOTP) if there is a C! neighborhood A(f)
of f with the property that for £¢>0 there is § >0 such that every §-pseudo-orbit of
geU(f) is g-e-traced by some point. By definition it is checked that C!'-UPOTP is
stronger than POTP.

Robinson [S] proved that if fe Diff ' (M) satisfies Axiom A and strong transversality,
then f has POTP. We show the following.

THEOREM. [ffe Diff'(M) satisfies Axiom A and strong transversality, then f satisfies
C!-UPOTP.

Combining the above theorem and a result proved in [6] we have the following
corollary.

COROLLARY. If the dimension of M is <3, then the set of all diffeomorphisms having
C'-UPOTP is characterized as the set of all Axiom A diffeomorphisms satisfying strong
transversality. ‘

§1. Preliminary results.

Let Q(f) be the non-wandering set of an Axiom A diffeomorphism f. The local
stable and unstable manifolds are defined by
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Wi x,f)={yeM : d(f*(x),"(y)<e for all n>0},
wWHx,)={yeM :d(f "(x).f "(y)<e for all n>0}

for xe Q(f). It is well known that there are 0 <A<1 and &, >0 such that for every
0<e<gy and x e Q(f),

d(f"(y), f(2)<A"d(y,z)  for y,ze Wi(x,f) and n=0,
d(f ~"(y).f ") <A"d(y,z) for y,ze Wi(x,f) and n>0.
For x e €(f) the stable and unstable manifolds are defined by

wx,N=U f"(We(f"x).0)

nz0
W*(x,f)= Lz)of"( Welf ~"(x1 1)) -

The Q(f) is decomposed as a union Q(f)=A4,(f)u- - - vAL(f) of basic sets 4;(f). Then
it is well known that W3(A,(f),NoW(A,(N),N=A,(f) for 1<i<l and M=

Ui=l 1 Wﬂ(/li(f), f), where
WA= U W  for o=su.

xeAi(S)

An Axiom A diffeomorphism f satisfies strong transversality if and only if the stable
manifold W*(x, f) and the unstable manifold W*(x, f) are transversal for all xe M (i.e.
T.Wx, )+ T W*x,f)=T,M). A cycle for a family {A;(N};d, is a subsequence
Ay (), -, A () such that A, (f)=A4,(f) and W*(4,,()),N)n w4, N).f)#S for
1<j<k. Recall that the chain recurrent set for f, R(f), is the set of xe M such that for
every 6> 0 there is a -pseudo-orbit of f from x to x. Strong transversality implies no
cycles (see [7]). Thus fis Q2-stable and R(f) coincides with ©(f) (see [1] and [8]).

Let 4 be as above. For ¢>0 with 0 <g¢+ A< 1, there is a compact neighborhood V;
of A,(f) (1 <i<l) on which there exists an extended continuous splitting

T, M=E®E!

of Ty M=E®E} (see [3]), and there is a C?! neighborhood HU)cDiﬁ‘ M) of f
such that for every geN(f) and xe€ V;ng~'(V;), D,g can be written as

Ax B x s ~u s, Ly
D, =( C K): E(x)® E}(x)— E{(g(x))® E{'(g(x))
satisfying max{||4,], | K5I} <4 and max{||B.|l, |C,|} <e. By choosing U(f) small
enough, we may assume that there is a compact neighborhood U; of A,(f) (1<i<l)
such that for every g e U(f), we have A,(f)cU,=V;ng~ (V).

Put 6=min}{1—(A+¢), "' —e—1}>0. Then there are a C' neighborhood
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WU, ()cU(f) and a;>0 such that for every gel,(f), if O0<a<a; and |v|<a
(veT, M, xe M), then

llexp ) egoexp, v—D,g)| <d|lv| .

For a>0, define B(x,0)=E%x, «)x E¥x,a), where E?(x,0)={veE!(x): |v]<a}
(0 =s, u). Then there is 0 <a, <a, such that for every xe U|=’ Ui

Bi(x,0;)c{ve T, M : |v|| <o}

and

g(exp, Bi(x, a))) = €XPy(x) Bi(9(x), ay) (geU,(f).

PROPOSITION 1.1. Under the above notations, for every 0 <a <o, there exists f>0
such that if {x;};2o < U; (1 <i<l) is a p-pseudo-orbit of g€ W,(f), then there is ye M such
that d(g’(y), x;) <a for all j.

Proor. Fix 1<i<l For O<a<a, and xeU; put B;(x, a)=e€xp, B,(x,«) and
B =min}{l—A—g A ' —e—1}a>0. Then there is 0<f<p’ such that d(x,y)<p
(x, ye U;) implies

pl(expr'a(x a)9 expyE‘a(ya a))<ﬁ' (O'=S, u)’

where p, denotes the standard C! metric.
Let {x;};2o < U, be a f-pseudo-orbit of ge U;(f). Then g(B;(x;, a)) stretches across
the box B;(x;.,, ®) in the unstable direction and contracts on the stable direction. The

choice of f implies
zeg(g(- - - g(g(Bi(xo, )N B;(x1, 2))NB;(x3, &) - - INB; (%) - 1, W) By(xy, @) # J

for k>0. Put y,=g7%z,). Then y,e€ Bi(xq, a), g(yi)€ Bi(xy, ), - -, g (yi) € By(xy, @)
Therefore d(g’(y), x;) <a for all j>0 where y=1lim,_, ,, yi.

Since f is Q-stable, every ge i (f) has the spectral decomposition £(g)=A4,(g)v
- wA[g). It is known (see [3]) that there exist a C* neighborhood U,(f)=U,(f) and
a compact neighborhood U;c U, of A,(f) (1 <i<l) satisfying the following properties
(1.1), (1.2) and (1.3). '
For every g e U,(f) each of U, contains A;(g) and

(1.1) there is a continuous extension Ty M= E; @ E}, of T4,,\M= E;,®E}, such that
{ng(Eis,g(x))-:E:’;g(g(x)) and ||D.g

D.g '(Er(x)=Elfg ' (x) and |D,g7'|g,ll<i if xeUing(0).

(1.2) There exist #>0 and submanifolds W(x, g) (xe U)) for o =s, u such that

E:,,(x)||<}» if xeU,ng~'(0)), and
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[ 9(Wix, @)= Wilg(x), g) and  d(g(x), g(y) <Ad(x, y) (ye Wi(x, g))
| if xeU,ng~1(U), and
g (Wi(x, g) = Wig~'(x),g) and d(g™'(x), g~ *(y)<Ad(x,y) (ye WHx, g))
if xeU;ng(0) .

(1.3) There exists >0 such that if d(x, y)<y (x,ye U)), then Wi(x, g) and WX(y, g)
meet transversely.

Let B(A,(f)) be a compact neighborhood such that A;(f) = B(4,(f)) = U;ng~*(0)n
g(0)) for geU,(f). For subspaces E and F of T .M (x e B(A,(f))) define

tan x (F, E)=sup{||w,||/|lw,|l : w; € E, w,e E* and w,+w,eF—{0}}.

Then we can find 6, ;>0 such that for every g e l,(f), tan X (Ey,, EZ) <0, ; (see [4]).
Thus, by (1.1) there exists 8, ;>0 such that

tan ¥ (E.’:g, Eﬁ) <0,,; (geU,(f).

LEMMA 1.2. Let0,=max{0,;: 1<i<l}. For 0<0<0;'(2+0,)"! there is K(6)>
0 such that for every ve T,M (xeB(A,(f)) and gelU,(f), if tan X (v, E,-f,,(x))<0 and
{x, g(x), - - -, gN(x)} = B(A;(f)) for some N>0, then

tan X (D,g~ M), Ef (9™ (x)) <K(6)- 12V .
For the proof see [6, Claim 1].

Since U,(f) is very small, we take it satisfying Ind A4,(f)=1Ind 4,(g) (1 <i<!) for all
g€ U,(g). Here Ind A denotes the dimension of the stable subbundle E* of a basic set
A. Let B,(A) denote the closed neighborhood of a compact set 4 of M with radius r>0.

LEMMA 1.3. There are a C' neighborhood U,(f) = W,(f) and.constants >0 and
ro>0 (B,(A;(f))=B(A:(f)) for 1<i<l) such that for geUy(f) and 1<i#j<lI
(Ind A,(9)>1Ind A;(g)), if xeA;(g) and ye W*(x, g)nB, (A;(f)), then there is a linear
subspace H,< T,W*(x, g) (dim H,=dim M —Ind A,(g)) such that

(i) if Ind A;(g)=dim M —1Ind A,(g), then tan X (H,, E}(y))=0 and

(i) if Ind A;(g) <dim M —1Ind A,(g), then tan X (H,, Ef*(y))<0~! .

ProOF. If this is false, for every n>0 there are g,e Diff'(M) (p,(g,,.)<1/n),
1 < in 5é.]n < 1 (Ind Ai“(gn) = Ind Aj,.(gn))’ Xn € Aj,.(gn) and yn € Wu(xm gn)mBlln(Ai,.(.f)) SUCh
that for every linear subspace H, < T, W*(x,, g,) (dim H, =dim M —1Ind 4, (g,)),

tan ¥ (H, , E~,?"( y)< l if Ind 4, (g,) >dim M —Ind 4, (g,)
n

and
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tan X (H, , Ei*(y))>n if Ind 4, (g,) <dim M —1Ind 4, (g,) .

We assume, without loss of generality, that i,=i, j,=/ for all #>0. By (1.2) and (1.3)
there are z,€ 4,(g,) and w,= W¥,, g)NW3(z,, g,)- Notice that y, converges to a point
of A;(f). Since A;(g,)—>A,(f) (n—>0) and y,e W*(A4;(g,), g»), we can find a strictly
increasing sequence J,>0 such that g, *(y,)eB(4;(f) 0<k<J,) and g, 7" ' (y,)¢
B(A;(f)). Let us put

= inf {d(x, 4,(f)) : xe BA,(f) and g™ ()¢ BAL} -

geUz(S)

Since

(1.4) gy (), gu ‘W) S Ny, w,)

for 0<j<J,, there is N>0 such that for all n>N, g, ’*(y,) € B(A4,(/)\B,,(A:(f) and
gn ""(w,) ¢ B, 5(A,(f)). Thus there exists ¢>0 such that

{g..' (BAgy "y B9, "(y) =T ,

1.5
3 gABgy (W) B, T(Wy) =D

for every n>0 and j>0.

We deal with only the case Ind A;(g,) > dim M — Ind A4;(g,) for all n>0 (since the
other case follows in a similar way). For every n>0, let H, < T, W*(x,, g,) be a linear
subspace such that dim H, =dim M —Ind A,(g,) and H ¢ E; 'o(Vn). Take 0<6'<
05 1(2+0,)" 1. Then there is N ’> N such that for every n>N ! tan<):(Hy“, E:, (y)<0
(since tan<):(E,‘ 0. (Vn)> E¥(y,))—0 as n—> o). By lemma 1.2

tan X (D, g, '(H,,), E$, (g7 (yn))) > 0

as n— o0, and so

tan ‘): (Dy,.gn— Jn(Hy,,)’ 5g,: "n(yn)ug; Jn(w,.) ° Eis,gn(gn_ J”(wn))) - O

as n— oo, where .., : T,M—T,M denotes the parallel transform. From (1.4) and (1.5)
there are n> N’ and §, arbitrarily near to f such that W*(x,, §,)nWy(z,, §,) # < and
W*(x,, ,) does not meet transversally to W(z,, §,), thus contradicting.

LEMMA 1.4. Thereare a C* neighborhood U,(f) = U3(f) and compact neighborhoods
Ai(f)=By= B, ;4(A(f)) (1 <i<l) such that for every 0<e<g,, there exists 0<d<¢g such
that ge Wy(f), 1 <i#j<!(Ind A,(g) =Ind A(g)), ye W¥(x, g)nB; (x € A;(g)) and d(z, y) <o
(zeB;) imply C,nexp, EX(z, e)# &. Here C, denotes the connected component of y in
W*(x, )N B, (4:(f)).

Proor. If this is false, then there is 0 <e<g,; such that for every n>0 there
arc In € Dlﬂl(M)9 1 < in ¢.]n =< l (Ind Ai"(gn) = Ind Aj,.(gn))’ Xn € Ajn(gn)a yn € Wu(xm gn)m
B, ,(A; (f)) and z,€ B, (A4, (f)) satisfying
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1 1
pl(gn’f) <— ’ d(Zm yn) <—
n n

and
(1.6) C,.nexp, Ei(z,. &)= .

We assume, without loss of generality, that i,;=i, Ja=Jj for all n>0 and put
Wo =WV G) "Wz, g,)- Thus d(y,, w,)—0 as n— oo (since d(z,, y,)—0 as n— o). Since
z, converges to A;(f), as in the proof of lemma 1.3, we can find a strictly increasing

sequence J,>0 such that g, %(y,) € B,,2(A:(f)) O<k<J,), g, "~ '(yn) ¢ B,,2(A4:(f)). By
lemma 1.3, for every n>0 there is an Ind A,(g,)-dimensional subdisk D(g, ’*(y,)) <
W*(g,'(x,), g,) centered at g,’*(y,) such that tanX(T,D(g,"(y.), Ej(x))=6
or tan¥(T.D(g;’"(y,), Es*(x))<6~' for xeD(g,’(y,)). We can assume that
inf, , o diam D(g, '"(y,)) >0, where diam D (D = W*(x)) denotes the diameter of D with
respect to the metric on W*(x) induced from |-||. Put C, (g, ’"(y.)=D(g, "y )N
B,(g, '"(y») and let C,(g,’*/(y,)) be the connected component of g,’"*i(y,) in
9(Colgn " (yINB(g, T (y,)) for 1<j<J,. Then, by (1.2) C,(y,) converges ta
W,‘,‘(w,,, g») and so C, nexp,, Ei(z,, £) # & for sufficiently large n, thus contradicting.

§2. The behavior of pseudo-orbits.

The purpose of this section is to investigate the behavior of pseudo-orbits of an
Axiom A diffeomorphism fsatisfying strong transversality. To do so we use a filtration,
i.e. a sequence of a compact subsets {M}, !, of M and a sequence of integers {m,};.,
such that

Q:MOCMIC e CM,=M,

f(M)<int M, M= ) w0,

1<jsi
S™M(M;_)<int M; and
A;(Neint M\ f "™(M;_,)<B; for 1<i<l!.
Fix B, >0 such that for every 1 <i</
By (f(M))<int M; and
By (f(f "™(M,_ ) <intf ~™(M,_,),
and choose y,>0 such that g e Diff}(M) (d(f, g)<7,) imply
B,,o(g(M J)cint M; and
By (g(f ™M, ) Sintf ~"(M,_,)
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for every 1 <i<l.

PROPOSITION 2.1. Under the above notations, there are constants y3>0, L>0 and
B3>0 such that for geDiff}(M) (d(f; g)<y3), 2<j<I—1 and a B-pseudo-orbit {x;} of
g (0<B<B,), if there exists i€ Z such that x;€ B, (i<iy) and x; +,¢Bj,, then
X;, +L€int M; and

(i) Xi,+2r€int M;_, when x; , ef " ™(M;_,),

(i) x;, +3 €It M;_; when x; . ¢f ™(M;_,) and Ind A;(f)<Ind A;,(f), and
Sfurthermore

(i) one of the following (a) and (b) holds when x; .. ¢f ™(M;_,) and
Ind A,(f)=Ind 4,,,(f);

(@) Xx;,+rL+n€Bjfor all n=0,

(b) there exists n>0 such that x; .1 +y€B; (0<k<n), and Xi,+20+n€INtM;_

The proof is divided into three lemmas.

LEMMA 2.2. There are 0<y, <y, L, >0 and 0< B, < B, such that for g e Diff '(M)
(d(f, g)<y,) and a B-pseudo-orbit {x;} of g (O<B<P,), if there existi,€ Zand 1 <j<I—1
such that x;€ B;,, (i<i,) and x;, ¢ B;.,, then x; ., €int M;.

ProoF. First we prove that there are 0<y; <74, L, >0 and 0 <, <, such that
for ge Diff (M) (d(f; g)<7,) and a B-pseudo-orbit {x;} of g (0<B<B,), if there exist
1<j<l—-1 and i, € Z such that x;eB;,, (i<i,), and x; . ¢ Bj,,, then there exists
0<!l, <L, satisfying x; , €int M.

Suppose that this is false. For every n>0 there are g,eDiff}(M) (d(f, g,) <1/n),
1<j,<l, a (1/n)-pseudo-orbit {x}} of g, and an integer i such that x}eB; ., (i<i}),
Xiny 1€ B .1 but xip, ;¢int M; for all 0<i<n. We may assume that j,=j for all n>0
and

2.1) x=lim x! ., é4,,,().

Since x_, =lim,_, ., x{ € B;,, we have
d(f(x-y), x)<d(f(x - 1), f(x})) +d(f (%7, gu(xF,))
+d(ga(x}), Xi,+ 1) +d(X;,+1,X) >0 (n — o)

and so f(x_;)=x. Since x_,=lim,,,x} _,€B;,,, we have f(x_,)=x_;, and so
f?(x_,)=x. Inductively we have f~{(x)e B, , for all i>0 and so

2.2) xe W*(A;,,(f))-
| Put x;=lim,_, , x7 ,,+;¢int M; for i>1. As above we have for all i>0
(2.3) fi(x)=x,-¢int Mj .

Since x e W*(A;,(f)) and f ~¥(x) converges to a point of 4;, ;(f)cint M} ; as i—c0,
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we have xe M, ;. Thus xe (), <x<j+1 WAL (since M, | J1<chcjrr WAL
However x¢ | ); << i W (A(f)). Indeed, if there is 1 <k <;j such that xe W*(4,(f)), then
f#(x) converges to a point of A,(f)c=int M, <int M; as i— o0, which is contrary to (2.3).
Thus xe WA, (NN W*(A+1(f))=A4;,1(f) by (2.2). This is a contradiction since
x¢ Ajy 1(f).

Thus there is 0</; <L, such that x;, ,,, €int M;, and so, by the choice of f,>0,
we have x;, . +,€int M; for all n>0.

LEMMA 2.3. Thereare0<y,<y,,0<p,<p, and L,>0 such that for g e Diff (M)
d(f, 9)<7,), 1<j<l—1 and a B-pseudo-orbit {x;} of g (0<B=<p,),

(i) if there exists ke Z such that x, eint M; and x;¢f~™(M;_,) (i=k), then x;€ B;
for i>k, and

(ii) if there exist ke Z and i, >k such that x,€int M; and x;,€ f~™(M;_,), then
Xiy+1, €Nt M;_,.

PrOOF. Take and fix 1 <j</. For geDiff}(M) (d(f, g)<y,) and a B-pseudo-orbit
{x;} of g (O<B<pB,), if there is ke Z such that x,eint M; and x;¢f~™(M;_,) (i=k),
then we have x; e B; since

Aj(f)CintMJ\f_mj(Mj_l)CBj .

This proves (i).

To prove (ii), we check that there are 0<vy,<7y,, 0<f,<p; and L, >0 such that
for ge Diff}(M) (d(f, g)<7,), 1 <j<I—1 and a B-pseudo-orbit {x;} of g (0<B<p,), if
there are k e Zand i, >k with x, eint M;and x;, e f~™/(M;_,), then there exists 0 </, < L,
such that x;, ,,,eint M;_,.

If this is false, for n>0 there are g,eDiff}(M) d(f, g,) < 1/n), 1<j,<l—-1, a
(1/n)-pseudo-orbit {x7} of g, and integers k,€ Z and 3>k, such that x; eint M, ,
Xyef "™n(M;, _,) and
2.9 X ¢intM; _, for O<i<n.

We may assume that j=j, for n>0. The choice of B, implies x4.,;ef ™(M;_,) for
i>0, and so x=lim,_ , xpef ™(M;_,). Thus

(2.5) M (x)ef(M;_)cintM;_, .

Since d(f, g,) <1/n and d(g,(x%+), Xig+i+1)<1/n for i>0, we have fi(x)¢int M;_, for
i>0 by (2.4). This contradicts (2.5).

If there exists 0 </, < L, with x;,,,, €int M;, then x;,,,,,;€int M; for i>0, and so
Xi,+1, €Nt M. .

LEMMA 24. Let 2<)<Il—1 and L, be as in lemma 2.2. Suppose that
Ind A;(f)<Ind A;, ,(f). Then there are 0<y;<vy,, 0<B;<PB, and L;>0 such that for
g€ Diff (M) (d(f; g)<v;) and a B-pseudo-orbit {x;} of g (O<B<P)), if there exists i€ Z
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satisfying x;€ B, (i<i3) and x;, . ¢ Bj1, then x;, 1, +1,€f ™ (M;-1).

PrROOF. Under the assumption of this lemma, we see that there are 0<y;<y,,
0<B;<B, and L;>0 such that for ge Diff (M) (d(f, g)<7v;) and a B-pseudo-orbit {x;}
of g (0<B<pB), if there exists i3 € Z satisfying x;€ B;,, (i<i3) and x;,,, ¢ B;,,, then
there exists 0 </;<L; such that x;, ,, +;, €f ™(M;_).

If this is false, for n>0 there are g, € Diff'(M) (d(f, g,) < 1/n), a (1/n)-pseudo-orbit
{x7} of g, and i5e Z such that x}e B;, (i<i3), x}z+1¢ B;+, and xj5. 1, ;¢ ™(M;_,)
for 0<i<n.

By lemma 2.2, x4, €int M; and so xf,., ,;€intM; for i>0. Thus for every
O<i<n,

(2.6) Xiavp, +i €It M\ f~™(M;_,) < B;.

Put x=1im,_, , x}. Then f~¥(x)e B, for every i>0. On the other hand, by (2.6) we
have f1*¥x)e B, for i>0 and so xe W(A;(f)). Thus xe W (A;()nW*(A4;, () #
and Ind A4;(f)=1Ind 4, ,(f). This is a contradiction.

By the choice of B, it is clear that x; ,;, 4+, €f ™(M;_,) implies X; 41, +1,€

STM(M o).

By the same manner stated in the proof of lemma 2.4 we can prove that for
2<i#j<l—1 (Ind A;(f) <Ind 4;(f)), there are 0<y;;<7,, 0<B;;<B, and L;;>0 such
that for g e Diff 1(M) (d(f,g)<7;;) and a B-pseudo-orbit {x;} of g (0<f <B;)), if there are
i3, iq€ Z (i3 <i,) such that x;€ B;,, (i<i;) and x;, eint M;, then x;, 4, + 1, €/ ™(M;_,).
Now put

ys=min{y; : 2<i#j</—1 with Ind 4,(f)<Ind 4,()},
By=min{B; : 2<i#j<I—1 with Ind A4;(f)<Ind 4;(f)},
Ly=max{L;;: 2<i#j<I—1 with Ind 4;(f)<Ind 4;(f)} and
L=max{L,, L,, L3} .

Then Proposition 2.1 is concluded.

3. Proof of the theorem.

Let y;, L and B3 be as in proposition 2.1 and put L'=3/L. Take and fix
() =W, (NN{g e Diff (M) : d(f, g)<73}. Then there are 0 < , < B3 and K> 0 such that

geU(f), d(x, y)<B, (x, ye M) implies d(g(x), g(y)) <Kd(x, y). Fix 0<e<pf, and take
0 <¢g, <e¢ satisfying

(1+K+K*+ --- +K¥)-2¢, <e.

For every gel(f), xe A;(g) (1<j<!) and ye W*x, g)nB;, we denote by C, the
connected component of y in B, (y)nW*(x, g). Let d, be a metric on W*(x, g) induced
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from| - || and put §'=min, _;,dj, where

8= inf min d,(g'(0C,), g'(»)>0.
A

ye W%(x,g)nBj

Let 0>0 and 0 <d(g) <& be numbers given in lemmas 1.3 and 1.4 respectively. It is easy
to see that for 8, =sin(6/2) -min{d’, 4(¢)}, if there are x’ € B; (1<j'<j</)and 0</'<L’
such that d(g"(y), x')<8,, then for every xeexp, E(x, 5,),

exp, E5.(x, &)ng"' (C,)# T .

exp,. E5(x', ¢)

9'(C,)

exp,. E3(x', 3,) ' () exp,, EY(x', ¢)

exp, E;.(x, £)

Pick 0<d, <38, such that
A+K+K?*+ -+ +K¥)6,< 6,

and let 0<6;=03(6,/2)<d,/2 be a number as in proposition 1.1.

For every ge U(f) and a é-pseudo-orbit {x;} of g (0<d<J;), we may assume that
there are 1 <j, </and i, € Z such that x;€ B} (i<i,) and x;, , , ¢ B;,. Thus, by proposition
2.1 there are 1 <j, #j,</(Ind A;,(f)=>Ind 4;,(f)) and 0<n, <L such that x; ,, -, ¢B;,
and x;, ,,, € B;,. Moreover, there exists 0 <#, =#,({x;}) < oo such that x; ,,, ;€ B, for
0<i<n,. By proposition 1.1

DY(x;, {x}D={xeM: dlg~(x), x;,-)<e for all i>0}
contains a (dim M —Ind 4; (g9))-dimensional disk. Put
y=D“(xi1’ {xi})nexpx(lgjl(xip 81) .

Then d(y9 xil) <62 and d(g"’(}’)a Xiy +n1)<51'
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|
gnl(D“(xi" {xl}))
i tn : p——__
Xiy+ny / \
Ao ’
gy
Prg

sz(xl'|+n|’ 8) Bj;(xh +ngt+1° 8)

For every

zeg(g™ (D*(xi,, {XiNNBj,(Xiy 45 €) 5

we have z€ B (X, 4n+15 s 9 2)€Bj(Xi, 4ny, &) and d(g™ 7 1(2), X;, 44, -) <& for all
i>0. By the same reason for every

zZ€e g(g(gm(Du(xi” {xi}))nsz(xil +ny+10 8))nBj2(xi, +ni+2 g),

we have z€ B (X;, 4n,+2:€): 9~ Y2)e B (X, 4+n+158) 9 Y2)e Bj,(xi, +ny» €)and d(g™ 27i(2),
Xi, +n,~1) <¢ for all i>0. Repeating this way {x;} is g-e-traced for i<i; +n;+7;. For
the case 0 <7, < o0, there are 0<n, <L’ and 1<j;#7j, <! (Ind A;,(f)=1Ind 4;,(f)) such
that X; 1 n, +7,+n,—1 € Bj, and X; 1 p, 47, +n, € Bj,. Furthermore, by proposition 2.1 (iii)
there is 0 <7i, =7,({x;}) < oo such that x; . +4, +n,+i€Bj, (0<i<7,). Since J is small
enough, we can repeat the above arguments to get a g-e-tracing point of {x;}
for all i<i, +n,+#, +n,+7n,. Thus, by induction {x;} is g-e-traced.
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