A Cartan Subalgebra for an Inclusion of Factors with Index 3

Yoshihiro SEKINE

Tokyo Metropolitan University
(Communicated by J. Tomiyama)

Abstract. For an outer action α of the symmetric group S_3 on an AFD factor M, we will determine when the pair $M \bowtie_{\alpha} S_3 \supset M \bowtie_{\alpha} S_2$ contains a Cartan subalgebra.

§1. Introduction.

Motivated by a result of Jones-Popa [5], we showed in [14] that for an outer action α of a finite group G on an AFD factor M, $M \bowtie_{\alpha} G \supset M$ contains a common Cartan subalgebra if and only if $N(\alpha) = \{e\}$. On the other hand, it was shown that an inclusion of factors with index 3 is conjugate to $M \bowtie_{\alpha} Z_3 \supset M$ or $M \bowtie_{\alpha} S_3 \supset M \bowtie_{\alpha} S_2$ (see Kosaki [7], Ocneanu [9], Pimsner-Popa [10], [11], Popa [12] for the former, and Izumi [3], Ocneanu [9], Popa [12] for the latter).

Hence, the following question naturally arises: For an outer action α of the symmetric group S_3 on an AFD factor M, when does $M \bowtie_{\alpha} S_3 \supset M \bowtie_{\alpha} S_2$ contain a common Cartan subalgebra? We shall give a necessary and sufficient condition in terms of the invariant of the action α .

The author would like to express his sincere gratitude to Professor Hideki Kosaki and Professor Jun Tomiyama for their helpful discussions and constant encouragement.

§2. Preliminaries.

Here, we collect certain results needed later. A Cartan subalgebra in a von Neumann algebra M is by the definition (Feldman-Moore [1]), a regular MASA which is the range of a faithful normal conditional expectation from M.

THEOREM 2.1. Let M be the AFD type II_1 factor R or the AFD type II_{∞} factor $R_{0,1}$ and let $\alpha: G \to \operatorname{Aut} M$ be an outer action of a finite group G on M. Then $M \bowtie_{\alpha} G \supset M$ has a common Cartan subalgebra.

THEOREM 2.2. Let $\alpha: G \to \operatorname{Aut} M$ be an outer action of a finite group G on an AFD

type III factor M. Then $M \bowtie_{\alpha} G \supset M$ contains a common Cartan subalgebra if and only if $N(\alpha) = \{e\}$. Here $N(\alpha) = \alpha^{-1}(\operatorname{Cnt} M)$ and $e \in G$ is the unit of G.

We refer to Jones-Popa [5] and [14] for details, and to Jones [4], Ocneanu [8], Sutherland-Takesaki [15] and Kawahigashi-Sutherland-Takesaki [6] for the classification of actions.

§3. Results.

3.1. The case of type II factor.

PROPOSITION 3.1. Let $\alpha: G \to \operatorname{Aut} M$ be an outer action of a finite group G on the AFD type II_1 or $\operatorname{II}_{\infty}$ factor M. Let H be a subgroup of G. Then $M \bowtie_{\alpha} G \supset M \bowtie_{\alpha} H$ possesses a common Cartan subalgebra.

PROOF. By Theorem 2.1, $M \bowtie_{\alpha} G \supset M$ has a common Cartan subalgebra. It is automatically a Cartan subalgebra of $M \bowtie_{\alpha} H$ because of [5; Remark 2.4]. q.e.d.

3.2. The case of type III factor.

LEMMA 3.2. Let $M \supset N$ be a pair of type III factors and $E: M \to N$ a faithful normal conditional expectation. Let φ be a faithful normal semi-finite weight on N. If $M \supset N$ has a common Cartan subalgebra, then so does the canonical inclusion $\widetilde{M} = M \bowtie_{\sigma^{\varphi \circ E}} R \supset \widetilde{N} = N \bowtie_{\sigma^{\varphi}} R$. In particular, we get $\widetilde{N}' \cap \widetilde{M} = Z(\widetilde{N})$.

PROOF. This follows from [14; Lemma 1] and the obvious fact:

$$\tilde{N}' \cap \tilde{M} \subseteq \tilde{A}' \cap \tilde{M} = \tilde{A} \subseteq \tilde{N}$$
.

where \tilde{A} is a common Cartan subalgebra for $\tilde{M} \supset \tilde{N}$.

q.e.d.

LEMMA 3.3. Let $\alpha: G \to \operatorname{Aut} P$ be an action of a finite group G on a type III factor P. Let H be a subgroup of G and set $M = P \bowtie_{\alpha} G \supset N = P \bowtie_{\alpha} H$. Let $E: M \to N$ be the natural conditional expectation and let $\widetilde{M} = M \bowtie_{\sigma^{\varphi \circ E}} R \supset \widetilde{N} = N \bowtie_{\sigma^{\varphi}} R$ for some weight φ on N.

- (i) $\tilde{M} \supset \tilde{N}$ is conjugate to $\tilde{P} \bowtie_{\tilde{\alpha}} G \supset \tilde{P} \bowtie_{\tilde{\alpha}} H$,
- (ii) $\tilde{N}' \cap \tilde{M} \supset Z(\tilde{N})$ is (as a pair) anti-isomorphic to

$$(Z(\tilde{P}) \bowtie_{\mathrm{id},\mu} N(\alpha))^{\gamma} \supset (Z(\tilde{P}) \bowtie_{\mathrm{id},\mu} N(\alpha|_{\mathrm{H}}))^{\gamma},$$

where \tilde{P} is the crossed product of P by the modular action, $\tilde{\alpha}$ means the canonical extension of α in the sense of Haagerup–Størmer [2] and γ is the action of H defined by

$$\gamma_{g}\left(\sum_{h\in N(\alpha)}c_{h}z_{h}\right) = \sum_{h\in N(\alpha)}\lambda(g,h)\tilde{\alpha}_{g}(c_{g^{-1}hg})z_{h}, \qquad g\in H$$

PROOF. It follows from the obvious modification of the proof of [13; Lemma

2.4]. In fact, since $\tilde{P}' \cap \tilde{M}$ is anti-isomorphic to $Z(\tilde{P}) \bowtie_{\mathrm{id},\mu} N(\alpha)$ and $\tilde{N}' \cap \tilde{M} = (\tilde{P}' \cap \tilde{M}) \cap \{\tilde{\lambda}_H\}'$, the result follows from the fact that $\mathrm{Ad}\,\tilde{\lambda}_h$ corresponds to γ_h . q.e.d.

THEOREM 3.4. Let $\alpha: S_3 \to \operatorname{Aut} P$ be an outer action of the symmetric group S_3 on an AFD type III factor P and set $M = P \bowtie_{\alpha} S_3 \supset N = P \bowtie_{\alpha} S_2$. Then $M \supset N$ contains a common Cartan subalgebra if and only if $N(\alpha) = \{e\}$.

PROOF. Let us assume that $M \supset N$ contains a common Cartan subalgebra. If we denote the canonical inclusion of type II_{∞} von Neumann algebras by $\tilde{M} \supset \tilde{N}$, then it follows from Lemma 3.2 that $\tilde{N}' \cap \tilde{M} = Z(\tilde{N})$. We remark that S_3 is the group generated by a and b with the relations $a^2 = 1$, $b^3 = 1$ and $aba = b^2$. Since $N(\alpha)$ is a normal subgroup of S_3 , the possibility of it is $\{e\}$, $\{e, b, b^2\}$ or S_3 . However, for the cases of $\{e, b, b^2\}$ and S_3 , we have $\tilde{N}' \cap \tilde{M} \neq Z(\tilde{N})$ because of Lemma 3.3. Thus we get the consequence.

The converse follows from Theorem 2.2 and [5; Remark 2.4]. q.e.d.

References

- [1] J. FELDMAN and C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras. I, II, Trans. Amer. Math. Soc., 234 (1977), 289–324, 325–359.
- [2] U. HAAGERUP and E. STØRMER, Equivalence of normal states on von Neumann algebras and the flow of weights, Adv. in Math., 83 (1990), 180-262.
- [3] M. IZUMI, Goldman's type theorem for index 3, Publ. RIMS, Kyoto Univ., 28 (1992), 833-842.
- [4] V. Jones, Actions of Finite Groups on the Hyperfinite Type II₁ Factor, Mem. Amer. Math. Soc., 237 (1980).
- [5] V. Jones and S. Popa, Some properties of MASA's in factors, Operator Theory, 6 (1982), 89–102, Birkhäuser.
- [6] Y. KAWAHIGASHI, C. SUTHERLAND and M. TAKESAKI, The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions, Acta Math., 169 (1992), 105-130.
- [7] H. Kosaki, Characterization of crossed product (properly infinite case), Pacific J. Math., 137 (1989), 159–167
- [8] A. Ocneanu, Actions of Discrete Amenable Groups on von Neumann Algebras, Lecture Notes in Math., 1138 (1985), Springer.
- [9] A. Ocneanu, Quantized groups, string algebras and Galois theory for algebras, *Operator Algebras and Applications*, Vol. 2, London Math. Soc. Lecture Note Ser., 136 (1988), 119–172.
- [10] M. PIMSNER and S. POPA, Entropy and index for subfactors, Ann. Sci. École Norm. Sup., 19 (1986), 57–106.
- [11] M. PIMSNER and S. POPA, Finite dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal., 98 (1991), 270-291.
- [12] S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math., 101 (1990), 19-43.
- [13] Y. SEKINE, Flows of weights of crossed products of type III factors by discrete groups, Publ. RIMS Kyoto Univ., 26 (1990), 655-666.
- [14] Y. Sekine, Cartan subalgebras in fixed point algebras of finite group actions, Math. Scand., 70 (1992), 281-292.
- [15] C. SUTHERLAND and M. TAKESAKI, Actions of discrete amenable groups on injective factors of type

III_{λ}, $\lambda \neq 1$, Pacific J. Math., 137 (1989), 404–444.

Present Address:
Department of Mathematics, Kyushu University 33
Hakozaki, Fukuoka 812, Japan