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Complete Classification of Periodic Maps
on Compact Surfaces

Kazuo YOKOYAMA

Sophia University

Abstract. In the previous paper [9] and [10], we gave some classification theorems of periodic maps
with isolated singular sets on compact surfaces. In this paper, we will give complete classification theorems
of periodic maps on compact surfaces as similar formulae to those of [9] and [10].

§0. Introduction.

A homeomorphism f: M— M of a space M onto itself is called a periodic map on
M with period n if f"=identity and f*+identity for 1 <k <n. We say that a periodic
map f on M is equivalent to a periodic map f’ on M’ if there exists a homeomorphism
h: M—M' such that f"h=hf. _

We consider a pair (f, M), where M is a compact connected surface and f is a
periodic map on M with period n. Let

LN ={xeM; f{(x)=x, fi(x)#x for 1<i<k}, and V(f)i= U £,

k<n
which will be called the singular set of f. By Whyburn [8], we have the following:
PROPOSITION 0.1. The orbit space M|f is a compact surface.

PROPOSITION 0.2. A4 connected component of F(f) is one of the following types;
(1) an isolated point in M, where ~ means the interior,

(2) a simple loop in M,

(3) a proper simple arc in M.

By &°(f) we denote the subset of &(f) which consists of isolated points in M, and
let Z1(f)=L(f)—L°f).

In [9] and [10], we showed some classification theorems for periodic maps on
compact connected surfaces such that &#!(f)= ¥, up to equivalence. In this paper, we
show some classification theorems for periodic maps on compact connected surfaces
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such that #(f)# &, up to equivalence. Therefore, we will complete the classification
for periodic maps on compact surfaces, up to equivalence. The main idea of this paper
is the following.

For a compact connected surface M and a periodic map f on M, if L} (f)#J,
then by cutting M along #!(f), we can decide a certain compact connected surface,
say M,, and a periodic map f, on M, naturally determined by f with & (f)=4< and
some necessary conditions on dM,. We prove that the reducing operation of (f, M) to
(f,» M,) is bijective, and applying the classification theorems of [9] and [10] to
(fy» M,)’s, we can obtain our classification theorems for (f, M)’s.

After establishing definitions and notations, we give in §1 the main theorems. In
§2 we show some fundamental lemmas for periodic maps on compact surfaces, which
are of importance in the sequel. In particular, we discuss the reducing process of (f, M)
to (f,» M,), and in §3 we determine the equivalence classes of periodic maps (f,, M,)’s.
Applying our theorems, we discuss in §4 periodic maps on the Klein bottle and the
torus, which will be of help to understand our theory, and in §5 we prove our main
theorems (Theorems A.1, A.2, A.3, A4, B.1 and B.2).

Moreover, applying our main theorems, we can construct all (f, M), and determine
whether any two of them are equivalent or not.

We use the following notations in this paper: (Z)=a!/(b!(a—b)!), #A4 is the

number of the elements of the set A, | x_| is the smallest integer =x, [ x | is the
largest integer < x, ¢(x) is the Euler function and u(d) is the Mdbius function.

The author would like to express his sincere gratitude to Prof. Tatsuo Homma,
Shin’ichi Suzuki and Masakatsu Yamashita for helpful conversations.

§1. Definitions, notation and main results.

Let P,(M)= P, be the set of elements (f, M) with #(f)+# &, where M is a compact
connected surface and f is a periodic map on M with period n.

For an element (f, M) of P,, there exist a natural quotient space X=M/f and a
natural quotient map p: M—X. We put p(¥(f))=S.

The discussion is divided into two cases according as M—%'(f) connected or
disconnected.

Case A: M— !(f) connected. We denote by P, the subset of P, consisting of
elements (f, M) with M —%1(f) connected. For an element (f, M) of P, we construct
an element (f, M, S,) in §2, where M is a natural compactification of M —(f), fis
a periodic map on M with period # such that #!(f)=J, and S, = M — (M — £(f)). We
denote by P, the set of elements (f, M, S,), and define an equivalence relation 3 on
B, in §2. Then we have a bijection between the set of equivalence classes P,/~ and the

set of equivalence classes P,/ 3. So, we classify P,.
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By means of the orientability of M, M and X, we divide P, into the following four
sets:

P}~ ={(f, M)e B, ; M is non-orientable, M is orientable and X is orientable},
P, *={(f, M)e B, ; M is orientable, M is orientable and X is non-orientable},
P; = ={(f, M)e P, ; Misnon-orientable, M is orientable and X is non-orientable},

P¥={(f,M)eP,; M is non-orientable, M is non-orientable and X is non-
orientable}.

~

Let (g, T, 7, m,g*,§=,i*, " ;Lm, §*,§,1*, 1) be the set of elements (f, M)
of P where (¢, &')=(+, —), (—, +), (—, —) or (o, 0), satisfying the following nine
conditions:

(1) M is a compact surface of genus § and OM consists of 7 components
Dy, D,, -+, Dy, and 7 components D} ,, D} ,, -, D}, ., where D;n L ()=
(1gjsl)and D¥ " LU # S (+1<<T+7).

(2) &°(f) consists of m points S;, S,, - -, S, in M.

(3) &LUf) consists of the following sets;

(i) 2-sided loops D$*, D$*, -+ -, D¢% in M,

(ii) 1-sided loops D, D™, -+ -, D= in M,
(iii) simple proper arcs in 2-sided @-sets ®;, &5, - - -, dH in M,
(iv) simple proper arcs in 1-sided ®-sets &7, @5, - - -, P~ in M.

(The definition of the ®-set is given in §2.)
4 T=(T), is a vector of non-negative integers J,, where

L,=#{D;; f4D;)=D; and f¥D;)#D; for 1 =Vb<a}
for each divisor a of n.
(5 m=(m,),, is a vector of non-negative integers #i,, where
i, =4#{S) ; f4S) =S, and f(S,)#S, for 1=Vb<a}

for each divisor a of .
(6) §"=(4. ) n is a vector of non-negative integers 4,7, where

g. =¥{D$* ; fY(D3*)=D3* and fADS*)#DS* for 1SVb<a}

for each divisor a of n.
(7) ¢~ =(da )a)n is a vector of non-negative integers §, , where

gs =#{D$” ; fAD7)=D3" and fYD$")# D9 for 1<Vb<a}

for each divisor a of n.
(8) &% =(7; (D)4 is a vector of non-negative integers 7 (5), where

IF@)=4#{®} ; fA(P})=} and fU(D])# D] for 1 SVb<a)
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for each divisor a of n, and # is the number of arcs in &} N F1(f).
(9) £ =(i; ()., is a vector of non-negative integers 7, (7), where
Ir@)=#{d; ; fA(P,)=>, and fUP;)+d, for 1<Vb<a}
for each divisor a of n, and # is the number of arcs in &, N L(f).

NoTATION. We denote P*(G,T,7,m,G*, 3=, t*,t ;L m, §*,§,t",t") by P¥ (D)
and denote by #%(2) the set of equivalence classes of P*(2).
Then we have:

ProposiTION A. (I) If P; *(D)# &, then we have the following conditions:

(0), niseven and n/2 is odd.

(1) T‘—‘Zi;, "~1=Z"~1a’ q+=zq:3 q‘= da »

=300, T=X;@® and F=YY @G-15;@+-1;(9).
(2 [=0(mod a), m,=0 (mod a), §; =0 (mod a), §; =0 (mod a), 7 (5)=0
(mod a), and t;}(#)=0 (mod a) for each divisor a of n.
@, If G} #0, then a is a divisor of n/2 and 2a is not a divisor of n/2.
@), 4. =0 for each divisor a of n.

(5). If 1} (D)#£0, then a is a divisor of n/2, 2a is not a divisor of n/2 and 2ai
is a multiple of n.

(5), () =0 for each divisor a of n.

6)-+ g—+=-’lz—{2£7+z (a—")(la+ma)—n(¢1+t)+2n—2}
aln

is a positive integer.

(II) Except in the case of (¢, €)=(—, +), if P (D) +# &, then we have the conditions
(1), (2), (4)+ and (5), of (1) stated above, and

(V) n is even.
@) _ If §; #0, then a is a divisor of n/2.
(5)-  Ift;(®)#O0, then a is a divisor of n/2, and 2a? is a multiple of n,
©6)+ - g+_=—21—{~+2(a—n)(l,.+m..)—n(q+t)+2n—2}
n aln

is a non-negative integer, in the case of (¢, &)=(+, —),
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(6)-- g—_-=i{§+z(a—n)(la+ma)—n(q+t)+2n—2}
n aln
is a positive integer, in the case of (g, ¢')=(—, —),
1
(6)00 Goo™— {54"2 (a—n)(la+ma)_n(q+t)+2n—2}
n aln

is a positive integer, in the case of (¢, ¢')=(0, 0).
Here l,, m,, q and t are given in the proof in §5.
THEOREM A.1. (I) If g, _ is a positive integer, then
CT (mlm,gq,t)y=%P} ;(@) =4C*(n;l,m, q,t)+30(n; 1, m, q, t).
(I) If g, _ is equal to O, then

ﬂ:-qﬁ: “(9)= Z wd)C* ~(n/d; 19, m®, q?, t?)

dla

d d d d d d d) __ d d) __
where lt(z/?i=la’ ma(z/31=ma’ q¢(1/4)i=qa’ tﬁl/d)i(v)= a(v)s l( )=(lg/¢)i)d|a|m m( )—(ma(zlb)dlalm q( )=

(95 aa1n and t@ =t 5H0)aapp- )
(For other notations, see the proof in §5.)

THEOREM A.2. (Notations are as above.) Under the conditions (0), (1), (2), (4) .+,
4 -, (5. and (6),, in Proposition A, the necessary and sufficient conditions for f",:°(@)
‘to be non-empty are the following:
(a) In case that g=3,

M. S (+ma+q; +2,t;(v) iseven.

aln
a;odd

(b) In case that g=1, the condition (7)., and d=1.
(¢) In case that g=2,
(I) n/2is odd and d is even,
(II) ifdis odd, then the condition (7)., or
(III) if d is even and n/2 is even, then d/2 is odd and

(Mo Y (L+m,+q; +).t;(v) isodd,
ajn v
a; odd

where d=g.c.d.{a; l,#0, m,#0, q,#0 or t,(v)#0 (1<Iw=r)}.
Then the number of elements of P(D) is given as follows:
(@) In case that g+#2,

C(n; 19 m,gq, t) lf ln/l +mn/2 +qn/2 +Z tn/2(v)¢0 s

2:C(n;1l,m, q,t) if In/2=mn/2=qn/2=tn/2(v)=0 Jorany v (1=v=r).
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(b) In case that g=2,
o(d) . g
— | Cn;L,m,q,t) if disoddandl,,+my;+q,,+Y t,,(V)#0,

2- l'—(—&(zi)—J Cin;l,m,q,1t) if dis odd and l,;, =my,;, =g, =1,/,(v)=0

Jor any v (1=Zv=r),

2
L (P(‘;/ )J' Cn;l,m, q,t) if d is even and n/2 is odd,
d/2
L‘P(z/ )J. Cn;I,m,q,t) if dis even, n/2 is even and I,,/2+m,,/2+q"/2+z 1,2(0)#0 ,

. L 9(d/2)
2

J' Cn;l,m, q,1) if dis even, n/2 is even and I, =m,, =q,,, =1,,,(v)=0
Sor any v (1<5v=<r).

Here C(n; I, m, q, t) is equal to

¢(n/a) ¢(n/a) ¢(n/a) , [on/a)
il a1 +g,—1\ I—Il S+ —1)
AR\ m 2 N

+m,—1

THEOREM A.3. Under the conditions (0), (1), (2), 4)+, ¥ _, (5)+, (5)_ and (6)_ _
in Proposition A, the necessary and sufficient conditions for P, ~(9) to be non-empty are
the following:

(@) In case that g is odd and g =3,

@) n/2 is even;

A3), for each odd divisor a of n, 1,=0, m,=0, q,=0 and t,(v)=0 for
any v (1=5v=r); and _

(i), Y, (LAmy+q,+). t,(v) is odd.

aln
a;even
a/2;o0dd

(b) In case that g=1, the conditions (1), (3),, (i), of (a), and % -d=1.
(c) In case that g is even, the conditons (1), (3), of (a), and

(ii), Y (+mu+q,+. t,(v) is even,

aln v
a;even
a/2;o0dd
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where d=g.c.d.{a; [,#0, m,#0, q,#0 or t,(v)#0 (1 <Fv=<r)}.
Then the number of elements of P ~(D) is given as follows;

d 2
ol )+2<p(d/ ) J Culmqf) if nidisodd,
o(d) : ;
— *Cn;l,m, q,t) if d#0(@mod4) and l,,+my,+qu+Y., t20)#0,
d df2
2. L——¢( )-;(P( / )J- Cn;l,m,q,1) if d#0(mod 4) and I, ,=m,,=q,,=

ty2(t)=0 for any v (1Sv<r),

d
L‘P(z )J'C(n; ILm, q, t) !f d=0 (mod 4), ’ n/d is even ,
3. I (l,+ma+q,+) 1, (V) is even, and
dd

a/d; o

byp+myn+q,,+ Zv t2(v) #0,

d
2 L#J Cin;l,m, q,1t) if d=0 (mod 4), n/dis even,
>, r (+m,+q,+) t,(v) is even, and

a/d;odd

bz =My 2 =qy2=1,2()=0 for any v(1=Zv=r),

Lq’(i/ 2 J Cml,m,q,t) if d=0(mod4), n/diseven,
Y. I (L+m,+q,+), 1,(v) is odd, and

a/d;odd
ln/2 +my,+ g+ Z,, tn/Z(U) #0,

2 L qo(c;/2) J Cin;l,m, q,1) if d=0(mod 4), n/dis even,
Za}n (a+my+q,+Y 1, (v) is odd, and

d; odd
ln/2 =My =qpn2= tn/2(v)= 0 for any v (1=v=r).

THEOREM A.4. Under the conditions (0),, (1), (2), (4)+, 4),, (5)+, (5), and (6)_ ,
in Proposition A, the necessary and sufficient conditions for P, *(2) to be non-empty are
the following:

(@) In case that g=2,

3) l,=0 and m,=0 for each odd divisor a of n.

(b) In case that g=1, the condition (3), and 3-d=1.
Then P *(D) is equal to

Cn;l,m,q,t) if g#2,
Le(@)/2 - Cn; I, m, q,t) if g+#2,



254 KAZUO YOKOYAMA

where d=g.cd.{a;1,#0, m,#0, q,#0, or t(v)#0 (1<Fv=<r)}.

Case B: M —!(f) is disconnected. We denote by P, the subset of P, consist-
ing of elements (f, M) with M —% 1(f) disconnected. For an element (f, M) of P,, we
construct an_element (f M, S,) in §2, where M is the closure of a component of
M—%Y(f), f is a periodic map on M with period n/2 such that &#!(f)=(, and
S, =M r\.?‘(f) In fact, M —%(f) has exactly two components, and f (M) M, =
M—M, where  means the closure. We denote by B, the set of elements ( f M,S,)
constructed in this way, and define an equivalence relation 3 on P, in §2. Then we
have a bijection between the set of equivalence classes P,/ ~ and the set of equivalence
classes P,/ . So, we classify P,.

Let P} be the subset of P, consisting of elements (f, M) with M orientable, and
let P° be the subset of P, consisting of elements (f, M) with M non-orientable. Clearly
we have P,= P} U P°. In this case, no 1-sided loops in #(f) exist and no 1-sided ®-sets
exist (see Corollary 2.1). (The definition of the @-set is given in §2.)

Let P4g, T, 7 m, g, I, m, §, t) be the set of elements (f, M) of P:, where e= + or
o, satisfying the same conditions as (1), (2), (4) and (5) in the case of P¥(2), and

(BY &) consists of 2-sided loops D3, D3, - -+, Dy in M and simple
proper arcs in 2-sided &-sets @,, @,, - -, P;in M.

6) §=(ga)a;n is a vector of non-negative integers g,, where
G.=#{D2; fY(DY=D: and fO(D2)+#D? for 1<Vb<a}
for each divisor a of n.
(8Y  f=(,(D))sa is a vector of non-negative integers 7,(9), where
L(D)=#{®, ; f(P,)=9, and f*®,)#®, for 1=Vb<a}
for each divisor a of n, and # is the number of arcs in &, N F(f).

NoOTATION. We denote P4g, T, 7, m, g, t; I, m, §, t) by P(2) and denote by $(2)
the set of equivalence classes of P (@)
Then we have:

PROPOSITION B. If PY(D)+# &, then we have the following conditions:
), n is even and nf2 is odd.

1) T=Zi¢;a 'ﬁ=zﬁla’ ‘7=Z‘7a’

aln aln aln

=Y, Y () and F=Y Y 7-1,0).

U aln U aln
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@ =0 (mod a), m,=0 (mod a), §,=0 (mod a) and 1,(f)=0 (mod a),
for each divisor a of n.
3) If I #0, then a is even, and if ,#0, then a is even.
) If cj,,%O, then a is a divisor of n/2.
&) If 1,(5)#0, then a is a divisor of n/2, and 2a? is a multiple of n.

| a—n n
(6)2+ gz+=—{g+2 (la/2+ma/2)_—(q+t)+n_1}
n aln 2 2
is a non-negative integer, if e= +.
1
(6)20 g20=—_{g+z (a_n)(la+ma)——n(q+t)+2n_2}
n aln

is a positive integer, if e=o.
Here, l,, m,, q and t are given in the proof in §5.

THEOREM B.1. Under the conditions (0),, (1), (2), 3), 4), (5), and (6),. in
Proposition B,
() If g,. is a positive integer, then

C**(n;l,m, q, )=$P;(D)=3C*(n/2; 1, m, q, 1) +31Q0(n/2; I, m, ¢, 1) .
(D) If g, is equal to O, then

$PH (@)=Y wd)- C**(n/d; 19, m®, ¢, 1),
din

‘where the notations are the same as in Theorem A.l.

THEOREM B.2. Under the conditions (0),, (1), (2), (3), (4), (5) and (6),, in Proposition
B, the necessary and sufficient conditions for P3(D) to be non-empty are the following;
@) gro#1 or (b) g,,=1and d=1.
Then :
Cz(n; Ia m, q, t) lf 9207&2 ’
Lo@)/21- C*(n; 1, m, q,t)  if gp#2.

Here d=g.c.d.{a;1,#0, m,#0, q,#0, t,(5)#0 153w <r)} and C*(n; I, m, q, t) is equal
to

m,%°(@>={

¢(n/(2a)) o(n/(2a)) @(n/(2a) » [Pn/(2a)
a]|:[/2|i 3 +1,—1 ( > fm,,—l < > +q,—1. .vl—:-[l > +t(v)—1 }
B AN Ly m, . 4a 14v) Al
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§2. Reducing operation.

Let M be a compact connected surface and f be a periodic map on M with period
n. Note that p: M—>M/f =X is an n-fold cyclic branched covering with a branched
set p(£L(f))=S. We discuss the placement of £(f) in M.

By elementary properties of periodic maps, we have:

PROPOSITION 2.1. A periodic map f on the 1-sphere S* is equivalent to:
(1) the reflection, that is, the map (x, y)—(x, —y), or
(2) free.

PROPOSITION 2.2. Let xe #(f), and we suppose that there exists a neighborhood
V(x) of x such that (V(x), V(x) L) is homeomorphic to ([—1;1]1x[—1;1],
[—1; 1] x {0}), where [—1; 1]={xeR'; —1=<x<1}. Then, it holds that (1) n is even,
and (2) xe &,;2(f).

Proor. Taking a sufficiently small neighborhood V(x) of x if necessary, we may
assume that f(V(x)) = V(x). We put x, =p(x), where p: M— M|/f is the natural projection.
We take a point y, ¢ #(f) sufficiently near to xo. If p~(xo)={x;, x5, - - -, X,}, then
P 'Wo)={V1 Y1, V2 V2 "> Ve Vi}. Hence, we have 2t =n since y, ¢ &(f), completing
the proof.

By Whyburn [8] and Proposition 2.1, we have the following.

PROPOSITION 2.3. Let C be a connected component of F(f), and let p: M—>M|f
be the natural projection. Then, a neighborhood V(C) and p |V(C) are characterized as follows:

Type 1. If C is an isolated point in M, a neighborhood V(C) of C and ply(c) are
as shown in Fig. 1.

Type 2. If C is a simple loop in M, a neighborhood V(C) of C and p'y(c) are as
shown in Fig. 2.

Type 3. If C is a simple proper arc in M and D is a component of 0M with
DNC#Q, then DN P(f)=Dn P f) consists of exactly two points. Hence, a
neighborhood V(®) of a connected component ® of OM L SL*(f) and le are as shown in
Fig. 3.

A connected component of M u F1(f) will be called a P-set.

CcL(f)

FIGURE 1
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c=Zf)

Cc&(f)

FiGURE 2

Ci= ()

FIGURE 3
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NotAaTION. Let C be a connected component of #(f). If Cis of type 2 and 2-sided
in M, we denote it by D™, and if C is of type 2 and 1-sided in M, we denote it by D2~
Let & be a ®-set of OM U (). If a neighborhood V(®P) of & is homeomorphic to
a punctured annulus, we call it a 2-sided ®-set and denote it by &}, and if a neighborhood
V(®) is homeomorphic to a Mébius strip, we call it a 1-sided ®-set and denote it by @, .

DEFINITION 2.1. Let P}, be the set of elements (f,, M, S,) satisfying,

(1) M, is a compact connected surface,

(2) S, isasubsetof 0M, which consists of simple loops and simple arcs on oM,

(3) f,isaperiodicmap on M, with period m such that #(f,)= & and f,(S,)=S,.-
Then we say that f, is an s-periodic map on (M, S,).

In the same way as the case of periodic maps, we define an s-equivalence relation
on P} as follows:

DerFINITION 2.2. Let (f,, M,, S,) and (f,, M, S’,) be two elements of P*. Then
we say that (f,, M,, S,) and (f,, M}, S',) are s-equivalent, denoted as (f,, M,, S,) +»
(fes My, S, iff there exists a homeomorphism 4: M— M’ such that (1) A(S,)= S, and
@) fuh=ht,.

LemMMA 2.1. If (f, M) is an element of P, (that is, M— F(f) is not connected),
then M — %(f) has exactly two connected components. We denote by M the closure of
one of the connected components of M — () and put S,=M,—(M—S*(f)). Then, it
holds that f(M,)=M— M, and n/2 is odd. We put f,= f?|\.. Then f, is an s-periodic
map with period n/2 on (M, S,).

PROOF. Let M be the closure of a connected component of M — ¥'(f) which is
distinct from M,. We prove that M, n &(f)=M’, N F(f). Let x, be a point in
M, M, FP(f). We take a point y, sufficiently near to x, in M « such that y, ¢ Z(f).
Let x be an arbitrary point of M, N &!(f). We take a point y sufficiently near to x in
M, such that y ¢ #(f). Then there exists an arc / in M, which joins y, and y such that
In LY f)=. Let h=f™? and I' =h(l). Since h(xo)=x, and yo=h(y,)€ M',, I' is an arc
in M, which joins h(y,)=y, and h(y)=y’. Since I’ n L1 (f)= and y,e M,, we have
y'eM,. Hence xe M, n £'(f), and M, N F ()M, F(f). In the same way,
M, N F(f)e M, P (f). Hence M, N L(f)= M, n L(f).

Therefore, M —( f)=1l71*u M « since M is connected. Clearly f(M )=M =
M—-M,, and ¥'(f)eM,. Hence L' (f)nM, =L ()=L(f)n(M—M,). Since
yeM,, f(y)e M, and f"*(y)=h(y)=y'e M,, we know that n/2 is odd. f, = f>|,, is a
periodic map on M, with period n/2. By Proposition 2.3 and the definition of f, and
UL, it holds that £Y(f,)=F and F(f,)=FL %) " M,. Since f(L(f)=L(f)
and f, = f?|y, it holds that f(¥'(f) " M)=F" (/)" M,,.
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COROLLARY 2.1. If(f, M) is an element of P,, then no 1-sided loops in &*(f) exist,
and no 1-sided ®-sets exist.

If M —<(f) is connected and M is orientable, then there exists a 1-sided loop on
the orbit space X =M/f. Hence we have;

PROPOSITION 2.4. If (f, M) is an element of P, (that is, M — F*(f) is connected)
and M is orientable, then the orbit space M|f is non-orientable.

LEMMA 2.2. For an element (f, M) of P,, we put M, the natural compactification
of M— Y (f) and S, =M, —(M—S(f)). We define a map f,: M,—M, as follows. If
xeM—S, then f(x)=f(x). If xeS,, we take a sequence {x;} of points x; in M,—S,
such that lim x;=x, and we define f (x)=lim f(x;). Then f, is an s-periodic map with
period n on (M, S,) with ZXf,)=L2(f).

DEerFINITION 2.3. For (f, M)e P,, we have a unique element (f,, M, S,) in P}
by Lemma 2.1 (m=n/2) or Lemma 2.2 (m=n). We define a map RD: P,—»P}, by
RD(fa M) = (f*a M*’ S*)-

By abuse of notation, we also have the mapping RD from an arbitrary element of
P, to its RD-image in P* in an obvious manner. Note that such an RD is not necessarily
univalent.

By the following four lemmas, we will show that RD is a bijection of the equivalence
classes of the set P, onto the s-equivalence classes of the set P

LEMMA 2.3. Let (f, M) and (f', M’) be elements of P, and we put RD(f, M)=
(fu» M, S,) and RD(f', M)=(f",, M, S,). Then, (f, M)~ (f',M") if and only if
(fas My, S,) % (s My, S')-

ProoF. If(f, M)~(f', M'),itisclear that(f,, M,, S,) ¥ ([ M4, S}). Conversely,
if (f,» M, S,) 3 (fls M,,S,,), then there exists a homeomorphism 4 of (M, S,) onto
(M, S’,). We define a map H of M to M’ as follows; if xe M,, then we define by
H(x)=h(x) and if x¢ M,, then we define by H(x)=f"?hf"*(x). Then H is a

homeomorphism of M onto M ’ such that f"H= Hf. Hence (f, M)~ (f’, M’).

LemMa 2.4. Let (f, M) and (f', M') be elements of P, and we put RD(f, M)=
(for M, S,) and RD(f', M)=(f",, M, S%,). Then, (f, M)~ (f,M') if and only if
(f*’ M,p S*) w (f’*’ M;, S:k)

ProoF. If (f, M)~ (f', M’), then there exists a homeomorphism 4 of M onto M’
such that hAf= f'h. We define a map H: M, — M, as follows. If x¢S,, we define by
H(x)=h(x) and if x € S,,, we take a sequence {x;} of points in M, — S, such that lim x;=x,
and we define H(x)=1lim A(x;). Then H is a homeomorphism of (M, S,) onto (M, S’,)
such that Hf, = f H. Hence (f,, M, S,) is s-equivalent to (f, M, S).

Conversely, if (f,, M,, S,) is s-equivalent to (f’,, M}, S,) then there exists a



-

260 KAZUO YOKOYAMA

homeomorphism 4 of (M, S,) onto (M, S',) such that hf, = f h.Letq: M ,—>M,/f,=
Mandq': M > M_[f', =M’ be the natural projections. We define a map H: M— M’ as
follows. For a point x of M, there is a point y of M, such that ¢g(y)=x. So we define
by H(x)=q'h(y). Then H is a well-defined homeomorphism such that Hf=f"H. Hence
(f, M)~ (f", M").

Let (f,, M,, S,) be an element of Pp,. We take a copy M, of M, leti: M, — M, be
the identification homeomorphism, and put M’'=M_ U; M, where j=i | s,- We define a
map f’ on M’ by putting

iftU2(x) if xeM,
fx)= (m+1)/2;—1 : -
S i~(x) if xeM,
From the definition of f’, we have:

LeEMMA 2.5. f" is a periodic map on M’ with period 2m such that '(f")=S, and
M’ — F(f") is not connected. Moreover, if (f,, M, S,) is constructed by Lemma 2.1 from
a periodic map [ on M with period 2m, then we have that (f’, M') is equivalent to (f, M).

Let (f,, M, S,) be an element of P} with even n. We define an equivalence relation
R on M, as follows: x2y iff (i) x=y or y= f™*(x) (if x, y€ S,), and (ii) x = y (otherwise).
Let M’ be the quotient space M/# and let g: M_— M’ be the natural quotient map. For
a point x of M’, there is a point y of M, such that ¢g(y)=x. Hence we define a map
S'i M'>M' by f(x)=qf,(y). Then, f” is well-defined and we have:

LEMMA 2.6. [’ is a periodic map on M’ with period n such that '(f)=q(S,),
L= L AS,) and M’ — S*(f") is connected. Moreover, if (f,, M, S,) is constructed
by Lemma 2.2 from a periodic map f on M with period n, then (f', M) is equivalent to
(f, M).

NotaTiOoN. (1) Since P, is the disjoint union of B, and P,, the function RD may
be regarded as a function from P, to P¥ and a function from P to Py,. We denote
P* by P, and P*, by b, ,.

(2) We denote the image RD(D;) by D,, and the image RD(S;) by N ;» where D; is
a component of 0M with D; n #(f)=J, and S; is a component of F°(f).

(3) If D2* is a 2-sided loop in & 1(/) then the image RD(D2*) has exactly two
components. So we denote RD(DS*) by D3 u D2%. If D2~ is a 1-sided loop in &1(f),
then the RD(D{ ™) has exactly one component, and so we denote it by DS~

(4) If a connected component @, of M U LI(f) is a 2-sided cb-set then the
image RD(®,;) has exactly two components. We denote RD(®}) by & il b w2 Ifa
connected component @, of oM L L1(f)is a 1-sided ®P-set, then the RD(di ) has exactly
one component, and so we denote it by &

(5) For each (g, e)=(+, —), (—, +), ( , —) or (0, 0), P*(®) is a subset of P,,
and so we denote by P®* (D) the image RD(P*(2)).
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For an element (f, M)eP%(2), we put RD(f, M)=(f, M,S,)eP* (D)=
PG, L7, g%, g, t ,t;0m, g, ¢, 7, ¢). It should be noticed that (f, M, S,)
satisfies the following conditions:

(1) M is a compact surface of genus § with /+§* +4~ +¢*+7- boundary
components.

(2) 0M consists of the following sets;

(i) D,, D,, -, Dy; (i) D3*, DS*, -+, ﬁ;:; (iii) DY, Dy, + -, 152:;
(iv) &f, &%, - -, b%; and (v) &7, b5, -, 7.

B) Fo(f) consists of # points S,, S,, - -+, Sy in M.

(4) We have the vectors I=(1),, M=0"2)ains 4" =G )apmr 4~ =G )aym 7=
(£ ©)ajn,s and £~ =(I; (9))a, s defined similarly as [; i, G*, §~, £* and 7, respectively,
in Section 1, where we replace each letter f, D;, S;, D$*, @3 or v by the same letter
with *, # being the number of arcs in % N S,

We denote by 2% (2) the set of equivalence classes of P¥ (D).

PROPOSITION 2.5. Under the_ above conditions and notation, g, L#m, 4%, 4-, t,
t=, 0, §*, g, t" and t~ satisfy the following equations.

(1) L=0,, m,=m,, §3,=2-4, 4;=4z.
130)=2-1@), t;0)=1;@®)=1,(5/2).

(2) i=;;3 ’;l=2;maa é+=;6:a é_=;é;’
ajn ajn aln aln

=3 | (y@), =) ' i, (), F=2 ;ﬁ-(f:(m(t‘;(ﬁ».

v aln v ain v ajn

24 +2GY +2tT+§ +1 if ¢=—,

3) =1 g+§ +tt+4 +1" if &=+,

G241 +2t+G +1 if ¢=o.

Since P%(2) is a subset of P,, we denote by P%(2) the image RD(P:(2)). For
an element (f, M)e P3(2), we put RD(f, M)=(f, M, S,)e P5(D)=Pg, [, 7, m, 4, t;
I, mh, §, t). It should be noticed that (f, M, S,) satisfies the following conditions:

(1) M is a compact surface of genus § with /+ §+ ¢ boundary components.

(2) M consists of the following sets;

() Dy, D,, ---, Dy, (ii) D3, D3, ---, D3, and (iii) ®-sets &,, ,, -+, bz

3) #°(f) consists of rit points S, S,, - -, Sy, in OM.

(4 We have the vectors = (l:,),,|,,, ti=(",)4n» 4=1(4.)a)» and = (fa(ﬁ))ﬂ,,,,; defined
similarly, except that we take as a each divisor of n/2 instead of each divisor of n.

We denote by 2%(2) the set of equivalence classes of P%(2).
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PROPOSITION 2.6. Under the above conditions and notations, §, I, 7, 1, g, t, I
g and t satisfy the following equations:

M 2,=L., 2=t do=d., LO=L).
2 i=z‘:l:., ""1=Z|:'fta, =3 Ga, =X 21,0, F=3 Y 6-1,(0).
ajn ajn aln o aln b aln
. [24+4+1-1 if e=+,
3) g={ S d
2§+24+2t—-2 if e=o

§3. Determination of the equivalence classes of P (X, S) and B(X, S).

Let X, be a compact connected orientable surface of genus g, and we take a set
S! of simple loops and simple arcs on dX,. We divide the components of 6X, into the
following three types;
(i) the components d,, d,, - - -, d) of 8X, such that d;n S*' =,
(i) the components d$,d$, - - -, 33 of 0X, such that d°eS!,
(iii) the components a9, dY, - - -, d¥), of 0X, such that dY n S* consists of v arcs on
ox, v=12,---,r). '

We take a standard model for X, in the same way as in [9] Fig. 1, and simple

oriented loops ay, by, as by, * -, a,b,dy,dy, -+, d,d5,d3, -, dy,dP,dY, -,
dQ),d®,dP, ---,dg, ---,dP,dD, - - -, d{, on X, as shown in Fig. 4. Let S° be a set
of finite points §,, §,, - - -, §, in X,, and take simple oriented loops s,, 55, * * -, s, ON X|

as shown in Fig. 4. We put S=S*u S°.

Let X7,+, (resp. X5,.,) be a compact connected non-orientable surface of genus -
2g+ 1 (resp. 2g+2) and take a set S* of simple loops and simple arcs on 0X ., (resp.
0X;,.,). Let S° be a set of finite points in Xj,,, (resp. X3,.;). We take
a standard model for X3,,, (resp. X,.,) as shown in Fig.5 (resp. Fig.6). That is,
X5,+1 (resp. X3, ,) consists of a compact connected orientable surface X, with the
interior of a disk 4 removed and a M&bius strip attached by its boundary to 04 (resp.
X5, +» consists of a compact orientable surface X, with the interior of two disjoint disks
4, U A4, removed and two Mobius strips attached by their boundaries to 94, L d4,).
Furthermore, in addition to simple loops on X, we take a simple loop c (resp. simple
loops ¢, ¢;) on X5, (resp. X5,,,) as shown in Fig.5 (resp. Fig.6).

To avoid the multiplicity of brackets, we refer to loops rather than to homology
classes. We take the set of the above homology classes as a generating set of the first
integral homology group H,(X—S°) of X—S°, where X is X, X5, or X;,.,.

For X and S, we denote by P,(X, S) the set of elements (£, M, S,) of P, such that
M/|f=X and p: M—X is an n-fold cyclic branched covering with the branched set
p(S,)=S, and by P,(X, S) the set of elements (f, M, S,) of P, such that M/f =X and
p: M—X is an n-fold cyclic branched covering with the branched set p(S,)=S.
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FIGURE 5
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FIGURE 6

To determine the equivalence classes of P,(X, S) and P,(X, S), the'following is
useful.

DErFINITION 3.1. Let[H,(X—S°); Z,]* be a set of homomorphism w of H,(X—S°)
onto the cyclic group Z, of order n such that w(s,) #0 for every s, € H;(X—S°), where
Xis X,, X5,4, or X;,,,. We say that two elements w, and w, of [H,(X— S, Z,1*
are & -equtvalent denoted as w; ~ @,, if there exists a homeomorphism 4 of (X, S) onto
(X, S) such that wh, =w,, where h, is the automorphism of H,(X —S°) induced by
h X —So-

| To avoid the multiplicity of *, we also use 4 instead of A, if there is no confusion.

Using a branched covering theory, we obtain the following, in a similar way to
P. A. Smith [6];

PROPOSITION 3.1. There is a bijection between the set of equivalence classes of
P(X,S)u B(X, S) and the set of of-equivalence classes of [H(X —S°); Z,J*.

We express [H,(X—S°); Z,]* by a set Zig; l, q,t(1),t(2), - - -, t(r), m)=Z}(g; Z)
of systems of integers, where ¢= + when X=X, or e= — when X=X, which is defined
as follows:
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DEerFINITION 3.2. Let Zi(g; Z)=Z%g; 1, q, t(1), t(2), - - -, t(r), m) be a set of systems
C=(ala ﬁla a29 B29 Y ag9 Bg, '}’, 59 "5 A'(l)a ;'(2)3 T l(r)’ 0)

of integers where

%) if e=+,
y=17 if e=— and g is odd,
(71, 72) if e=— and g is even,

5=(5l’52a T, 0y), n=(1, 12, "'an)’
A=(P, AP, - lﬁ(,,)) for every 1=Zv=<r,
0=(01’ 92y T, m)

satisfying the following two conditions: :
(D) 2740, 482+ +8+n1+ma+ - g+ AP+ + - A0+ AP+ AP

+ AR+ AP AP+ A+ 0, + 0,4+ - +6,,=0 (mod n); where 7=0

(When e= +), =y (when e= — and g is odd), or =7y, +7, (When e= — and g is even).
(@) ng {0(1, ﬂl: A2, ﬂz, Tty Uy ﬁgs 7> 51a 529 T 513 H1sM25 ° " "5 Hyo )“(11)9 )“(21)9 Y
AR ADAP, AR, A0, 2D, A0, 04,605, -, 0, n)=1.
| Let @ be an element of [H,(X—S°;Z]* X=X, or X=X;. If o(a)=a,
w(bi)-__ﬂis w(dj)=6js CO(C)=')) (OI' w(cl)='))1’ CU(C2)='}’2), w(d3)=’7m C‘)(dg))=)~$), and
| a(s;)=0, (15isg, 15, 15ugq, 15vsr, 1Sw= 1K), 1<k<m) w is represent-
‘ ed by an element (ala ﬁla os, BZa Y aga Bg’ Y, 5: n, }'(1)5 1(2)9 e (') 0) Of Z, (ga g)_
ZYg;1,9,1(1), (2), - - -, t(r), m).
In each case, we denote by X the bijection of [H 1(XE,—S(’) ; Z,]* onto Z) (g, %)
(resp. of [H (X, —S°); Z,]* onto Z, (g, Z)). We will define an equivalence relation ¥
on Z;(g, Z) (resp. Z, (g, Z)) by the o«/-equivalence relation ~ on [H(X,—S%;Z,]*
(resp. [H (X, —S°); Z,]*), as follows:

DErFINITION 3.3. We say that two elements ¢, and {, of Z, (g, %) (resp. Z; (g9, Z))
are equivalent, denoted by {; % {5, iff Z7((;) ~ Z71((y).

We can easily check that X is a bijection of the set of the «/-equivalence classes
of [H,(X,—S°); Z,]* (resp. [H,(X, ., —S9; Z,]*), and the set of the equivalence classes
| of ZS(g, Z) (resp. Z, (g, Z)).
To determine the equivalence classes of P,(X, S) or P,(X, S), it suffices to determine
the equivalence classes of Z,),(g, Z), Z,,(9, Z), Z,; (9, %), or Z, (g, Z).
To determine the equivalence classes of Z,,(g, Z) and Z,/ (g, &), we use the following

equivalence relation .

DErFINITION 3.4. (I) An element (8,5, AV, A2, --- A0 0) of ZF(0;2) is
n-equivalent to an element (8, 7, AV, 1®, - - -, 1@, §) of Z; (0; &), if and only if it holds
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one of the following two conditions:

@ @, A 2D ... 20 0)= (5‘,’ j_tl) itZ) .. j_(r) é’)

() (a) Ifél—-éz—----é 0<6,+1and61—5'2—----—5‘ =0 <4, thenj=j'
and moreover n—8,=8;,1, n—08,_1 =842, " ", B—081_141=0,44 """, N— 6,“-5',,
(b) if ny=n,=---=n,=0<n,,, and A, =M= =7, —0<r1..+1 then u=u" and
MOTEOVEr B — 1, =Tyt 1, BP—MNg—1=My+25 " " s B—Ng—jr1=Fusi> " 'an—'lu+1='7q,
© if AP=1P=---=2%,=0<1%,,, and P=P=--- =1 ,—O<i“;’2,,,,+1 for
any integer v (1Zv=r), then w(v)=w(v), and moreover n— lﬁ(,,)—,lw(,,)ﬂ, n—AQ_,=
ﬂw(){;)+2a e n—A0 i+1—}'w(v)+i’ T n—lﬁ’(’v)+1=1§2’3), and

(d) n— B —01,71 om 1—02, ° n"'gm_i+1=g’i, "',n—61=§m.

(II) An element (1,0,0,0, ---,0,0,8, 9, AY, A®, --- 20 @) of Z;}(g; Z) with
g=1 is n-equivalent to an element (1,0,0,0, ---,0,0,d, 4, &V, 12, --- 1" §) of
Zl(g; 2), iff

@, n, )‘(1)’ )'(2)’ .. ;_(r) 0) ~(5 i‘(l) 1'(2) e, j‘(r), g") .

In the same way as in [9] and [10], that is, by using the generating set of the

homeotopy group of a compact surface, we will give the complete sets of equivalence

classes of Z;,(g; Z), Z,(9; Z), Z,,2(9; Z) and Z, (g; Z) respectively, in the following
Theorems 3.1-3.5.

THEOREM 3.1. The complete set of equivalence classes of Z,(g; &) is represented
by the following set & (g; Z):
(1) Forgzl,

Z! g 2)={(1,0,0,0, ---,0,0,8,n, AV, A®, - - -, A7, 6) ; the conditions (A) and (B)}/n,

where
(A) 0<0,<0,< " =6<n, 0=m=n,=- - =n<n,

0P ---SA<n (v=1,2,---,7r), 15£6,<0,<---=0,<n,
(B) 51+5 +---+5,+n1+n2+“-+r],,+/l‘1”+l(2”+- A+ AP +AP +

AR A AP+ AR+ 60, + 05+ - +6,,=0 (mod n).
) ZHO0; 2)={0, 1, AV, A4, - - -, A", 0) ; the conditions (A), (B) and (C)}/n,
where
© g.c.d.{01,0z, ", 0N, M2 " 5 My AP, A0, - '15(11)»
AP AP, A8, -, A0, A9, 2D, 01,05, -, O n}=1.
OUTLINE OF THE PROOF. We can check that any element of Z,f (g, &) is equivalent
to an element of &} (g; Z) in a similar way to Lemmas 2, 4 and 5 in [9], and that two

elements of 2 (g; Z) are not equivalent in a similar way to Lemmas 1 and 3 in [9].
So, the proof is the same as that of Theorem 1 in [9].
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THEOREM 3.2. The complete set of equivalence classes of Z,(2g+1,%),g=1, is
represented by the set %, (2g+1; %) of disjoint union of the following four sets
Z,29+L 28, Z, 29+ 1L 20, Z, 29+ 1; Z); and Z, 29+ 1; Z)3;

g;(zg'{'l, 3)g={(1, 0’ 0: Oa Ty, 05 O, Y 65 7, j'(l), A(Z), T, l(r)’ 0) 5
: the conditions (A) and (B)'},

where
(AY 0=6,<6,=''-=o,<nf2, 0=n SN, =n,<n/2,
0SAPLIPS - SAW <n/2 0=1,2, -+~ 1), 156,50, <6,<n/2,

(BY 2y+61+62+---+6,+n1+n2+---‘+n,,+,1‘1”+/1‘2“+---+A$(11’,+,1‘12’+,1‘22>+
+AB)+ +AP+AP+ -+ A+ 0, +0,4+ - - +6,,=0 (mod n) .

Z,(29+1; 2)r={(1,0,0,0, ---,0,0,7,8,9, 40,42, ---, 49, 0) ;
the conditions (*), (A), and (B)'},

where
(*)  &=n2, n,=n/2, AQ=w2 (1=Ivsr) or 6,=n/2,
(A, 0£6,<6,<---<§=n2, O0=<m=n,<---=n,=n2, 0=y<n/2,

0SAPSAPS - SAQS2 0=1,2,---,n), 156,60, <0,=n/2,

gn—(29+ 1’ g)o = {(2’ 0’ 09 Oa Y 0’ 09 12 5, n, ;'(1)5 1(2)5 T, l(r)’ 0) 5
‘ the conditions (OE), (A) and (B)'},

where
(OE) v is odd, b is even, 1, is even, A is even, 0,, is even
Z,;(29+1;2)%={2,0,0,0,---,0,0,9,8,n, AV, A?, - - -, A0, 0);
the conditions (*), (OE), (A) and (B)'} .
THEOREM 3.3. The complete set of equivalence classes of Z, (1, Z) is represented
by the disjoint union Z; (1; &) of the following two sets &, (1; Z)° and Z, (1; Z)*;
Z (1;2°={(y,8,n, iV, 2@, --- A0 @) ; the conditions (AY, (BY and (C)},

where
(C)I g'c'd'{ys 519 52’ Y 61’ ’119 7]2, Y ’14, }“(11)’ 1(21), T, /15(11)), )"(2)
'1(22), cee ,{5(22))’ ce e ADAD, /158), 0,,0,, -, 0,,n=1.
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Z, (2 ={(y, 6,0, AV, AP, - - - A0, 0) ; the conditions (*), (A),, (B) and (C)} .

OUTLINE OF PROOFS OF THEOREMS 3.2 AND 3.3. We can check that any element of
Z,(2g+1, Z)is equivalent to an element of &, (2g+1; Z) in a similar way to Lemmas
2.2, 2.3 and 2.5 in [10], and that two elements of 2, (2g+ 1; Z) are not equivalent in
a similar way to Lemmas 2.4, 2.6 and 2.7 in [10]. So, the proofs are the same as those
of Theorems 2.1 and 2.2 in [10].

THEOREM 3.4. The complete set of equivalence classes of Z,(2g+2; Z),g=1, is
represented by the set Z,(29+2; Z) of disjoint union of the following four sets
Z,29+2,2)], Z,(29+2, ), Z,(29+2 Z)3 and Z, (29 +2; 2)%;

., (29+2,2)3={(1,0,0,0, ---,0,0, 7,75, 6,0, AV, AP, --- 20 0) ;
y, =0, and the conditions (A), (B)'},
where
B)' 2y, +8,4+8,+ A+ S0+ A+ AP AP+ -+ A+ AP+
AP+ A+ AP A+ +AQ+0,+0,+ - - - +6,=0 (mod n),

X (29+2 %) =(1,0,0,0, ---,0,0,7,,7,, 8,9, A, 4P, --- 20 §) ;
the conditions (x), (A), and (B)'},
.2',,‘(29+2; g)o ={(2’ 0’ 0’ 09 Y 0’ Os Y1 Y2 5, n, 1(1), 1(2), ST, )'(')a 0) s
y, =1, and the conditions (OE), (A) and @)},

where
(OEY v, is odd, &, is even, n, is even, A% is even, 0, is even,,

By 242y,+6,+8,+ &+ Hna+ AN AP HAD + -+ AR+ AP
+AP+ 4+ A+ HAP AP+ -+ A+ 0,40+ - - +0,=0 (mod 1),

Z (29+2 2)%={(2,0,0,0, ---,0,0, 7, y5, 8,1, AV, AP, --- A0 0) ;
y, =1, the conditions (*), (OE), (A) and (B)'} .
OUTILINE OF THE PROOF. We can check that any element of Z,(2g+2, Z) is
equivalent to an element of 2, (2g+2, %) in a similar way to Lemmas 3.2, 3.3 and 3.5
in [10], and that two elements of Z,(2g+2, Z) are not equivalent in a similar
way to Lemmas 3.4, 3.6 and 3.7 in [10]. So, the proof is the same as those of Theorems
3.1 and 3.2 in [10].

THEOREM 3.5. The complete set of equivalence classes of Z, (2; &) is represented
by the set & ; (2; %) of disjoint union of the following two sets 2, (2; Z)* and Z , (2; Z)*;

X2 X ={(1,72, 6,1, AV, AP, - - - 1D, 0) ; the conditions (AY, (D), (B) and (O},
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where
(D) 0<y,=<y,<n, 0=y, =[a/2], y,+7y,=n,
B) 29,42y, 48, +,+ - SN Fry+ A AP AP+ -+ A+ AP + AP

AR+ HAPHAP+ -+ A+ 0, +0,+ -+ +6,=0 (mod n),
(C)H g'c'd'{‘yl, 'Vz, 51’ 523 R 519 ’71’ 7’29 Tt rlqa 2'(1)3 2'(21)’ T }'t(l)s
2(2)’ ,1(2)’ S 15(22)), N l(r) A'(r) . )“t(r)a 01, 02, ce ey gm, n} =1 ,

Z(2 2 ={(71, 72, 6,1, AD, AP -+ 1O, Q) ; the conditions (*), (A), (D), (B) and O},
where
a=g.c.d.{y;+72 01,02, ", O N1y M2 =+ 75 Mg AT, AS), -+, A,
AP, 29, -, lggz))’ e, AP AP, -, 15{2), 6,605, -, 0,,n}.

OUTLINE OF THE PROOF. We can check that any element of Z, (2, &) is equivalent
to an element of &, (2; %) in a similar way to Lemmas 4.1, 4.2, 4.3, 4.4 and 4.7 in
[10], and that two elements of 2, (2; Z) are not equivalent in a similar way to Lemmas
4.5, 4.6 and 4.8 in [10]. So, the proof is the same as that of Theorem 4.2 in [10].

By topological and geometrical consideration, we have the following (cf. Proposi-
tion 2.4 in [10]).

PROPOSITION 3.2.

(1) Anelement (f, M)of P, corresponding to an element of & v2(g; Z) belongs to P,T .
(2) Anelement (f, M) of P, corresponding to an element of & n2(g; Z) belongs to Py,
(3) An element (f, M) of P, corresponding to an element of & (g; %) belongs to

Y

P
(4) An element (f, M) of P, corresponding to an element of %;(g; %) or
Z;(g; 1, q, t(1), (2), - - -, t(r), m)* belongs to P if g=3.

(5) Anelement (f, M) of P, corresponding to an element of 2 (g; %)} or Z; (g; Z)%
belongs to P;* if n/2 is odd and g=3.

(6) Anelement(f, M)of P, corresponding to an element-of &7 (g; Z)5 or Z; (g; &)*
belongs to P, ~ if n/2 is even and g = 3.

(7) An element (f, M) of P, corresponding to an element of %, (1; %) belongs to
P if 6 is odd.

(8) An element (f, M) of P, corresponding to an element of %, (1; %) belongs to
P;* ifn/2 is odd and 8 is even.

(9) An element (f, M) of P, corresponding to an element of Z, (1, Z) belongs to

~ if n/2 is even and 9 is even. )

(10)  An element (f, M) of P, corresponding to an element of % (2; %) belongs to
P if & is odd, or & is even and y, +7, is odd.
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(11)  An element (f, M) of P, corresponding to an element of %, (2; &) belongs to
P * ifn/2 is odd, 6 is even and y, +7, is even.

(12)  An element (f, M) of P, corresponding to an element of % (2; %) belongs to
P; = if n/2 is even, 8 is even and y, +7, is even.

Here

5=g.C.d.{51, 62’ T 6b N15N25 " " "5 Mg )'(11)’ '1(21)9 Y 15(11)),

2 2
}'(1 )’ 1(22)’ ceey As(z)), S A(l")’ ,1(2'), cee Ag;')‘), 01, 92’ cee, em’ n} .

§4. Examples.

In the next section, we will give the proofs of the main theorems using the
combinatorial theory. In this section, we discuss periodic maps on the Klein bottle Kb
and the torus T, which will be helpful to understand its complicated arguments.

Example 1. Periodic maps on the Klein bottle Kb.
First we consider the case that #(f)# . Let (f, Kb) be an element of P, such
that #1(f)# &. Then (f, Kb)e P°uU P*~ L P~~ U P*.

Case (1) (f, Kb)e P°. Since I=0, =0 and §=4(2—24+ 2), where g is the genus
of Kb. g >0 implies that 2> 4, so §=1. Since q,=4,/a=¢§,/a=1/a=1,a=1. Hence q,=0
for every a with a|n unless ¢, =1 (=4, =4,) g=%{za|n(a-—n)m2,a+n} is the genus of
X=Kb|f. Hence m,,,=0 for every a with a|n, and g=1, and so, X is a Mdbius strip.
By Theorem 3.3, {(y, 1) ; 2y + n=0 (mod n/2)} is representative. Hence, in this case, there
exist | @(n/2)/2_] non-equivalent periodic maps on Kb with period n.

Case (2) (f, Kb)e P*~. Since §=34(2—24" —§"), where § is the genus of M, is
a non-negative integer, 1=4* +4§~. Hence (a) §* =1 and §~ =0 or.(b) §* =0 and
d~ =2. Hence Kb is an annulus.
Subcase (a) Since 47, =24} =2and q5,=43,/(2a)=§,; /(2a)=2/(2a),a=1. Hence g, =0
for every a with a|n unless g3 =1 (§; =1 and §; =2). g=—21,;{za|n(a——n)ma+n} is the
genus of X=Kb/f. Hence Zaln(a——n)ma= —n. This equation has a unique solution
m,=nla=2, since a%n and a|n. Hence, n=2 and g=0, and so, X is a disk with two
singular points. In this case, there exists a unique involution on Kb.
Subcase (b) It is easily checked that exactly one a with dln satisfies §, #0. Since
47 =4; =2 and ¢q; =4, /a=2/a, a=1 or a=2. If a=2, q; =1. g=1, so g is not an
integer, which is a contradiction. Hence a=1, and so, §¢; =4; =q; =2. g=
2{2a)n(@—n)m,} is the genus of X'=Kb/f. Hence Y ajn(@—mm,=0and g=0. X is an
annulus. By Theorem 3.1 (2), {(7:,72);:n:+n,=0 (modn) gc.d.(ny,n)=1} is
representative. Hence, in this case, there exist | ¢(n)/2_| non-equivalent periodic maps on
Kb with period n.

Case (3) (f, Kb)e P®. Since §=2—2§*—4§~, where § is the genus of Kb, is a
positive integer, 222§ +4§~,s0 §* =0and §~ =1. Hence Kb is a Mébius strip. Since
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4. =4, /a=§, [a=1/a,a=1. But, this is impossible, because g, =0 for every odd integer
a with a|n.

Case (4) (f,Kb)eP~~. Since j=%(2—2§* —§"), where § is the genus of M, is
anon negativeinteger, 1 >§* +4§~.Hence(a)§* =1and§" =0or(b)§* =0and G~ =2.
Hence Kb is an annulus.

Subcase (a) Since §;,=24 =2 and ¢3,=43,/2a)=4§] /(2a)=2/(2a), a=1. Hence
g, =0 for every a with a|n unless g7 =1 (45 =2 and §; =1). But, this is impossible,
because g, =0 for every integer a with al(n/2) and n/2 is even.

Subcase (b) It is easy to check that exactly one a with aln satisfies §, #0. Since
s =4; =2and q; =4, /a=2/a,a=1o0r a=2.Ifa=1, q] =4; =2, so g——{za'"(a
nym, } is a positive integer, which is impossible. Hence a=2, and so, g; =1 and
G, =4; =2.g=1 {Zaln(a n)ym,+n} is the genus of X'= Kb/f. Hence m,=0 for every
a with aln and g=1. X is Mé&bius strip. By Theorem 3.3, {(y, ) ; 2y +7=0 (mod n)}
is representative. Hence, in this case, there exist | ¢(n/2)_| non-equivalent periodic maps
on Kb with period n.

Next we consider the case that #!(f)= . Let (f, Kb) be an element of P, such that
SN f)=. Then (f, Kb)e P3, where P¢ is the set of elements (f, Kb)e P, such that
LU=

Case (5) (f, Kb)e P. Since g= l{za ,(a—n)m,} is a positive integer, ).
mm,=0 (if Z°(N)=) or Y ,,,(a—nm,= —n (if L°(f)# D).

Subcase (a) ¥°(f)=. In this case, X=Kb/f is a Klein bottle. By Theorem 4.2 in
[101, {{(z1,72); 2y, +2y,=0 (mod n), g.c.d.{y,, y,, n} =1} is representative. Hence, in
this case, there exist | ¢(n/2) | non-equivalent periodic maps on Kb with period ».
Subcase (b) L°(f)# . In this case, m,=0 for every a with a|n unless m; =2. So we
have n=2 and g=1, and so, X= Kb/f is a projective plane. By Theorem 2.2 (2) in [10],
{(y, my, my) ; m; +m, =0 (mod 2)} is representative. Hence, in this case, there exists a
unique involution on Kb represented by (0, 1, 1). That is, let Kb=XuU X and g be an
involution (Lemma 3.2) on the boundary circle X =S*. Then f is an extension of g
on Kb such that one X maps onto the other X by f.

a|n(a_

Example 2. Periodic maps on the torus 7.

First we consider the case that &% 1( f#T. Let (f, T) be an element of P,
such that #Y(f)# . Then (f, T)e PT U P~ *

Case (1) (f, T)eP*. Since §g=4(2—g), where § is the genus of T, is a
non-negative integer, 2>4. Hence §=2, and so, T is an annulus. Since §,=§,=2 and
q9.=4.Ja=§,Ja=2/a, a=1 or a=2. Hence (a) q,=0 for every a with a|n unless g, =
2 (§,=2 and g, =2) or (b) q,=0 for every a with a|n unless g,=1 (§,=2 and §,=2).
Subcase (a) g=%{za|n((a—n)/2)ma,2+n/2} is the genus of X = T/f. Hence Zaln((a—
n)/2)m,, = —n/2. This equation has a unique solution m,,=2, since a#n and a|n.
Hence, n=4, a=2, m; =2 and g=0, and so, X is a disk with two singular points.
In this case, there exists a unique periodic map with period 4 (represented by
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{(’1’ 01, 02) > "=0, 01 =62= l})
Subcase (b) g=%{3,,,(@a—n)/2)m,;,} is the genus of X=T]f. Hence ), ((a—
n)/2)m, ;=0 and g=0. X is an annulus. By Theorem 3.1 (2), {(1,,7,); 1575, 1,<
n/2,n,+1,=0 (mod n/2), g.cd.{n,,n/2}=1} is representative. Hence, in this
case, there exist | ¢(n/2)/2_| non-equivalent periodic maps on T with period n.

Case (2) (f, T)eP~*. Since /=0 and 7=0, §=1—4, where § is the genus of
T. §=0 implies that 1=4, and so, §=1, Since q,,=§,./(2a)=2§,/(2a)=2/(2a), a=1.
Hence g,=0 for every a with a|n unless g,=1 (§; =1, §,=2). g=7+{2,,(@—nmm,+
n} is the genus of X=T/f. Hence m,=0 for every a with aln, and g= {, and so, X
is a Mobius strip. By Theorem 3.3, {(y, n) ; 2y +n=0 (mod n)} is representative. Hence,
in this case, there exist | ¢(n/2)/2_| non-equivalent periodic maps on T with period n.

Next we consider the case that (f)=. Let (f, T) be an element of P,
such that £*(f)=. Then (f, T)eP, uP,. Here P} is the set of elements
(f, M)e P, such that #(f)= J where M is an orientable surface and f is an orientation
preserving periodic map on M, and P, is the set of elements (f, M)e P, such that
F1(f)= & where M is an orientable surface and f is an orientation reversing periodic
map on M. '

Case (3) (f, M)eP*. Since g=ﬁ{za|"(a—n)ma+2n} is a non-negative inte-
ger, ), ,(@a—n)m,=0 (if #°(f)=0) or Zaln(a—n)m,= —2n (if L°()# D).
Subcase (a) L°(f)# . In this case, X=T/f is a sphere. By Theorem 1 (2) in [9],
there are the following four representative elements; (1) {(1, 1,1, 1)} if n=2, (2)
{1, 1,1} if n=3, 3) {(1,1,2)} if n=4 or 4) {(1,2,3)} if n=6. In every case,
there exists a unique periodic map on 7 with period n.
Subcase (b) £°(f)=. In this case, X=T/f is a torus. By Theorem 1 (1) in
[9], {(0, 1)} is representative. Hence, in this case, there exists a unique periodic
map on 7. :

Case (4) (f, T)eP~. Since g=%{za|n(a—n)ma+2n} is a positive integer,
Y a(n@—mm, =0 (f FUN)=D) or 3\, (a—mm,= —n (f Ff)#* D).
Subcase (a) °(f)# . In this case, X=T/f is a torus. By Theorem B in [10],
there are no periodic maps on 7. ,
Subcase (b) Fo(f)=F. In this case, X=T/f is a Klein bottle. By Theorem
2.2 (2) in [10], since n is even, {(y1,72);2y,+2y,=0 (modn), g.c.d.{y,,7,}=
1,y=y,+7y, is even} is representative. Hence, in this case, there exist | ¢(n)/2_|
periodic maps on T if n/2 is odd, or there exist | @(n)+ @(n/2)/2_] periodic maps
on T if n/2 is even.

§5. Proof of the theorems.

In this section, we give the proofs of our main theorems, that is, Proposition A,
Theorems Al, A2, A3, A4, Proposition B, Theorems B1 and B2. In fact, we completely
classify the sets P, and P,, up to the equivalence, but not many details of the proofs
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are given as they may be found in [9] and [10].

PROOF OF PROPOSITION A. Let (f, M) be an element of P¥(2), where (g, &')=
(+, =), (—, +), (—, —) or (0, 0). Clearly we have (1) and (2).

We put RD(f, M)=(f, M, S,). Then (f, M, S,) is an element of P*(9), and so,
satisfies all the equations in the statement of Proposition 2.5.

We put

~

la [ M, iz da 2-Ga - Ga da
la=————<=—>, ma= (: ), q:: (: /2 . qa _—— = a ,
a a a - a a a a a

ﬁmwm<=anm=9-aﬂm>
. ,

a a

td ()=

ta (V)=

1, (nv/a) (_ 1,(0) _ 1,(52) _ ;:(5))
a a a  a )’

=245, ¢ =24, O)=210), TO=2 1;0),

aln aln aln aln
T=31t*w), tT=)t"(v), g=qt+q~ and t=t* 4+t
v v

Using the orbit space X = M/f and the branched covering p: M— X, we easily have
@+ @-, 5+, 5)-, (6)+ -, (6)_+, (6)__ and (6),,.

If P (9)+# &, then by Proposition 2.2, n is even; and in the case of (g, ¢')=(—, +),
by Lemma 2.1, n/2 is odd. Thus we have (0) and (0),.. Clearly we have §, = t; =0 for
each divisor a of n. Therefore we have Proposition A.

PrOOF OF THEOREM A.l. Under the conditions (0), (1), (2), 4)+, @) _, (5)+, (5)_
and (6), _ in Proposition A, there are a compact surface X and a subset S=S°uU S?
in X satisfying the following conditions;

@ (s M, S,)ebX,S).

(ii) X is a compact orientable surface of genus g, _ with /4+g+¢ boundary
components, where g, _ is as in Proposition A.

(iii) S° consists of m points in X.

(iv) S! consists of ¢ loops and ) v - #(v) arcs in 0.X.

We put g, and ¢,(v) as follows;

q; if ais even and a is not a divisor of n/2,
qa={q; if ais a divisor of n/2,

' tl () if ais even and a is not a divisor of n/2,
)= { t-(v) if ais a divisor of n/2,

and take I=(la)a|m m=(ma)a|n s q=(qa)a|n9 t=(ta(v))a|m where [,, m,, q:s 9a > t:(U) and
a*n v
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t, (v) are non-negative integers given in the proof of Proposition A.
For n, I, m, q and ¢, we take the set D *(n; I, m, q, t) of systems of integers

(61, 529 R 61’ His 25 " " "5 Uy '1(11)’ '{(21)’ T A'S(ll))s
APLAD, - AB, - AP, AP, -, A8, 0., 0,, -, 6,),
(we abbreviate it as (8, 5, AY), A2, - - -, A?, @), satisfying

1 0=6,0,<-"=o<n, 0=n =N, <" =n,<n,
0<IV AP <A <n 0=1,2,---,1), 1=6,<0,<-- <0,<n,

(D 01 +0 -+ G At A AP HAD + -+ AD + AP+ AP +
AR+ AP+ A+ 0,4 0,+ - - +6,=0(mod ),
(3) L,=#%{6;; gcd.{6; n}=a}, m,=#{0, ; g.c.d.{6,,n}=a},
g.=%{n, ; g.cd{n, n}=a} and r)=%{1;gcd.{i},n}=a}.

Then, in a similar way to [7], the number C*(n;l, m, q,t) of elements of
D™*(n;1,m, g, 1) is given as follows;

Let n=p{'-p%- - - ps be the prime decomposition of n, where p; is 'a prime
number and e; is a positive integer, and put a=p{t-pfz-.-- - pls, where 0<f,<e,.
Without loss of generality, we may assume that 0= f; <e;, 0= f;,<e,, -+, 05 f, <
€y, > f;1¢+1 =€ya+1s f;:a+2=eu¢+23 “+ -, fs=e, for some v, (0=<v,=<5). Let

gdx, y, z, u, w(1), w(2), - - -, W(r))
nja—1 ) . . i
= l"[ (1 +yxj“+y2x2j“+ .- -)(1+zx-’“+22x2"'+ . .)(1 +ux’“+u2x2"'+ .. )
ji=1

( IT @+ w)x®+w(v)?x ey - - '))
v=1
be a formal power series, and

Sd%, ys 2, u, w(1), W(2), - - -, W(1))
=g, ¥, z, u, W(1), w(2), - - -, w(r)) - ( 1:11 gp_gal(x’ Y, 2, u, W(l), w2), -, W(r))>

* ( l—[ gmpja(xa Vs 2, u, w(1), w(2), - - -, W(r))> o

15i<j=sva

97 s psea 6 Vs 2o th, W(1), W(2), - - -, w(r»>

(1 Sj1<j2<--<jeSva

G patpy a6 Vs 2, W(1), W(2), - - -, w(r)) .
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Let y=(ya)aLn s z=(za)aLn H u=(ua)aLn ’ w(1)=(wa(1))albn H w(2)=(wa(2))2!#n”’ R w(r)=

Wa(r), Iy be vectors of variables y,, z,, U wa(1), w,(2), - - -, wy(r), respectively, and
put 77

F(x, y, 2, u, w(1), w(2), * -, w(r) = [ | fulx, Vas Zas oy Wa(1), Wol2), - - -, wi(r)) -
: ol
Then we have F(x, y, z, u, w(1), w(2), - - -, w(r)) as a generating function.
Let d be a divisor of n, and w be a primitive d-th root of unity. Then,

1
C*(m;l,m,q, t)=7dZ|} o(d)Cyn; I, m, q, 1),

where Cy(n; I, m, q, t) is the coefficient of the term

l—I ylaaZ;”auzawa(l)ta(l)wa(Z)ta(z) PR wa(r)la(")

aln
a¥n

of F(w; y, z, u, w(1), w(2), - - -, w(r)).

Let Q(n;l,m,q,t) be the number of elements of D*(n;l,m,q,t) whose n-
equivalence class consists of itself alone. If (1) /, is even, (2) m, is even, (3) g, is even
and (4) t,(v) is even for each divisor a of n with 0 <a<n/2 and any positive integer
v (1=2v=r), then Q(n; I, m, q, t) is equal to

| ¢(r;/a) + 17 _q w(r;/a) + n; 1 <p(r;/a) + % —1\ ¢(r;/a) + ta;v) _q
I1 | 11
al|n . Jﬂ_ m, & v=1 ta(v)
O0<a<n/2 ) 2 —‘_2

Otherwise, Q(n; I, m, g, t) is equal to 0.

Under the conditions (0), (1), 2), @), @ _, (5)+, (5 - and (6), - in Proposi-
tion A, if g=g.,_ is a positive integer, the function Pl (@2)-P;(2)-P(X,5S)-
Z(g; 1, q,t(1), t(2), - - -, t(r),m)=>D *(n; I, m, q, t)/n is a bijection. Hence we have (I).

We take an integer d=p; p;,- - -p;, With 1 =i, <i, <---<i,=s. Then we consider
the subset D*(n, d; 1, m, q,t) of D*(n; I, m, q, t) consisting of elements (8, 5, AV, 4%,
-+, A", @) satisfying that d is a divisor of g.c.d.{6, 82, =, 1, N1, N2s = *5 Mg AL, AL,
s AR AP AP, A, e A AD, A8, 04, 0,, - -, 0, n}. If a divisor a (of
n) is not a multiple of d, then we have [,=0, m,=0, q,=0 and 7,(v)=0 (1=Vv=r) in
D*(n,d; 1, m, q,t). Suppose that a is a multiple of d. We take I, m®, g9, t@ as in the
statement of the theorem. Then we define a function T: D*(n, d; I, m, q, t)»D * (n/d; [,
m?, g9, t@) as follows: for an element of D *(n, d; I, m, ¢, t), divide each component
by d, then we get the corresponding 7-image of the element. Then the function
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T is bijective. Hence the number of eclements of D*(n,d;I,m,¢q,t) is equal to
C*(n/d; 19, mD, g9, ¢@). This completes the proof of (II).

PRrROOF OF THEOREM A.2. Under the conditions (0), (1), (2), 4) ., @ _, (5)+, (5)_
and (6),, in Proposition A, there are a compact surface X and a subset S=S°uU S? in
0X satisfying the following conditions (i), (ii), (iii) and (iv).

@ (/s M,S,)ebX,S).

(i) X is a compact non-orientable surface of genus g with /+q+1 boundary
components, where g=g,, is as in Propos1t10n A.

(ili) S° consists of m points in X.

(iv) S consists of ¢ loops and Y v+ t(v) arcs in dX.

For n,1I,m, q and ¢ satisfying [,,=m,,=q,,=1,,(v)=0 for any v (1Zv<t), we
take the set D(n; I, m, q, t)° of systems of integers (8, , AV, A®, - - -| A®, @) satisfying

1y 0=6,=0,=---=6,<n/2, 0=n S, =---=n,<n/2,
Oél(lv)élg))é ct él%)<n/2 (U= 13 2, T, ") ’
1<6,<0,<---<0,,<n/2,

3) l,=%{6;; g.cd.{6;, n}=a}, m,=4%{0, ; g.cd.{6;, n}=a},

g.=%{n,; gcd{n,n}=a} and 1)=#{1D ;g c.d.{A, n}=a} .

For n,1,m, g and ¢ satisfying L, + M, + ¢, +qu2+ Y, ,2(v) #0, we take the set
D(n; I, m, q, t)* of systems of integers (6, 5, AV, A?), - - -, 2®)_ @) satisfying the conditions
(1) and (3) above and
(%) Si=n/2, m,=n/2, I =n2 1<Iv<r), 6,=n/2.

Then we have clearly that;

LEMMA 5.1. For an element of the set D(n; I, m, q, t)° (resp. D(n; I, m, g, t)*), the
condition (7). in Theorem A.2 is a necessary and sufficient condition that 6+
Or+  +6+n +n+ - +n,+ 11‘11’+A‘2”+ o+ AL AP +HAP+ -+ 2B+ -+
AD+29+ - +20+ 01+02 - +0,, is even.

Moreover % D(n; I, m, q, t)°—#D(n I,m,q,t)*=C(n; 1, m, q, t) equals

H [( (P(';/ %) +l,— 1>1< ¢(;/a)+m.—— 1>( (p(;/a) +49,— 1) . ﬁ ( (p(;/a) +1,(v)— 1>.
ant\ . m, % v=1 0] '

a¥n/2

We denote by D(n; 1, m, q, t)° (resp. D (n; I, m, g, t)*) the set D(n; I, m, q, t)° (resp.
D(n; 1, m, q, t)*) when n, I, m, g and ¢ satisfy the condition (7),, and by D (n; I,m,gq, 1)
(resp. Dq(n; I, m, q, t)*) the set D(n; I, m, q, t)° (resp. D(n; I, m, q, t)*) when n, I, m, ¢ and
t satisfy the condition (7),.

Note that n is even. We can give the proof of Theorem A.2 in respective cases in -
the same way as that of Theorem A in [10]. For example, in case that g is odd and
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g=3, if Ly +mMys+qus+ Y, 1,2(0) #0, then the function P3(2)—Py(2)—P (X, S)—
Z, (g;1,q,t(1), t(2), - - -, t(r), m);—>2-D.(n; I, m, q, t)° is a bijection. The other cases follow
similarly, completing the proof.

We can prove Theorems A.3 and A.4, in a similar way as above. Since many details
of the proofs are found in Theorem B in [10], we omit the proof.

PROOF OF PROPOSITION B. Let (f, M) be an element of P%(D), where e= + or o.
Clearly we have (1) and (2).

We put RD(f, M)=(f, M, S,)e P(2). Then, from Proposition 2.6, we have (3).

Using the orbit space X=M/f and the branched covering p: M— X, we have
), (5), (6),+ and (6),,. Here we put

l:l ‘l:l ma r;'la qa qa
laz——(=—->’ ma= <= )’ qa=—-—(= )’
a a a a a a

t,,(v)= ta(r;v/a) ( = ta(nv/(za)) — ta‘(f') ) , g= Z das t___z Z ta(U) .

a aln v aln

If P%(2)+# &, then by Proposition 2.2 and Lemma 2.1, we have (0),.. Thus we have
Proposition B.

PROOF OF THEOREM B.1. Under the conditions (0),,, (1), (2), (3), (4), (5) and (6), ; in
Proposition B, there is a compact surface X and a subset S=S°0U S! in X satisfying
the following conditions (i)—(v):

@ (.M, S,)eP(X,5).

(ii) X is a compact orientable surface of genus g,, with /+¢g+¢ boundary
components, where g, , is as in Proposition B.

(iii) S° consists of m points in X.

(iv) S! consists of ¢ loops and ) v - #(v) arcs in 0X.

(v) [is the number of boundary components which does not intersect with S?,
g is the number of boundary components which is contained in S*, t(v) is the number
of boundary components which intersects v arcs with S*.

With £, m,, q,, t,(v) given in the proof.of Prop. B, we have vectors I=(l,),,, m=
(M3)ans 4=(Ga)ajn a0d t=(2,(v))s)n,,- Then we take a set D2*(n; I, m, q, t) of systems of
integers (8, 9, AV, A3, - - - i@ @) such that

(D 0=<6;<6,=-"-=6,<n/2, 0=n,=m,=---=n,<n/2,
0sAP=AP<--- =S4 <n2 (v=1,2,--,1),
1=£0,50,=---=£60,<n/2,

() 01+t H oA Nt AP AP+ A+ AP
+AP+ AR+ F AP HAD - AR +0,+0,+
-+ +6,=0 (mod n/2),
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3y L,=%{6;; g.cd.{6;,n2}=a}, m,=#{6, ; g.c.d.{6;, n/2}=a},
q.=%{n,; g.cd.{n,n2}=a} and t()=#{AQ ; g.c.d.{AV, n/2}=a}.

Clearly, it holds that D2*(n; I, m, q, t)= D *(n/2; 1, m, q, t). Hence we have Theorem
B.1.

PrOOF OF THEOREM B.2. Under the conditions (0),, (1), (2), (3), (4), (5) and (6),,
in Proposition B, there are a compact surface X and a subset S=5° U S! in 0.X satisfying
the same conditions as (i)-(v) in the proof of Theorem B.1, except that we should
replace the condition (ii) with

(i) X is a compact non-orientable surface of genus g with /+ g+ ¢ boundary
components, where g=g,, is as in Proposition B.

Then we take I, m, ¢ and t as before. For n, I, m, ¢ and t, we take the set
D?*(n; I, m, q, t) of systems of integers (8, q, AV, A, - - - A, @) satisfying

(1" 0<6,=0,<---=6,<n/4, 0=n =N, =---=n,<nf4,
0SAPSIPS - SAQ<nfd 0=1,2, -, 7),
1<60,<0,<---<6,,<n/4,

and (3)' in the proof of Theorem B.1.
Then #D2°(n; I, m, q, t)=C?*(n; I, m, g, t) is equal to

Pj2a) |\ (A0 N
2 2 . l—I
a|n/2 Ia m, 4a v=1 ta(v)
a#nj2

L—1

¢(n/2(2a)) + +1(v)—1

¢(n/(2a)
2

Then, in a similar way to Theorem A in [10], we have the proof of Theorem B.2.
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