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1. Introduction.

Let G be a connected real rank one semisimple Lie group and G=KAN an Iwasawa
decomposition for G. Let g=%+ a + n denote the corresponding Iwasawa decomposition
for the Lie algebra g of G. We define H(x) (x € G) as the unique element in a such that
x € KexpH(x)N and put p(H)=tr(ad(H )In) for Hea. Let M be the centralizer of 4 in
K and A the Laplace-Beltrami operator on G/K (cf. [H1], p. 386). Then the Poisson
kernel P: G/Kx K/M — R is given by P(gK, kM)=exp(—2p(H(g™ 'k))) and for each
se C P° is an eigenfunction of A with eigenvalue, say, 4,, Then our problem can be
stated as follows.

PrROBLEM. Let us suppose that a real valued, C? function F on G/K satisfies the
following conditions:

(1) AF=0,
2 AF?=},F?,
3 FleK)=1.
Then is F determined by F(gK)= P(gK, kM) for an element kM in K/M?

When G=S0(n, 1) and SU(n, 1), the affirmative answers are obtained by [CET],
[T] and [KT]. However, their arguments are slightly dependent on each circumstance
of the group. Therefore, it is worthy to give another proof which treats the problem
simultaneously, and apply it to the case of Sp(n, 1). Now let G be one of the classical
real rank one semisimple Lie groups: SOq(n, 1), SU(n, 1) and Sp(n, 1). In §4 we shall
prove that if a real valued, C? function F on G/K satisfies (1)—(3) and

4) F is M-invariant ,

then F'is determined by the Poisson kernels. In §5 we shall try to remove this additional
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condition. Although we can remove it in the cases SOy(n, 1) and SU(n, 1), we need an
assumption for the case of Sp(n, 1), which can be stated as follows. We first identify
G/K (G=S8p(n, 1) and K=Sp(n) x Sp(1)) with the unit ball D" in H" where H is the
quaternions, and denote the standard coordinates on H” by w,, w,, - - -, w,. Since F is
real analytic from (1), F has a homogeneous expansion F= Y N=o0Fn, where each Fy is
a homogeneous polynomial with degree N. Then we easily see that there exists an
element k, in K'such that the rotation F,  of Fdefined by F, (w) = F(k, * w) (w € D") satisfies

(Fko)l(w) =@2n+1)(w, +w,)

(see (5.5)). Then the assumption which we need to obtain the affirmative answer of
Problem is the following,

®) Fif(ewy, wy, - -, w)=F, (wic,wy, -+, w,) for all cin H, i.e, Fy, is a
function of w,+Ww,, |w,|> and w,+Ww, wi—iw, wj—jw,, wk—kw,
R<s<n).

Then if F satisfies (1)~(3) and (5), F(gK) is determined by the Poisson kernel P(gK, koM).
Since R and C are abelian, the ¢ondition corresponding to (5) in the cases of G=S0(n, 1)
and SU(n, 1) holds automatically, and thus, there is no need to assume (5).

2. The classical real rank one symmetric spaces.

Let F be one of R, C and H (the quaternions) and x —» X (xe F) the standard
involution on F. We put | x|2=xxX. We consider F**! as a right vector space over F
and define the quadratic form Q(x)=|x; |2+|x, |12+ - - - +|x, > —| X4+, |* for x=(x,,
X, "y Xp+1)EF"" L. Then the connected component G of the group of all F-linear
transformations of F"*! which are of determinant one, except for the case of F=H,
and preserve Q is given as follows.

(1) IfF=R, G=SO04n,1).
(2 IfF=C, G=SU@®,1). . 2.1)
(3) IfF=H,G=Spn1).

Let G=KAN be an Iwasawa decomposition for G where K is the maximal compact
subgroup and A is the vector subgroup, respectively, consisting of all matrices in G of

the form
B O
kB,b=< 0 b ) (2.23)

and
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cosh ¢ 0 sinh ¢
a,=l( 0 I,_, 0 ) (teR), (2.2b)
sinh ¢ 0 cosh¢

where B is an (n,n) matrix and beF. We put A" ={a,; t>0}. Then the Cartan
decomposition for G is given by G=KCL(A*)K. We define H: G—>aand p: a— R as
in§1. Let M be the centralizer of 4 in K. Then M consists of all matrices in G of the form

b 0 0
(0 B 0), (2.3)
0 0 b

where B is an (n—1, n—1) matrix, beF and |b|*>=1.

If x=(x,, %, ", x,) and y=(y1,¥,, " ", ¥, are in F", we put {(x,y>=x,y,+
X,¥,+ - +X%,y, and || x||2=<x, x)>. Then G/K and K/M are identified with the unit
ball D"={xeF"; || x||><1} and its boundary $™ !, the unit sphere in F", respectively
where d=dimgF. It is easy to see that G acts transitively on D" and S™~! as follows.

g (x1, Xz, s X)) =V1Vat'ts "5 Yu¥ut1) 5 (2.9
Whefe g(xl’ T xm 1)=(yl’ o 'aym yn+1)'

The Poisson kernel is the function P: G/K x K/M — R given by
P(gK, kM) =exp(—2p(H(g™ 'k)))
_ 2 1
=(1_“Z_"__> , @.5)
11—z, b>|?

where z=gK, b=kM and /=d(n+1)/2—1. Then as a function on G/K, P* (se€ C) is an
eigenfunction of the Laplace-Beltrami operator A on G/K with eigenvalue, say, i,. We
easily see that A, =0 and A, =2/2.

Now let {,, {5, - - -, {, denote the standard coordinates on F". When we distinguish
the coordinates according to the type of F, we shall use the following notations.

If F=R, x,,---,x,,
If F=C, z,,'"',z, (=X,+ixX,+5) > (2.6)

If F=H’ Wi, """ Wy (ws=xs+ixn+s+jx2n+s+kx3n+s) s

where x, € R (1 <s<nd). Moreover, the polar coordinates, which will be useful to express
spherical harmonics (see §3), are given as follows.
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If F=R, Xx,=rcosé )
x;=ro;siné 2<i<n)’ =2

If F= = Vo1e n
F=€ m=reoste 0 Y lor=1, 0<t< T, 0<p<2m.  @7)
zi=ro;siné 2<i<n) =2 2

If F=H, w,=rcos¢(cos¢p+ysing) Y |oy2=1, Os{s%, 0<p<2m,
. i=2
w;=ro;siné 2<i<n) " yeF, R(») =0, |y|*=1.

Then it is easy to see that if a function F on F" is M-invariant, F is a function of only
r, £ when F=R and only r, £, ¢ when F=C and H. Especially, if F=H, F is a function
of r,ry=w;+w, and ri=|w, |%

Let A, be the standard Laplacian on F", that is,

nd 62
Ao=i;1 P (2.8)
2
=i;1 aza,-az, if F=C
Then we easily see that A can be written as
A=A,+A, , 2.9

where A, does not contain a constant term and does not decrease the homogeneous
order with respect to x, (1<s<nd) when it acts on a homogeneous polynomial (see
[H1], p. 387).1 Here we put

V(f, 9)=A(fg)—Af-g—f Ag (2.10a)
and
IVI2(N=V(.) (2.10b)

for functions fand g on F". Moreover, we shall define V, and | V,, |2 by replacing A with A,,.

3. Spherical harmonics.

Let K denote the equivalence classes of irreducible unitary representations of K
and put Ky, = {(z, V.)e K; dim VM 0}, where V'™ denotes the subspace of V, consisting
of M-fixed vectors. Since G is of split rank one, dim V™ =1 if (r, V,)eK,,, and the
Pater-Weyl’s theorem insists that,

D The explicit form of A with respect to the coordinate x, (1 <s<nd) can be found in [T], p.3 and
p. 21, respectively, for the cases of G=SO(n, 1) and SU(n, 1), and the one for the case of Sp(n, 1) is pointed
out to me by R. Takahashi.
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LA(S™ Y= > V, 3.1)
1€ K
as a representation space of K. Actually, the parametrization of re K,, and spherical
harmonics which span V™ are given as follows (see [JW]).

If F=R, Cg,o=Cr?cos’¢ r(—%, l;—p; ”'2"1 ; —tan? :)
=Cx{F(-- ).

If F=C, C¢,,=Cr?*icos?*1¢ eV 10~ DF(—p, —g;n—1; —tan®¢&)
=Cz8Z9F(---). (3.2)

If F=H, C¢,,=CrPcos?¢ sin((g+1)P)sin™' ¢

g—p —p—q—2 2 )
. . :2(n—1); —tan
"( 5 3 ( ) ¢

_ (a2 o o q—T\ o o
B R () S RS
where r,=w, +Ww, =2x, and r3=|w, |?=x3+x2,, +x3,+1+Xx3,+1. Here the indices
(p, @) move as
(r,0); p=0,1,2,--- (F=R)
A=1@ 9; p,9=0,1,2,- - (F=C) (3.3)
(p,9); p,q=0,1,2,---, p>q, p—qe2N  (F=H).
We put A=A if F=R, C, and Nx N if F=H, and for (p, g)€ A, we put
X (F=R)
ep)=12828  (F=0) (3.4)
rere (F=H).

Then it is easy to see that

€p—-2,0 (F=R)
epqcos 2é=r?le,_; 4,1 (F=0C) 3.5
ep,q_l (F=H) .

Let v be a non-zero M-fixed vector in VM (€ K,,). Then the corresponding matrix
coefficient (t(k)v, v) (ke K) is an M-invariant spherical function on K. We know that
these matrix coefficients are nothing but the above spherical harmonics restricted on
S™~1 For simplicity, we put
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S C Cl Cn
= = SRR D" . 3.6
= (ucn ucu) e (3.6)

4. A property of M-invariant eigenfunctions of A.

Before we state a proposition, we shall recall some properties of M-invariant Poisson
kernels. We easily see that the M-invariant Poisson kernels are of the form

P(0)=P(g)=P@gK, k.-M)

=(1-r)|1=cf, |7 %, 4.1)
where {=gK,r*=|{||? and
c 0 0 '
+1 =R
k=l0 ¢ o |, c={—C| . g o 4.2
ceC,|c|= =C).
0 0 1,_,
By using the Peter-Weyl’s theorem, we can give an expansion of P, as follows.
PI(C)-: z qu(r)d’pq(f) ’ (4'3)
(P, 9)e4

where r=tanh? and P, (r)=|, P,(ka,)$,,(k)dk. Moreover, since P()=P,(k.-{) for ¢
in (4.2), it follows that

PD= Y cpePuMd,, 0, 4.9

(p,9)eA

where c,,=c?7? when F=R, C and ¢? when F=H. Here we recall the relations 3.2)
and (3.5). They by substituting them for (4.4), we can find functions Qpq Of r such that

P)= Y Q5N . 4.5)
(P, 9)e 40 .
Obviously, since P, is real valued, it follows that

if F=R,H, c,,cR and Qf, is real valued and
if F=C, c,,=¢,, and Q=0

qp °

4.6)

Our first result can be stated as follows.

PROPOSITION 4.1.  Let us suppose that a real valued C? function F on G/K satisfies
the following conditions:

(1) AF=0,
(2) AF?=A,F?,
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(3) FleK)=1,
(4)  Fis M-invariant .
Then F is an M-invariant Poisson kernel, that is, there exists a c in (4.2) such that F= P,.
PROOF. Since F satisfies (1) and (4), it follows from (4.3) and Helgason’s theorem
(see [H2], p. 133 and [H3], p. 333) that there exist constants C,, such that

», q)eA

Then by the same argument which deduces (4.5) from (4.4) we can rewrite it as

FO= Y GpMep) - (4.8)
(p,@) € Ao
Obviously, since F is real valued, it follows that
if F=R,H, C,€R and qu is real valued and
if F=C, C,,=C,,and §0,,=0,,.
Here we note that oo = CooPoo= Co0Q50, Q50 does not depend on c, and 1= F(eK)
= Cypo by (3). Therefore, we see that

4.9)

Qoo =000 - (4.10)
Next it follows from (1) and (2) that
A, F2=|V|X(F). (4.11)
Here we recall (2.9). Then if we put {=0 in (4.1), we see from (3) and (4.8) that

A=V, |*(F)(0)

(Yo (242

Since P, also satisfies (1)—(4), we can obtain that 4,=2|Q1,(0)|* by replacing F with
P,. Therefore, noting (4.6) and (4.9), we can choose a ¢ in (4.2) such that
010(0)=cQ10(0) = 05,(0) - | (4.13)

Here the last equality follows from (4.4), (4.5) and the fact that e10(O)=¢,0(0) when
F=R, C and ¢,,({) when F=H. Moreover, by using this fact and the orthogonality
of ¢,, (P, )€ A) on K/M, we can deduce that

C10P}o(r) (F=R,C)
Ci1P11(0) (F=H)

(0) if F= c) =2]|0,0,0)|*. (4.12)

0,0(rr= { (4.14a)

and
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¢ _ JePyo(r) (F=R, C)
R P (@199
Therefore, (4.13) means that
Oi0=0% - (4.15)

Now we shall show that qu= Q,, for all (p, g) € A, by induction. Obviously, this
is nothing but our desired result: F= P,. To accomplish the induction we shall compare
with coefficients of e,, in the equations (1) and (4.11). At that time we shall use (2.9)
and the explicit forms of the actions of A, and |V,|2:

~ 0? 1 0
8o 2 0niens )= Z (L2t 4 a1y L Do),

p.q or
M ox; 0 ~
+y Yy = Q”" —2+Y 0,M060 (4.16)
pgi=1 T axi p.q
and
~ X o0 ~ Oe,, \?
|V0|2(Z qu(r)epq> Z ( ©ra epat 2 Opg— 22 ) 4.17)
p.q p.a T or p.q axi

respectively.

Case of R. Let us suppose that §,,=0%, (0< p<N). We note that

Oe ,
Ave,o=p(p—1)e,_, , and x,-a—)’c’o—=5,-1_pel,o (1<i<n).

Then by applying (4.16) to (1) and comparing with the coefficients of ey_, ¢ in (1), we
can deduce that
N(N+1)0y, 1. 0=a function of §;, (i<N).

Since P, also satisfies (1)(4), it is easy to see that the same relation with Q° is also
valid. Therefore, it follows from the induction hypothesis that

N(N+ 1)(sz~1+ 1.0"va+ 1,0)=0 >

that is, Oy 1.0=0%+1,0- Then by (4.10), (4.15) and the induction we can obtain the
desired result.

Case of C. Let us suppose that Q~,,q= Qe (0< p+g<N). We note that

Oep,
Aoe,y=Dg€,_1,,-1 and z;— 5 1 =¢;,pe,,
Then by applying (4.16) to (1) and comparing with the coefficients of e, (/+m=N—1)
in (1), we can deduce that
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(+1)(m+1)Q, 1, ms1=a function of §;;  (i+j<N). (4.18)
We next note that (4.17) is equal to

n . a~
22 Z-—Zrl— qu Pq+Zqu

i=1|p,q ar p,q a

d P 0 _
-2 Z [ qu Qp q + ( qu Qp P qu Q >:| e
p.4.p.q or or or

2

+ Z pplquQp’q’ep—lyqép’—l,q’ .
p:4,p'sq’

Then by applying (4.17) to (4.11) and comparing with the coefficients of e,,, (/+m=N)
in (4.11), we can deduce that

ii'Q;;0;=a function of 0;;  (i+j<N). (4.19)
i+j—-1=1
jti'—1=m

As the process in the case of R (4.18) and (4.19) are also valid when we replace J by

Q.. Therefore, it follows from (4.6), (4.9) and the induction hypothesis that for
[+m=N—-1

(+1)(m+ 1)(Qt+1,m+1_Qf+1,m+1)=0
and for [+m=N

(m+ 1)(Qt,m+1 — Qi m+ D010+ U+ 1)+ 1,m— Qir1,mL10=0.

Then it is easy to see that these relations imply that §,,, = Of,, ({+m= N+ 1). Therefore,
by (4.10), (4.15) and the induction, we can obtain the desired result.
Case of H. We suppose that qu 05, (0<p+2g<N). We note that

AOepq'-_.‘l’p(p’_ l)ep—z,q+4q(p+q)ep,q— 1
and

Pepa+2qe, o1 x}? if i=1,

X; =1 2qe, ,— X} if i=n+1,2n+1,3n+1,
otherwise .

Especially, Y72, x;(0e,,/0x;)=(p+2q)e,,. Then applying (4.16) to (1) and comparing

with the coefficients of e;_, ,, (/+2m=N) in (1), we can deduce that

A+ D011, m+ M+ D +m)Q)_ sy
=a function of Qij (i+2j<N). (4.20)

We next note that (4.17) is equal to
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00,0 O 2 00, ~ ]
2 ___.ﬂ__‘i+_ l+2 7 y L] ole e .
p,qg’:',q'[ or or r (r 7) or OQpa |€peer.a

+ Z Qmép’q’(pp’ep— l.qep' -1,q’ + q(p, + q’) ep,q— 1 ep'.q') .

pa,p'.q

Then by applying (4.17) to (4.11) and comparing with the coefficients of e,,, (/+2m=N)
in (4.11), we can deduce that

ii'Qi}Qi’j' + Y @+ ')iQ~ijQ~i' ’e

i+i=1+2 i+r=1
j*i=m jti=m+1
=a function of §;;  (i+2j<N). 4.21)

As before, (4.20) and (4.21) are also valid when we replace J by Q¢. Therefore, it follows
- from the induction hypothesis that for /+2m=N

I+ 1)(Gr+ 1,m= Qi 1,m) + M+ DU+MND1 -y a1 — Q- 1.m+1)=0

and
200+ 1)(0,+ 1.m—Of+ l,m)Q10+(m+ 1)(Q~l—1,m+ 1— Q- 1,m+ 1)010=0.

Then these relations imply that @y 1 w=05+1.m a0d Gy_{ ms1=0F_1 m+1, and thus,
Oim= 0% (I4+2m=N+1). Therefore, by (4.10), (4.15) and the induction, we can obtain
the desired result. []

5. Main theorem.

We shall try to remove the additional condition (4) in Proposition 4.1. Let us
suppose that a real valued, C2 function F on G/K satisfies (1)~(3). Since F is real analytic
from (1), F has a homogeneous expansion F=)_,Fy with respect to the real
coordinates x (1 <s<nd). Especially, F, is of the form

n d
Z.l l; aixs+n(l—1) (a;€R). (5-1).
If we put
a, (F=R)
a,= | al+ia? (F=0) (5.2)

al +ia?+ja+ka? (F=H),

(5.1) can be written as Y 1., 2~ *(a,{,+ {a,). Then, applying the argument which deduces
(4.13) from (1)—«3) in §4, we see that
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n nd nd
IEAES> (6F)(0)2=_Z (aaP 1 )(0)2=12, 53

=1 axi i=1 xi

and thus, we can find an element &, in K being of the form

fl e 0
............. . (5.4)

Gl e 0

\ 0 0 -0 1/

Then it is easy to see that ko) c—; (3, +a)=1((; + ;). Therefore, the rotation F,
of F defined by F, ({) =F(k,*{) ({ € D") satisfies the following condition:

0F, (0)=! and ?_F_"o_(o)=o 2<i<nd).. (5.5
0x, Ox;

Our main theorem can be stated as follows.

THEOREM 5.1. (i) G=804(n, 1) and G=SU(n, 1). Let us suppose that a real valued,

C? function F on G/K satisfies the following conditions:

(1) AF=0,

2 AF?=),F?,

A3) F(eK)=1.
Then there exists an element koM in K/M for which F, satisfies (5.5) and F is determined
by FigK)=P(gK, koM) (g€G) .

(i) G=Sp(n, 1). Let us suppose that a real valued, C? function F on G/K satisfies
(1)—(3). Then there exists an element koM in K/ M for which F,  satisfies (5.5). Moreover, if

(5)  Felewy, wy, oo, w)=Fy (Wi, W, - -, w,) for all ¢ in H, ie., F, is a
function of wi+wy, |wi|* and w+Wg, wi—iw,, wj—jw,, wk —kw,
(2<s<n),

then F is determined by F(gK)= P(gK, ko,M) (g G).

ProOF. We have already shown the existence of koM in K/M satisfying (5.5). By
replacing F with the rotation F,  of F, without loss of generality, we may assume that
ko=e. In what follows the conditions (5.5) and (5) mean the ones for k,=e. Then to
prove the theorem it is enough to show that F(gK)= P(gK, eM)=P,(gK) (g€ G) from
(1)-(3), (5.5) and (5) where, as said in §1, the condition corresponding to (5) in the
cases of G=S0,(n, 1) and SU(n, 1) holds automatically. Then the desired result follows
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from Proposition 4.1 and the following,

PROPOSITION 5.2. Let us suppose that a real valued, C? function F on G/K satisfies
(1)3), (5.5) and (5). Then F is M-invariant.

Proor. First we put [F](g)= [,, Fimg)dm (g€ G) and

F=[F]+R. (5.6)
Then we easily see that [F] and R satisfy the following conditions:
A[F]=0, 5.7
(F10)=1, (5.8)
[F] is real valued , (5.9
oLF] (0)=! and M(O)=O 2<i<nd), (5.10)
0x, ox;
AR=0, (5.11)
R(0)=0, (5.12)
R is real valued , (5.13)
[R]=0, (5.14)
OR 0)=0 (1<i<nd). (5.15)

Since [F] is M-invariant and satisfies (5.7)«5.10), it follows from the same argument
in §4 that [F] has an expansion being of the form (cf. (4.8), (4.10) and (4.14))

(F1O= (p,.,E)éAo Spa(Ney()  ((eD") (5.16)
and
Soo="Poo > 5.17)
P(r F=R,
S1l)r= {;?8 o). 19
In particular, we see that
[F] and R satisfy (5). (5.19)
By substituting (5.6) for (2), we have
A([F)?+2[F1R+ R*)=|V*([F)+2V([F], ) +|VI*(R) . (5.20)

Here we note that [V([F], R)]=[A([LF]R)]1=A([F]1[R])=0 by (5.14). Therefore, taking
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the average of (5.20) over M, we see that
A([FP+[R*D=|VA[FD+IVIAR)] . (5.21)

We now note that R is real analytic from (5.11) and then we can denote the
homogeneous expansion of R as follows (see (5) and (5.19)).

o0

R=ZRN

N=0

= ZO > Ale,; (5.22)
N=

where e;; is defined by (3.4) and A7} is a homogeneous polynomial of degree m with
respect to x, (s#1+nk—1), 1<k<d) Obviously, (5.12), (5.13) and (5.15) mean that

RO—Rl—O and

. ) - (5.23)
if F=R, H, A} is real valued and if F=C, Aj;=A7;.

In what follows we shall prove that R=0 by induction. Let us suppose that R,=
R;=":--=Ry=0. Then by comparing with the homogeneous polynomial with degree
2N in (5.21), we can obtain that

nd 2
I:_Zl (%%) :|=the homogeneous polynomial with degree 2N

2

in A,[F]*—|VI*(CF]) . (5.24)

Here let {,=(0, {5, {3, - - -, {,) e D". Then (5.16)—(5.18) mean that [F]({,) = P;({,) and
(OLF]/0x)({o) = (6P1/6x,)(xo) (1 <i<nd). Therefore, if we put {={, in (5.24), we can
obtain that

|: § < 01;N+1 ) (Co):| the homogeneous polynomial with degree 2N
i=1 Xi

in A,P2(Lo)—|VI2(P)(o)
=0 .. ‘ (5.25)

Obviously, this means that |[(04§y '/0x;)|*=0 (i#1+n(k—1),1<k<d) and 4%Y,=0.
Therefore, AN 71 is a constant of degree N+ 1 and thus,

AGe ' =4Y, (=43, if F=C) =0 (5.26)

(see (5.23)).
We here note (2.9) and (5.22). Then comparing with the homogeneous polynomials
with degree N in (5.20), we can obtain that
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ORy+y O[F]
0x, 0x,

where H is an M-invariant function on G/K.? Since [Ry ., ,1=[R]y+;=0 by (5.14) and
0/0x, and [ ] commute each other, it follows that 0=[H]= H. Therefore, by (5.10)

O=H, (5.27)

ORyer g, (5.28)
0x, .

Moreover, comparing with the homogeneous polynomials with degree N—1 in (5.11),
we can obtain that

"Zd: 0*Ry +, (= & 0’Ry.+,

if F=C) =0. 5.29
i=1  0Ox}? i=1 02,02, ' ) (5.29)

Then substituting (5.22) for (5.28) and (5.29), and comparing with coefficients of e;; for
Ry, 1, we can deduce that

if F=R, +1D)AYH 0=0, (5.30a)
N i—-j —
(z+1)(J+l)A,+1 ,+11+ZJ AN 792,07, =0
26+ DANT P+ G+ DA 5 =0
if F=H, 4(i+ 1)(l'+2)Aév+—21,;i_2j+4(]+1)(l+]+I)A, j+1 T2 (5.30c)

+35l, 02 AN*IT1"2ax2 =0 .
s#1+nk(k=1,2,3)
Then, it follows from (5.26) and (5.30) that A];=0 for m+i+j=N+1 if F=R, C and
m+i+2j=N+1if F=H, thatis, Ry, ,=0. Therefore, by the induction we can conclude
that R=0. This means that F=[F] is M-invariant. []
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