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Introduction.

A parakahler manifold is, by definition, a symplectic manifold with a pair of
transversal Lagrangian foliations. A parak\"ahler manifold was originally introduced by
P. Libermann [10] from a different point of view (See also [3]). Let $M$ be a parak\"ahler
manifold. By an automorphism of $M$ we mean a symplectomorphism which preserves
each of the two foliations. It turns out that the totality of automorphisms of $M$ becomes
a finite-dimensional Lie group (Section 1). If that group Aut $M$ acts transitively on $M$,
then $M$ is called a homogeneous parakahler mamfold. In our previous paper [3], we
have introduced a class of homogeneous parak\"ahler manifolds, called parahermitian
symmetric spaces. A parahermitian symmetric space is a homogeneous parak\"ahler
manifold $M$ which can be represented as an affine symmetric coset space with respect
to the identity component of Aut $M$. Under the assumption that the automorphism
groups are semisimple, parahermitian symmetric spaces were classified up to local
isomorphisms ([3, 4]). Under the same assumption, we have constructed a natural
compactification $\tilde{M}$ of a parahermitian symmetric space $M$ and have studied geometric
properties $of\tilde{M}$ ([5]). It should be noted that this compactification has some applications
to harmonic analysis on a parahermitian symmetric space $M$ (cf. $\emptyset rsted[13]$).

The first aim of this paper is to give a simple algebraic method of constructing
homogeneous parak\"ahler manifolds. First we introduce a parakahler algebra which is
an intermediate algebraic interpretation of a homogeneous parak\"ahler structure (Sec-
tion 2). A parak\"ahler algebra occupies the same situation as a K\"ahler algebra
(Vinberg-Gindikin [12]) does for a homogeneous K\"ahler manifold. In Section 3, we
introduce much simpler algebraic object, called a weak dipolarization and a dipolarization
in a Lie algebra $\mathfrak{g}$ . A homogeneous parak\"ahler structure is perfectly described by a
weak dipolarization (Theorem 3.6). A dipolarization is a stronger concept than a weak
dipolarization. But, if the Lie algebra $\mathfrak{g}$ is semisimple, then a weak dipolarization is
always a dipolarization. Our second aim is to study homogeneous parak\"ahler manifolds
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which are obtained from semisimple graded Lie algebras. First of all we prove that
semisimple graded Lie algebra has a natural dipolarization, called the canonic
dipolarization (Theorem 4.2). Let $G$ be a connected semisimple Lie group with fin]

center and $L$ be the Levi subgroup of a parabolic subgroup of $G$ . We prove that $t$

coset space $G/L$ has a G-invariant parak\"ahler structure corresponding to a canonit
dipolarization coming from a gradation in the Lie algebra Lie $G$ (Theorem 4.3). Fina
we construct an equivariant compactification of the G-homogeneous parak\"ahl
manifold $G/L$ (Theorem 4.7), which is a generalization of the compactificati $($

constructed in [5] for a parahermitian symmetric space.
We refer terminologies and basic facts on graded Lie algebras to our previo

paper [7]. Throughout the present paper, Lie algebras are finite-dimensional. 1
abbreviate a “graded Lie algebra” as a GLA. $C^{\infty}(M)$ denotes the ring of smoc
functions of class $C^{\infty}$ on a manifold $M$.

1. Parakahler Manifolds.

DEFINmON 1.1. Let $M$ be a symplectic manifold with symplectic form $\omega$ . $1$

$(F^{+}, F^{-})$ beapair of transversal foliations on M. The triple $(M, \omega, F^{\pm})$ is then call
a parakahler manifold, if each leaf of $F^{\pm}$ is a Lagrangian submanifold of $M$.

Let $(M, \omega, F^{\pm})$ be a $2n$-dimensional parak\"ahler manifold. Let $p\in M$. Then $th|$

exist two Lagrangian leaves $F^{+}(p)$ of $F^{+}$ and $F^{-}(p)$ of $F^{-}$ both passing through
Note that dim $F^{\pm}(p)=n$ . Let $\hat{I}_{p}$ be the linear endomorphism of the tangent space $T_{l}$

at $p$ to $M$ such that $\hat{I}_{p}=\pm 1$ on the tangent spaces $T_{p}F^{\pm}(p)$ , respectively. Then 1
tensor field $\hat{I}:=(\hat{I}_{p})_{p\in M}$ is a paracomplex structure [3] on $M$. Also $\hat{I}$ satisfies 1

integrability condition [3]:

$[\hat{I}X,\hat{I}Y]=\hat{I}[\hat{I}X, Y]+\hat{I}[X,\hat{I}Y]-[X, Y]$ , (1

where $X$ and $Y$ are vector fields on $M$. We need the following

LEMMA 1.2. Let $(M, \omega)$ be a symplectic manifold and $F^{\pm}$ be two foliations on
Suppose that the tangent bundle $TM$ of $M$ is expressed as the Whitney sum of $F^{+}$ ‘

$F^{-}$ . Let $I=(I,),.M$ be a $(1,1)$-tensor field on $M$ such that $\hat{I}_{p}=\pm 1$ on the fibers $F_{p}^{\pm}$

$F^{\pm}$ through a point $p\in M$. Then each leaf of $F^{\pm}$ is a Lagrangian submanifold of A4
and only if we have the equality

$\omega(\hat{I}X, Y)+\omega(X,\hat{I}Y)=0$ (1

for any vectorfields $X,$ $Y$ on $M$.
$PR\infty F$ . Suppose that leaves of $F^{\pm}$ are Lagrangian submanifolds, or equivalen

the fibers $F_{p}^{\pm},$ $p\in M$, are Lagrangian subspaces of the tangent space $T_{p}M$. Let
$Y_{p}\in F_{p}^{+}$ (resp. $F_{p}^{-}$ ). Then $\omega(\hat{I}_{p}X_{p}, Y_{p})=\omega(X_{p},\hat{I}_{p}Y_{p})=\omega(X_{p}, Y_{p})=0$ (resp. $=-\omega(X_{p}$,



HOMOGENEOUS SYMPLECTIC MANIFOLDS 315

$=0)$ . Suppose that $X_{p}\in F_{p}^{+}$ and $Y_{p}\in F_{p}^{-}$ . Then $\omega(\hat{I}_{p}X_{p}, Y_{p})=\omega(X_{p}, Y_{p})=-\omega(X_{p},\hat{I}_{p}Y_{p})$ .
Thus we have (1.2). Conversely suppose that (1.2) is valid. Then it follows that $F_{p}^{\pm}$ are
two totally isotropic subspaces of $T_{p}M$. Since $T_{p}M=F_{p}^{+}\oplus F_{p}^{-}$ (direct sum), $F_{p}^{\pm}$ are
Lagrangian subspaces of $T_{p}M$. Q.E.D.

Let $(M, \omega, F^{\pm})$ be a parak\"ahler manifold. We say that a symplectomorphism $\varphi$ of
$M$ is an automorphism of $(M, \omega, F^{\pm})$ if $\varphi$ leaves the associated paracomplex structure $\hat{I}$

invariant (or equivalently, $\varphi$ permutes respective leaves of the foliations $F^{\pm}$ ). We denote
by $Aut(M, \omega,\hat{I})$ the group of automorphisms of $(M, \omega, F^{\pm})$ . Then the group
$Aut(M, \omega,\hat{I})$ is a Lie group. In fact, if we put $ g(X, Y)=\omega(IX, Y)\wedge$ for vector fields $X,$ $Y$

on $M$, then it follows from Lemma 1.2 that $g$ is an $Aut(M, \omega, I)$-invariant
pseudo-riemannian metric on $M$. Thus $Aut(M, \omega,\hat{I})$ is a closed subgroup of the isometry
group of $M$ with respect to $g$ . If the group $Aut(M, \omega,\hat{I})$ acts transitively on $M$, then
the parak\"ahler manifold $M$ is called homogeneous. Let $G$ be a connected Lie group and
$H$ be a closed subgroup of $G$ . Suppose that the coset space $G/H$ has a parak\"ahler
structure $\{\omega, F^{\pm}\}$ . Let $\hat{I}$ denote the paracomplex structure associated with $F^{\pm}$ . If $G$

leaves both $\omega$ and $\hat{I}$ invariant, then we say that $G/H$ is a parakahler coset space.

EXAMPLES 1.3. (i) Let $N$ be a complete simply connected Riemannian manifold
whose sectional curvature is less than or equal to $-1$ everywhere. Let $M$ be the smooth
manifold of unit speed geodesics on $N$. Then $M$ is a parak\"ahler manifold (Kanai [2]).
(ii) Parahermitian symmetric spaces are homogeneous parak\"ahler manifolds ([3]).

2. Parak\"ahler algebras.

DEFINITION 2.1. Let $\mathfrak{g}$ be a real Lie algebra, $\mathfrak{h}$ a subalgebra of $\mathfrak{g},$

$I$ a linear
endomorphism of $\mathfrak{g}$ and $\rho$ be an altemating 2-form on $\mathfrak{g}$ . Then the quadruple $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$

is called a parakahler algebra, if the following conditions $(2.1)\leftrightarrow(2.6)$ are satisfied:

$I(\mathfrak{h})\subset \mathfrak{h}$ and $I^{2}\equiv 1$ mod $\mathfrak{h}$ . The $\pm 1$ -eigenspaces under the operator (2.1)
on $\mathfrak{g}/\mathfrak{h}$ induced by $I$ are equi-dimensional,

[X, I $Y$] $\equiv I[X, Y]$ $mod \mathfrak{h}$ , $X\in \mathfrak{h}$ , $Y\in \mathfrak{g}$ , (2.2)

[IX, $IY$] $\equiv I[IX, Y]+I$[$X,$ I $Y$] $-[X, Y]$ $mod \mathfrak{h}$ , $X,$ $Y\in \mathfrak{g}$ , (2.3)

$\rho(X, \mathfrak{g})=0$ if and only if $X\in \mathfrak{h}$ , (2.4)

$\rho(IX, IY)=-\rho(X, Y)$ , $X,$ $Y\in \mathfrak{g}$ , (2.5)

$\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0$ , $X,$ $Y,$ $Z\in \mathfrak{g}$ . (2.6)

If the 2-form $\rho$ is a coboundary $df$ of a linear form $f$ in the sense of the Lie algebra
cohomology, then the parak\"ahler algebra $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ is said to be nondegenerate. In
this case $(2.4)-(2.6)$ can be replaced by
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$f([X, \mathfrak{g}])=0$ if and only if $X\in \mathfrak{h}$ , $(2_{l}^{\prime}$

$f([IX, IY])=-f([X, Y])$ , $X,$ $Y\in \mathfrak{g}$ . $(2.f$

PROPOSITION 2.2. Let $G$ be a connected Lie group and $H$ be a closed subgroup $\ell$

G. Let $\mathfrak{g}=LieG$ and $\mathfrak{h}=Lie$ H. Suppose that $G/H$ is a parakahler coset space. Then the’
exist a linear endomorphism I of $\mathfrak{g}$ and an alternating 2-form $\rho$ on $\mathfrak{g}$ such that $\{\mathfrak{g},$ $\mathfrak{h},$ $I,$

$\rho$

is a parakahler algebra.

$PR\infty F$ . Let dim $G/H=2n$ , and let $\hat{I}$ be the associated (G-invariant) paracomple
structure on $G/H$ and $\omega$ be the symplectic form. Choose a local coordinate systel
$(u^{1}, \cdots\cdot, u^{2n}, u^{2n+1}, \cdots, u^{m})$ around the unit element $e\in G$ satisfying the two condition
(1) $u^{i}(e)=0(1\leq i\leq m),$ (2) there exists a cubic neighborhood $U$ of $e$ with respect $t$

$(u^{1}, \cdots, u^{m})$ which satisfies

$U\cap H=\{g\in U;u^{1}(g)=\cdots=u^{2n}(g)=0\}$ .
Let $F$ be the set of elements $g\in U$ satisfying $u^{i}(g)=0,2n+1\leq i\leq m$ . Let $\pi$ be the natura
projection of $G$ onto $G/H$. The restriction $\pi|_{F}$ is a diffeomorphism of $F$ onto an ope
neighborhood of the origin $0$ in $G/H$. We identify $\mathfrak{g}$ with the tangent space $T_{e}G$ . Let $\iota$

be the subspace of $\mathfrak{g}$ corresponding to the tangent space $Tf$ under the abov
identification. Obviously we have $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (a vector space direct sum). The differentii
$\pi_{*e}$ is a linear surjection of $\mathfrak{g}$ onto the tangent space $T_{o}(G/H)$ , whose kemel is $\mathfrak{h}$ . $W$

define a linear endomorphism $I$ on $\mathfrak{g}$ by putting

$I=\{0$ $onon$
$\mathfrak{m}\mathfrak{h}$

,
(2.

where $\hat{I}_{o}$ denotes the value of $\hat{I}$ at the point $0$ . Then, making use of the same techniqu
as in the case of a homogeneous complex structure (Fr\"ohlicher [1]), we get

$\pi_{*e}I=\hat{I}_{o}\pi_{*e}$ , $(2.1t$

$\pi_{*e}(I[X, Y])=\pi_{*e}([X, IY])$ , $X\in \mathfrak{h},$ $Y\in \mathfrak{g}$ , (2.1

$\pi_{*e}([IX, IY]-I[IX, Y]-I[X, IY]+[X, Y])=0$ , $X,$ $Y\in \mathfrak{g}$ . $(2.1^{\prime}\lrcorner$

In fact, (2.11) and (2.12) follow from the G-invariance of $\hat{I}$ and (1.1), respectively.
follows from $(2.10)-(2.12)$ that $I$ satisfies the conditions $(2.1)-(2.3)$ . The pull-bac
$\rho=\pi^{*}\omega$ is a G-invariant closed 2-form on $G$ and hence it is viewed as an alternatir
2-form on $\mathfrak{g}$ . $(2.4)$ and (2.5) are obtained from the nondegeneracy of $\omega$ and (1.2
respectively. Q.E.I

As for the converse assertion of Proposition 2.2, we have the following
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PROPOSITION 2.3. Let $G,$ $H,$ $\mathfrak{g}$ and $\mathfrak{h}$ be the same as in Proposition 2.2. Suppose
that the pair $\{\mathfrak{g}, \mathfrak{h}\}$ has the structure of a parakahler algebra $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ . Suppose further
that

[Ad a, $I$] $\equiv 0$ $mod \mathfrak{h}$ , $a\in H$ , (2.13)

$\rho$ ($(Ada)X$, (Ad $a)Y$) $=\rho(X, Y)$ , $a\in H,$ $X,$ $Y\in \mathfrak{g}$ . (2.14)

Then $G/H$ has the structure of a parakahler coset space.
$PR\infty F$ . We identify $\mathfrak{g}/\mathfrak{h}$ with the tangent space $T_{o}(G/H)$ to $G/H$ at the origin

$o\in G/H$. Let $\hat{I}_{o}$ be the linear endomorphism on $\mathfrak{g}/\mathfrak{h}$ induced by $I$ (cf. (2.1)). Then (2.13)
implies that $\hat{I}_{o}$ commutes with $Ad_{\mathfrak{g}/\mathfrak{h}}a,$ $a\in H$. Hence $\hat{I}_{o}$ extends to a G-invariant almost
paracomplex structure on $G/H$, which will be denoted by $\hat{I}$. The torsion $T$ of $\hat{I}$ is given
by [3]

$T(X, Y)=[IX, IY]-I[IX, Y]-I[X, IY]\wedge\wedge\wedge\wedge\wedge\wedge+[X, Y]$ , (2.15)

where $X,$ $Y$ are vector fields on $G/H$. We have to show that $T$ vanishes identically on
$\cap G/H$ ([3]). For this purpose we extend the original endomorphism $I$ on $\mathfrak{g}$ to a

left-invariant tensor field $\tilde{I}onG$ . Denoting the natural projection $G\rightarrow G/H$ by $\pi$ , we have
$\pi_{*}\tilde{I}=\hat{I}\pi_{*}$ . (2.16)

Let us put

$\tilde{T}(X, Y)=[IX, IY]-I[IX, Y]-I[X, IY]\sim\sim\sim\sim\sim\sim+[X, Y]$ , (2.17)

$X$ and $Y$ being vector fields on $G$ . Then it follows that

$7(X, \xi Y)=\xi\tilde{T}(X, Y)-(X\xi)(I\tau Y-Y)$ , (2.18)

where $\xi\in C^{\infty}(G)$ . In view of (2.1), the equality (2.18) implies that $\tilde{T}(X, Y)$ is
$C^{\infty}(G)$-bilinear in $X$ and $Y$ modulo $C^{\infty}(G)\mathfrak{h}(=the$ submodule, generated by $\mathfrak{h}$ , of the
$C^{\infty}(G)$-module of all vector fields on $G$ ). Consequently it follows from (2.3) that
$\tilde{T}(X, Y)\in C^{\infty}(G)\mathfrak{h}$ . Hence, as in the case of a homogeneous complex structure (Koszul
[9]), one can conclude that $T$ vanishes identically on $G/H$. We have thus proved that
$\hat{I}$ is a (G-invariant) paracomplex structure ([3]). In other words, the $\pm 1$ -eigenspaces
of $\hat{I}$ determine transversal foliations $F^{\pm}$ on $G/H$ such that the Whitney sum $F^{+}\oplus F^{-}$

is the whole tangent bundle of $G/H$. By (2.4), there exists a unique altemating 2-form
$\omega_{o}$ on $\mathfrak{g}/\mathfrak{h}$ such that $\pi^{*}\omega_{o}=\rho$ . $\omega_{o}$ is nondegenerate and $Ad_{\mathfrak{g}/\mathfrak{h}}H$-invariant (cf. (2.4),
(2.14)). Hence it extends to a G-invariant symplectic form $\omega$ on $G/H$ (cf. (2.6)). (2.5)
implies that $\omega$ satisfies (1.2), and so $F^{\pm}$ are Lagrangian foliations. Q.E.D.

REMARK 2.4. If $H$ is connected, then the assertion of Proposition 2.3 holds with-
out assuming (2.13) and (2.14).
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3. Dipolarizations in Lie algebras.

DEFINITiON 3.1. Let $\mathfrak{g}$ be a real Lie algebra, $\mathfrak{g}^{\pm}$ be two subalgebras of $\mathfrak{g}and_{1}$

be an alternating 2-form on $\mathfrak{g}$ . The triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ is called a weak dipolarization $il$

$\mathfrak{g}$ , if the following conditions are satisfied:
$\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ , (3.1

Put $\mathfrak{h}:=\mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ . Then $\rho(X, \mathfrak{g})=0$ if and only if $X\in \mathfrak{h}$ , $(3_{A}^{\prime}$

$\rho(\mathfrak{g}^{+}, \mathfrak{g}^{+})=\rho(\mathfrak{g}^{-}, \mathfrak{g}^{-})=0$ , (3.

$\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0$ , $X,$ $Y,$ $Z\in \mathfrak{g}$ . (3.4

It follows from $(3.1)-(3.3)$ that in the above definition $\mathfrak{g}^{+}$ and $\mathfrak{g}^{-}$ are $equl$

dimensional (cf. Proof of Lemma 3.4).

DEFINITION 3.2. Let $\mathfrak{g}$ be a real Lie algebra and $\mathfrak{g}^{\pm}$ be two subalgebras of $\mathfrak{g},$ $an($

let $f$ be a linear form on $\mathfrak{g}$ . The triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ is called a dipolarization in $\mathfrak{g}$ if th
following conditions are satisfied:

$\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ , $(3_{\sim}$

Put $\mathfrak{h}:=\mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ . $Thenf([X, \mathfrak{g}])=0ifandonlyifX\in \mathfrak{h}$ , $(3.t$

$f([\mathfrak{g}^{+}, \mathfrak{g}^{+}])=f([\mathfrak{g}^{-}, \mathfrak{g}^{-}])=0$ . $(3_{l}^{\prime}$

Note that a dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ is a weak dipolarization just by taking ‘

as $\rho$ . We wish to find a relation between parak\"ahler algebras and weak dipolarization $($

LEMMA 3.3. Let $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ be a parakahler algebra, and let

$\mathfrak{g}^{\pm}=$ { $X\in \mathfrak{g};IX\equiv\pm X$ mod $\mathfrak{h}$}. $(3.\{$

Then $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ is a weak dipolarization in $\mathfrak{g}$ satisfying $\mathfrak{g}^{+}\cap \mathfrak{g}^{-}=\mathfrak{h}$ .
$PR\infty F$ . We prove first that $\mathfrak{g}^{+}$ is a subalgebra of $\mathfrak{g}$ . Let $X,$ $Y\in \mathfrak{g}^{+}$ . Then one ca

write

$IX=X+h$ , $IY=Y+h^{\prime}$ , (3.

where $h,$ $h^{\prime}\in \mathfrak{h}$ . By (2.1), (2.2), (2.3) and (3.9) we get

$I[X, Y]\equiv[IX, Y]+$ [$X,$ I $Y$] $-I[IX, IY]$

$=2[X, Y]+[h, Y]+[X, h^{\prime}]-I[X, Y]-I[X, h^{\prime}]-I[h, Y]-I[h, h^{\prime}]$

$\equiv 2[X, Y]+[h, Y]+[X, h^{\prime}]-I[X, Y]-[X, h^{\prime}]-[h, Y]$ $mod \mathfrak{h}$ . $(3.1^{1}$

Therefore we have $I[X, Y]\equiv[X, Y]mod \mathfrak{h}$ , which implies that $\mathfrak{g}^{+}$ is a subalgebra $($

$\mathfrak{g}$ . Similarly $\mathfrak{g}^{-}$ is a subalgebra of $\mathfrak{g}$ . Let $\hat{I}_{o}$ be the linear endomorphism on $\mathfrak{g}/\mathfrak{h}$ induct
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by $I$. By (2.1) we have $\hat{I}_{o}^{2}=1$ . Let $(\mathfrak{g}/\mathfrak{h})_{\pm}$ be the $\pm 1$ -eigenspaces in $\mathfrak{g}/\mathfrak{h}$ under $\hat{I}_{o}$ . Then
we have that $\mathfrak{g}^{\pm}$ coincide with the complete inverse images of $(\mathfrak{g}/\mathfrak{h})_{\pm}$ under the canonical
projection of $\mathfrak{g}$ onto $\mathfrak{g}/\mathfrak{h}$ , from which (3.1) follows. Let $X,$ $Y\in \mathfrak{g}^{+}$ and write them in the
form (3.9). We then have from (2.5) and (2.4) that $\rho(X, Y)=-\rho(IX, IY)=-\rho(X, Y)$ ,
and hence we have (3.3). We next show that $\mathfrak{g}^{+}\cap \mathfrak{g}^{-}=\mathfrak{h}$ . Since $\mathfrak{g}^{\pm}$ are the complete
inverse images of $(\mathfrak{g}/\mathfrak{h})_{\pm}$ under the projection $\mathfrak{g}\rightarrow \mathfrak{g}/\mathfrak{h},$ $\mathfrak{h}$ is contained in $\mathfrak{g}^{\pm}$ . By this and
(3.3) we see $\rho(\mathfrak{h}, \mathfrak{g})=0$ . Let $Z\in \mathfrak{g}$ and write $Z=Z^{+}+Z^{-},$ $Z^{\pm}\in \mathfrak{g}^{\pm}$ . Choose $X\in \mathfrak{g}^{+}\cap \mathfrak{g}^{-}$

Then, since $\rho$ satisfies (3.3), one has $\rho(X, Z)=\rho(X, Z^{+})+\rho(X, Z^{-})=0$ . $Z$ being
arbitrary, we conclude by (2.4) that $X\in \mathfrak{h}$ . Thus we have proved (3.2). Q.E.D.

Conversely we have

LEMMA 3.4. Let $\mathfrak{g}$ be a real Lie algebra and let $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ be a weak dipolarization
in $\mathfrak{g}$ . Put $\mathfrak{h}:=\mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ . Then the pair $\{\mathfrak{g}, \mathfrak{h}\}$ has the structure of a parakahler algebra.

$PR\infty F$ . Let $\pi$ be the natural projection of $\mathfrak{g}$ onto $\mathfrak{g}/\mathfrak{h}$ . Then by (3.1),
$\mathfrak{g}/\mathfrak{h}=\pi(\mathfrak{g}^{+})+\pi(\mathfrak{g}^{-})$ . The right-hand side is a direct sum of the vector spaces, since
$\pi^{-1}(\pi(\mathfrak{g}^{\pm}))=\mathfrak{g}^{\pm}$ holds. Define an altemating 2-form $\omega_{o}$ on $\mathfrak{g}/\mathfrak{h}$ by putting
$\omega_{o}(\pi(X), \pi(Y))=\rho(X, Y),$ $X,$ $Y\in \mathfrak{g}$ . (3.2) implies that $\omega_{o}$ is well-defined and non-
degenerate on $\mathfrak{g}/\mathfrak{h}$ . It follows from (3.2) and (3.3) that $\pi(\mathfrak{g}^{\pm})$ are maximal totally
isotropic subspaces with respect to $\omega_{o}$ . This implies that $\pi(\mathfrak{g}^{+})$ and $\pi(\mathfrak{g}^{-})$ are
equi-dimensional. Define a linear endomorphism $\hat{I}_{o}$ on $\mathfrak{g}/\mathfrak{h}$ by setting $I_{0}=\pm 1$ on $\pi(\mathfrak{g}^{\pm})$ ,
respectively. Let $I$ be a linear endomorphism on $\mathfrak{g}$ satisfying $\pi I=\hat{I}_{0}\pi$ . Then $I$ satisfies
(2.1). On the other hand, it is easily seen that, with respect to the endomorphism $I,$ $\mathfrak{g}^{\pm}$

are given by

$\mathfrak{g}^{\pm}=$ { $X\in \mathfrak{g}:IX\equiv\pm X$ mod $\mathfrak{h}$ }. (3.11)

In order to prove (2.2), one can assume, in view of (3.1), that $Y$ in (2.2) lies either in
$\mathfrak{g}^{+}$ or in $\mathfrak{g}^{-}$ . Suppose first that $Y\in \mathfrak{g}^{+}$ . One can then write $IY=Y+h^{\prime}$ , where $h^{\prime}\in \mathfrak{h}$ .
Therefore, if $X\in \mathfrak{h}$ , then [X, $IY$] $=[X, Y+h^{\prime}]\equiv[X, Y]$ mod $\mathfrak{h}$ . Since [X, $Y$] lies in $\mathfrak{g}^{+}$ ,
we have $I[X, Y]\equiv[X, Y]$ mod $\mathfrak{h}$ (cf. (3.11)). Thus (2.2) is valid for $Y\in \mathfrak{g}^{+}$ . Similarly
(2.2) is valid for $Y\in \mathfrak{g}^{-}$ . Next we wish to prove that the linear endomorphism $I$ satisfies
(2.3). We break up into three cases: (i) $X,$ $Y\in \mathfrak{g}^{+}$ , (ii) $X\in \mathfrak{g}^{+},$ $Y\in \mathfrak{g}^{-}$ , and (iii) $X,$ $Y\in \mathfrak{g}^{-}$

Let us first consider the case (i). By (3.11) one can write $X,$ $Y$ in the form (3.9). Thus,
by using (3.11) and (2.2) just proved, we have

[IX, $IY$] $=[X+h, Y+h^{\prime}]$

$\equiv[X, Y]+[X, h^{\prime}]+[h, Y]$ mod $\mathfrak{h}$ , (3.12)

and so
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$I[IX, Y]+I$[$X,$ I $Y$] $-[X, Y]$

$=I[X+h, Y]+I[X, Y+h^{\prime}]-[X, Y]$

$=I[X, Y]+I[h, Y]+I[X, Y]+I[X, h^{\prime}]-[X, Y]$

$\equiv[X, Y]+$ [$h,$ I $Y$] $+[X, Y]+[IX, h^{\prime}]-[X, Y]$

$=[X, Y]+[h, Y+h^{\prime}]+[X+h, h^{\prime}]$

$\equiv[X, Y]+[h, Y]+[X, h^{\prime}]\equiv$ [$IX,$ I $Y$] mod $\mathfrak{h}$ . (3.1

By similar arguments, one can prove (2.3) for the two remaining cases. We shall sho
(2.5). In the case where $X,$ $Y\in \mathfrak{g}^{\pm}$ , it follows from (3.3) that both sides of (2.5) are zer
Suppose that $X\in \mathfrak{g}^{+}$ and $Y\in \mathfrak{g}^{-}$ . Then, by (3.11), we have $IX=X+h,$ $IY=-Y+/$
where $h,$ $h^{\prime}\in \mathfrak{h}$ . Therefore, by (3.2),

$\rho$($IX,$ I $Y$) $=\rho(X+h, -Y+h^{\prime})$

$=-\rho(X, Y)+\rho(X, h^{\prime})-\rho(h, Y)+\rho(h, h^{\prime})=-\rho(X, Y)$ ,

which proves (2.5). Q.E.I

Let $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ and $\{\mathfrak{g}^{\prime}, \mathfrak{h}^{\prime}, I^{\prime}, \rho^{\prime}\}$ be two parak\"ahler algebras. They are said to 1
isomorphic if there exists a Lie isomorphism $\varphi$ of $\mathfrak{g}$ onto $\mathfrak{g}^{\prime}$ satisfying the conditions:

$\varphi(\mathfrak{h})=\mathfrak{h}^{\prime}$ ,
$\varphi I\equiv I^{\prime}\varphi$ mod $\mathfrak{h}^{\prime}$ , (3.1,
$\varphi^{*}\rho^{\prime}=\rho$ ,

where $\varphi^{*}$ denotes the isomorphism, induced by $\varphi$ , between the tensor algebras on
and $\mathfrak{g}^{\prime}$ . Let $\mathfrak{g}$ and $g^{\prime}$ be two Lie algebras, and let $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ and $\{\mathfrak{g}^{\prime+}, \mathfrak{g}^{\prime-}, \rho^{\prime}\}$ be wea
dipolarizations in $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ , respectively. They are said to be isomorphic if there exis
a Lie isomorphism $\varphi$ of $\mathfrak{g}$ onto $\mathfrak{g}^{\prime}$ satisfying the conditions

$\varphi(\mathfrak{g}^{+})=\mathfrak{g}^{\prime+}$ , $\varphi(\mathfrak{g}^{-})=\mathfrak{g}^{\prime-}$ ,
$(3.1$

$\varphi^{*}\rho^{\prime}=\rho$ .
Combining Lemmas 3.3 and 3.4, we finally obtain

THEOREM 3.5. Let $\mathfrak{g}$ be a real Lie algebra. Then there exists a bijection betwe
the set of isomorphism classes of parakahler algebra structures on $\mathfrak{g}$ and the set $($

isomorphism classes of weak dipolarizations in $\mathfrak{g}$ .
$PR\infty F$ . Let $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ be a parak\"ahler algebra and let $\mathfrak{g}^{\pm}$ be the ones given]

(3.8). By Lemma 3.3, $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ is a weak dipolarization in $\mathfrak{g}$ . In view of Lemmas 3
and 3.4 the correspondence $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}\mapsto\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ induces a bijection between th
respective isomorphism classes. Q.E.I
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We finally have

THEOREM 3.6. Let $G$ be a connected Lie group and $H$ be a closed subgroup of $G$ .
Let $\mathfrak{g}=LieG$ and $\mathfrak{h}=LieH$. Suppose that $G/H$ is a parakahler coset space. Then $\mathfrak{g}$ admits
a weak dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ such that

$\mathfrak{h}=\mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ (3.16)

Conversely, suppose that there exists a weak dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ in $\mathfrak{g}$ satisfying the
conditions (3. 16) and

$(Ad_{\mathfrak{g}}H)\mathfrak{g}^{\pm}\subset \mathfrak{g}^{\pm}$ , (3.17)

$\rho$ is $Ad_{\mathfrak{g}}$ H-invariant. (3.18)

Then $G/H$ has the structure of a parakahler coset space.

PROOF. The first assertion is immediate from Proposition 2.2 and Lemma 3.3.
Suppose that $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ is a weak dipolarization in $\mathfrak{g}$ satisfying $(3.16)-(3.18)$ . Let $a\in H$.
Then, under the notations in the proof of Lemma 3.4, we have that $Ad_{\mathfrak{g}/\mathfrak{h}}$ $a$ leaves $\pi(\mathfrak{g}^{\pm})$

stable and that $[Ad_{\mathfrak{g}/\mathfrak{h}}a,\hat{I}_{o}]=0$ . This implies that $[Ad_{\mathfrak{g}}a, I]\equiv 0$ mod $\mathfrak{h}$ , or equivalently,
(2.13) is valid. Therefore the second assertion follows from Lemma 3.4 and Proposition
2.3. Q.E.D.

The above manifold $G/H$ is called the parakahler coset space corresponding to a
weak dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ .

4. Parak\"ahler manifolds associated with graded Lie algebras.

4.1. Let $\mathfrak{g}$ be a real semisimple Lie algebra and $B$ be the Killing form of $\mathfrak{g}$ . Note
that a weak dipolarization in $\mathfrak{g}$ is always a dipolarization, since the second cohomology
group of $\mathfrak{g}$ vanishes.

LEMMA 4.1. Let $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ be a dipolarization in $\mathfrak{g}$ . Then $\mathfrak{h}:=\mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ coincides
with the centralizer $c(Z)$ in $\mathfrak{g}$ of an element $Z\in \mathfrak{g}$ .

PROOF. Let $Z\in \mathfrak{g}$ be a unique element satisfying

$B(Z, X)=f(X)$ , $X\in \mathfrak{g}$ . (4.1)

Choose an element $X\in \mathfrak{h}$ . Then for any element $Y\in \mathfrak{g}$ , we have

$B([Z, X], Y)=B(Z, [X, Y])=f([X, Y])$ . (4.2)

The last member of (4.2) is zero by (3.6) and consequently $[Z, X]=0$ or equivalently
$\mathfrak{h}\subset \mathfrak{c}(Z)$ . The co\‘Ilverse inclusion follows from (4.2) and (3.6). Q.E.D.

THEOREM 4.2. Let $\mathfrak{g}=\sum_{k=-v}^{\nu}\mathfrak{g}_{k}$ be a semisimple GLA of the v-th kind, and $Z\in \mathfrak{g}$
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be its characteristic element. Let $\mathfrak{g}^{\pm}=\sum_{k=0}^{\nu}\mathfrak{g}_{\pm k}$ . Define a linear form $f$ on $\mathfrak{g}b$.
$f(X)=B(Z, X),$ $X\in \mathfrak{g}$ . Then $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ is a dipolarization in $\mathfrak{g}$ .

$PR\infty F$ . (3.5) is trivially satisfied. Note that $\mathfrak{g}^{+}\cap \mathfrak{g}^{-}=\mathfrak{g}_{0}=c(Z)$ . Let $X\in \mathfrak{g}_{0}.$ The]

we have $[Z, X]=0$ . Consequently, by (4.2) we have $f([X, \mathfrak{g}])=0$ . Conversely, let $X\in|$

and suppose that$f([X, Y])=0$ for any $Y\in \mathfrak{g}$ . Then, by (4.2) we have $X\in c(Z)=\mathfrak{g}_{0}$ . Thu
(3.6) is valid. Next we claim

$[\mathfrak{g}^{+}, \mathfrak{g}^{+}]=[\mathfrak{g}_{0}, \mathfrak{g}_{0}]+\mathfrak{g}_{1}+\cdots+\mathfrak{g}_{v}$ . (4.3

Indeed, the inclusion $\subset$ is trivial. We have $[\mathfrak{g}^{+}, \mathfrak{g}^{+}]\supset[\mathfrak{g}_{0}, \mathfrak{g}_{0}]+\sum_{k=1}^{\nu}[Z, \mathfrak{g}_{k}]=[\mathfrak{g}_{0},$ $\mathfrak{g}_{0}$

$+\sum_{k=1}^{\nu}\mathfrak{g}_{k}$ , which shows (4.3). By using (4.3) we have

$f([\mathfrak{g}^{+}, \mathfrak{g}^{+}])=B(Z, [\mathfrak{g}^{+}, \mathfrak{g}^{+}])$

$=B([Z, \mathfrak{g}_{0}], \mathfrak{g}_{0})+\sum_{k=1}^{v}B(Z, \mathfrak{g}_{k})$ . (4.4

The first term of the third member of (4.4) is zero. By a well-known property $B(\mathfrak{g}_{p}, \mathfrak{g}_{q})=1$

for $p+q\neq 0$ , it follows that $B(Z, g_{k})=0$ for $k>0$ . Hence, by (4.4) we obtai]
$f([\mathfrak{g}^{+}, \mathfrak{g}^{+}])=0$ . Similarly we have $f([\mathfrak{g}^{-}, \mathfrak{g}^{-}])=0$ . Q.E.D

The dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ in Theorem 4.2 is called the canonical dipolarizatio’
in the GLA $\mathfrak{g}$ .

THEOREM 4.3. Let $\mathfrak{g}=\sum_{k=-\nu}^{v}\mathfrak{g}_{k}$ be a semisimple GLA of the v-th kind wit}
characteristic element Z. Let $G$ be a connected Lie group generated by $\mathfrak{g}$ and $C(Z)b$

the centralizer of$Z$ in G. Then $M:=G/C(Z)$ has the structure ofa parakahler coset space
$PR\infty F$ . Let $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ be the canonical dipolarization in the GLA $\mathfrak{g}$ . We $hav($

$\mathfrak{g}^{+}\cap \mathfrak{g}^{-}=\mathfrak{g}_{0}=LieC(Z)$ . Since $Ad_{9}C(Z)$ consists of grade-preserving automorphisms $0$

$\mathfrak{g}$ , the subalgebras $\mathfrak{g}^{\pm}$ are stable under $Ad_{\mathfrak{g}}C(Z)$ . By using (4.1), we see that $fi$

$Ad_{\mathfrak{g}}C(Z)$-invariant. Therefore the assertion follows from Theorem 3.6. Q.E. $D$

The above parak\"ahler coset space $G/C(Z)$ is called a semisimple parakdihler cose
space (of the v-th kind). If $G$ is simple, then it is called a simple parakahler coset space

REMARK 4.4. (1) The space $G/C(Z)$ is the coadjoint orbit of $G$ through $f$, and so $i$

is a Hamiltonian G-space in the sense of Kostant [8]. (2) Let $G/C(Z)$ be a semisimpl $($

parak\"ahler coset space. One can assume that the center of $G$ is finite. Then the subgrou]
$C(Z)$ can be characterized as the Levi subgroup of a parabolic subgroup of G. (3) $A$

semisimple parak\"ahler coset space of the v-th kind is a parahermitian symmetric spac $($

if and only if $v=1$ ([3]).

4.2. Let $\mathfrak{g}$ be a real semisimple Lie algebra. A gradation $\mathfrak{g}=\sum_{k=-v}^{\nu}\mathfrak{g}_{k}$ is said $t($

be of type $\alpha_{0}$ , if $\mathfrak{m}^{+}=\sum_{k=1}^{\nu}\mathfrak{g}_{k}$ and $\mathfrak{m}^{-}=\sum_{k=1}^{\nu}\mathfrak{g}_{-k}$ are generated by $\mathfrak{g}_{1}$ and $\mathfrak{g}_{-1}$ , respec
tively. The subalgebra $\mathfrak{g}^{+}=\sum_{k=0}^{\nu}\mathfrak{g}_{k}$ is called the parabolic part of the GLA $\mathfrak{g}$ . $m^{\pm}ar($
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called the positive and negative parts of $\mathfrak{g}$ , respectively.

LEMMA 4.5. Let $\mathfrak{g}=\sum_{k=-\nu}^{\nu}\mathfrak{g}_{k}$ be a gradation of $\mathfrak{g}$ which is not of type $\alpha_{0}$ . Then
there exists a gradation of type $\alpha_{0}$ of $\mathfrak{g}$ with the same parabolic andpositive parts as those

for the original gradation.

$PR\infty F$ . Let $\Pi$ be the restricted fundamental system of roots for $\mathfrak{g}$ . It is known
[7] that every gradation of $\mathfrak{g}$ is described by a partition $\Pi=\Pi_{0}\cup\Pi_{1}\cup\cdots\cup\Pi_{n}$ . Put
$\Pi_{1}^{\prime}=\Pi_{1}\cup$ $\cup\Pi_{n}$ . Then the gradation of $\mathfrak{g}$ corresponding to the partition $\Pi=\Pi_{0}\cup\Pi_{1}^{\prime}$

is of type $\alpha_{0}$ (Theorem 2.6 [7]) and satisPes the required properties. Q.E.D.

Under the notations and assumptions in Theorem 4.3, we assume further without
Ioss of generality that the center of $G$ is finite. Let us consider the subgroups of $G$

$U^{\pm}=C(Z)\exp \mathfrak{m}^{\pm}$ , (4.5)

where $\mathfrak{m}^{\pm}$ are the positive and negative parts of $\mathfrak{g}$ , respectively. Then we have the
R-spaces $M^{\pm}=G/U^{\pm}$ which can be expressed as one and the same coset space of a
maximal compact subgroup of G. $M^{\pm}$ are not symmetric R-spaces in general. If $G$ is
complex semisimple, then $M=G/C(Z)$ has the natural G-invariant complex structure,
and $M^{\pm}=G/U^{\pm}$ are K\"ahler C-spaces in the sense of H. C. Wang.

PROPOSITION 4.6. The semisimple parakahler coset space $M=G/C(Z)$ is $d\iota ffeo-$

morphic to the cotangent bundle of the R-space $M^{+}=G/U^{+}$ (or $M^{-}=G/U^{-}$ ). If $G$ is
complex semisimple, then $G/C(Z)$ is holomorphically equivalent to the cotangent bundle
of the Kahler C-space $G/U^{+}$ (or $G/U^{-}$ ).

$PR\infty F$ . By Lemma 4.5, one can assume that the gradation $\mathfrak{g}=\sum_{k=-\nu}^{\nu}\mathfrak{g}_{k}$ cor-
responding to $M$ is of type $\alpha_{0}$ , and hence the corresponding partition of $\Pi$ is given
by $\Pi=\Pi_{0}\cup\Pi_{1}$ (Theorem 2.6 [7]). Thus the characteristic element $Z$ of the gradation is
determined by ([7])

$B(Z, \alpha_{i})=\left\{\begin{array}{ll}0, & \alpha_{i}\in\Pi_{0},\\1 , & \alpha_{i}\in\Pi_{1}.\end{array}\right.$ (4.6)

Therefore the first assertion follows from a result of Takeuchi [11]. Note that if $G$ is
complex semisimple, then everything is done within the complex category. Q.E.D.

Let us consider the product manifold
$\tilde{M}=M^{-}\times M^{+}$ (4.7)

The group $G$ acts on $\tilde{M}$ diagonally, that is, $g(p, q)=(gp, gq)$ , where $g\in G$ and $(p, q)\in\tilde{M}$.
Let $o^{\pm}$ denote the origins of the coset spaces $M^{\pm}$ , respectively.

THEOREM 4.7. Let $M=G/C(Z)$ be a semisimple parakahler coset space. Then $M$

is equivariantly imbedded in $\tilde{M}$ as the G-orbit through the point $(0^{-}, 0^{+})$ under the diagonal
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G-action. The image of $M$ is open and dense in $\tilde{M}$ . In particular, $\tilde{M}$ is viewed as
G-equivariant compactification ofM. If $G$ is complex semisimple, then the above imbeddin
is holomorphic.

$PR\infty F$ . The isotropy subgroup of $G$ at $(0^{-}, 0^{+})$ is given by $U^{-}\cap U^{+}=C(Z)(c$

(4.5) $)$ , which implies the first assertion. That the image of $M$ is dense in $\tilde{M}$ can $t$

proved in the same way as for Lemma 3.4 [6], and so we can omit the details. We onl
note that $(\exp \mathfrak{m}^{-})C(Z)(\exp \mathfrak{m}^{+})$ is open and dense in $G$ (see also Takeuchi [11]).

Q.E.I

EXAMPLE 4.8. Let $\mathfrak{g}=\mathfrak{s}u(p, q),$ $p\leq q$ . Under the notations in [7], consider th
gradation of $\mathfrak{g}$ of the second kind corresponding to $\Pi_{1}=\{\alpha_{k}\},$ $1\leq k\leq p$ . The simp
parak\"ahler coset space (of the second kind) corresponding to this gradation is given $b$

$M_{k}=U(p, q)/GL(k, C)\times U(p-k, q-k)$ , $1\leq k\leq p$ . $(4.\{$

By Proposition 4.6, $M_{k}$ is diffeomorphic to the cotangent bundle of the R-space

$M_{k}^{+}=U(p)\times U(q)/U(k)\times U(p-k)\times U(q-k)$

$=G_{k.p-k}(C)\times V_{k,q}(C)$ , $(4_{-}^{(}$

where $G_{k,p-k}(C)$ denotes the complex Grassmannian of k-dimensional subspaces in $($

$\dot{a}ndV_{k,q}(C)$ denotes the complex Stiefel manifold of unitary k-frames in $C^{q}$ . Note th’
$M_{p}^{+}=U(q)/U(q-p)=V_{p.q}(C)$ is the Silov boundary of the bounded classical symmetr
domain of type $I_{p,q}$ , and that $M_{1}^{+}$ is the hermitian quadric of index $p-1$ in the comple
projective $(p+q-1)$-space. $M_{k}$ is parahermitian symmetric if and only if $k=p=q,$ $i$

which case $M_{p}=U(p, p)/GL(p, C)([5])$ .
ACKNOWLEDGEMENT. Shaoqiang Deng at Nankai Institute of Mathematic

Tianjin, China, constructed a dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-},f\}$ in a certain Lie algebra $fe$

which $\mathfrak{g}^{+}$ and $\mathfrak{g}^{-}$ are not isomorphic ([14]).

Added in Proof. The infinitesimal classification of simple parak\"ahler coset spact
of the second kind has been given in $[15, 16]$ .
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