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\S 1. Introduction.

The purpose of this paper is to study the index of a complete orientable minimal
surface in $R^{3}$ with finite total curvature.

In 1964, Osserman [O] proved that a complete minimal surface in $R^{3}$ with finite
total curvature is conformally a Riemann surface with finitely many punctures.
Fisher-Colbrie [F] showed that the statement remains true even if the condition of
’finite total curvature’ is replaced by that of ’finite Morse index’. This theorem of
Fisher-Colbrie gave us a new direction of research on those surfaces, that is, the study
of the Morse index of a complete minimal surface.

Let us briefly review the history of research on the indices of complete immersed
orientable minimal surfaces in $R^{3}$ . It has been classically known that the plane is the
only such surface with index zero, i.e. stable. Fisher-Colbrie showed in [F] that the
catenoid and Enneper’s surface have index one. Conversely, it was shown in [L-R] that
a complete immersed orientable minimal surface in $R^{3}$ with index one is either the
catenoid or Enneper’s surface. This result had been proved by [C-T] when all the ends
of the surface are embedded. In 1990, Choe [C] and Nayatani [N] independently
proved, under the assumption that its genus is zero, that a complete immersed orientable
minimal surface in $R^{3}$ has index less than three if and only if it is one of these three;
the plane, the catenoid, Enneper’s surface.

As for other examples of minimal surfaces, including Jorge-Meeks’ and Hoffman-
Meeks’ surfaces, upper and lower bounds of their indices were found in [C], [N] and
[T1]. The indices of various individual minimal surfaces have been determined. Here
we are interested in determining the index of a ‘generic’ minimal surface in $R^{3}$ with
finite total curvature $4\pi d$. The first author and Micallef [E-M] proved the following
estimate for an arbitrary complete orientable minimal surface in $R^{3}$ with finite total
curvature.
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THEOREM (Ejiri-Micallef [E-M]). Let $M$ be a complete orientable minimal surface
of genus $g$ in $R^{3}$ with total curvature $\int|K|<+\infty$ . It is known that the number
$d=(1/4\pi)\int|K|$ is an integer. For any such $M$, we have

Index$(M)+Nullity(M)\leq 2(2d+g-1)-1+3=4d+2g$ .

REMARK. For estimates of the Morse index of a minimal submanifold of higher
dimension or higher codimension, see [E], [E-M], [C-T2], [T2] and [B-B].

In this paper we will compute the index of a ‘generic’ minimal surface of genus
zero. (The precise definition of ’generic’ will be given in \S 4.)

THEOREM A. Let $M$ be a generic complete orientable finitely branched minimal
surface of genus zero in $R^{3}$ with finite total curvature $4\pi d$. Then we have

Index$(M)=2d-1$ and Nullity(M) $=3$ .
REMARK. In [C], Choe conjectured that Index$(M)\leq 2d-1$ for any complete

orientable minimal surface in $R^{3}$ with finite total curvature $4\pi d$. Our theorem proves
his conjecture for any generic surface of genus zero.

The following is an idea of our proof of the main theorem. Let us consider an
arbitrary end $p$ of a complete orientable minimal surface $M$ in $R^{3}$ with finite total
curvature. Then, by [O], the surface $M$ has the limiting tangent plane at the end $p$ . It
implies that the surface $M$, around $p$ , is a local graph over the limiting tangent plane.
Suppose that the end $p$ is embedded. The embedded end $p$ is called a catenoid end if
$M$ is locally a graph of logarithmic growth. It is called a flat end if $M$ is locally a
bounded graph. Bryant ([B]) proved that the embedded end $p$ is either a catenoid end
or a flat end. The current definition of flat end can be applied only when the end is
embedded. We will first generalize the definition of flat end to the non-embedded ends.
We say that a minimal surface isflat-ended if all of its ends are flat. Then the flat-ended
minimal surfaces allow a number of characterizations. These characterizations will tum
out to be very useful. By making use of them, we will first show that the space of all
Gauss maps of flat-ended minimal surfaces is a union of proper algebraic subvarieties
of the space of all meromorphic functions of degree $d$. It implies, in particular, that it
has codimension greater than one. In other words, flat-ended minimal surfaces are
exceptional among all minimal surfaces. Next we will prove

THEOREM B. A complete orientable finitely branched minimal surface in $R^{3}$ with
finite total curvature has nullity $\geq 4$ if and only if its Gauss map can be the Gauss map
of aflat-ended minimal surface.

The argument combining those two facts leads us to the proof of Theorem A as
we see in \S 4.

As a by-product of this proof, we can show that there exists a branched Willmore
surface of an arbitrary genus in $S^{3}(1)$ . There we will use the technique developed by
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Bryant in [B].

\S 2. Gauss parametrization.

In this section, we will define a ’Gauss parametrization’ of a complete orientable
finitely branched minimal surface in $R^{3}$ . This concept enables us to reduce our problem
to a study of meromorphic functions on a compact Riemann surface.

Let $X:M\rightarrow R^{3}$ be a complete orientable finitely branched minimal surface with
finite total curvature $\int|K|=4\pi d$. Then there exist a compact Riemann surface $\hat{M}$ and
a finite number of points $\{p_{1}, \cdots,p_{k}\}$ of $\hat{M}$ such that $M$ is conformally diffeomorphic
to $\hat{M}\backslash \{p_{1}, \cdots, p_{k}\}$ . In other words, $M$ can be compactified by attaching a finite
number of points $p_{1},$ $\cdots,$ $p_{k}$ . Those points $p_{1},$ $\cdots,$ $p_{k}$ are called the ends of $M$ ([O],
[R-T]).

Let $\Phi:M\rightarrow S^{2}(1)$ be the Gauss map assigning the unit normal vectors. Then $\Phi$

extends to a meromorphic function over $\hat{M}$ of degree $d$, which is also denoted by
$\Phi:\hat{M}\rightarrow S^{2}(1)$ by abuse of notation. In this fashion, we can associate a meromorphic
function $\Phi$ on $\hat{M}$ with any complete orientable finitely branched minimal surface
$X:M\rightarrow R^{3}$ with finite total curvature.

Give a compact Riemann surface $\hat{M}$ and a meromorphic function $\Phi:\hat{M}\rightarrow S^{2}(1)$

on $\hat{M}$. Now we construct a complete orientable minimal surface with $\Phi$ as its Gauss
map. Let $g_{*}$ be the Riemannian metric on $\hat{M}\backslash ${ $finite$ points} induced from the canonical
metric on $S^{2}(1)$ . Let $\nabla^{*}$ and $\Delta^{*}$ denote the Levi-Civita connection and the Laplacian
defined by $g_{*}$ , respectively. By using an isothermal coordinate on $\hat{M}$, they are given
by

$g_{*}=2|\Phi_{*}(\frac{\partial}{\partial z})|^{2}dzd\overline{z}$ ,

$\nabla_{\partial/\partial z}^{*}\frac{\partial}{\partial z}=\frac{\partial}{\partial z}(\log|\Phi_{*}(\frac{\partial}{\partial z})|^{2})\frac{\partial}{\partial z}$ ,

$\nabla_{\partial/\partial z}^{*}\frac{\partial}{\partial\overline{z}}=0$ ,

$\Delta^{*}=\frac{2}{|\Phi_{*}(\frac{\partial}{\partial z})|^{2}}\frac{\partial^{2}}{\partial z\partial\overline{z}}$

.

Take a smooth function $F$ on $\hat{M}$ satisfying $\Delta^{*}F+2F=0$ . We define a map $X$ :
$\hat{M}\backslash \{finitepoints\}\rightarrow R^{3}$ by

$X=F\Phi+grad_{S^{2}\langle 1)}F$ .
For convenience, we abuse the notation for the map $X$ and write simply $X:\hat{M}\rightarrow R^{3}$ .
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By simple calculations we get

$X=F\Phi+|\Phi_{z}|^{-2}(F_{\overline{z}}\Phi_{z}+F_{z}\Phi_{\overline{z}})$ ,

$X_{z}=|\Phi_{z}|^{-2}HessF(\frac{\partial}{\partial z},$ $\frac{\partial}{\partial z})\Phi_{\overline{z}}=|\Phi_{z}|^{-2}(F_{zz}-\frac{\partial}{\partial z}(\log|\Phi_{z}|^{2})F_{z})\Phi_{\overline{z}}$ ,

where we write $\Phi_{z}=\Phi_{*}(\partial/\partial z),$ $F_{z}=\partial F/\partial z$, etc.
Therefore we construct a branched immersion $X:\hat{M}\rightarrow R^{3}$ , which has $\Phi$ as its Gauss

map and the metric

$g=2|X_{z}|^{2}dzd\overline{z}=2|\Phi_{z}|^{-2}|F_{zz}-\frac{\partial}{\partial z}(\log|\Phi_{z}|^{2})F_{z}|^{2}dzd\overline{z}$

induoed by $X$.
With these understood, we have the following.

LEMMA 2.1. Let $\Omega=(F_{zz}-(\partial/\partial z)(\log|\Phi_{z}|^{2})F_{z})dz^{2}$ for $\Phi$ and $F$ above. Then the
following hold.

(1) $\Omega$ is a meromorphic differential on $\hat{M}$, which has poles of order 1 only at some
zeros of $\Phi_{z}$ .

(2) $\Omega$ is identically zero if and only if there is a constant vector $A$ in $R^{3}$ such that
$ F=\langle X, A\rangle$ .

(3) $\Phi_{z}hasatleast4distinctzerosifthegenusof\hat{M}$ is zero.

PROOF. (1) and (2) are immediate.
(3) The last statement follows from the fact that

$f$ { $the$ zeros of $\Omega$} $-\#$ {$the$ poles of $\Omega$} $=-2x$ {Euler number} $=4(g-1)$ .
PROPOSITION 2.2. If $F$ satisfies the equation $\Delta^{*}F+2F=0$ and $\Omega(F)\neq 0$ , then

$X:M\rightarrow R^{3}$ gives a completefinitely branched minimal surface, which has afinite number
of ends.

In fact, it is easy to see that

$X_{z\overline{z}}=0$ ,

$|X|^{2}=|F|^{2}+2|\Phi_{z}|^{-2}|F_{z}$ and

$|X_{z}|^{2}=|\Phi_{z}|^{-2}|F_{zz}-\frac{\partial}{\partial z}(\log|\Phi_{z}|^{2})F_{z}|^{2}$

Thus $X$ is minimal and has the ends at zeros of the meromorphic function $\Phi$ and $X_{z}$

has the branch points at zeros of the meromorphic function $F_{zz}-(\partial/\partial z)(\log|\Phi_{z}|^{2})F_{z}$ ,
both of which are finite in number. We note that some zeros of $\Phi_{z}$ may not be the ends
$ofX$.

It should be remarked that any complete finitely branched minimal surface
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$X:M\rightarrow R^{3}$ can be written as
$X=F\Phi+grad_{S^{2}}F$

if we take $ F=\langle X, \Phi\rangle$ , which satisfies $\Delta^{*}F+2F=0$ ($F$ is not necessarily bounded on $M$).
This construction of $X$ is called the Gauss parametrization of $X$ (cf. [D-G]). In \S 3 we
shall see that the boundedness of $F$ implies the flatness of all ends.

\S 3. Flat ends.

Throughout this section we keep the notation in \S 2. Let $X:M\rightarrow R^{3}$ be a complete
orientable finitely branched minimal surface with finite total curvature and $\hat{M}=$

$M\cup\{p^{1}, \cdots,p^{r}\}$ its compactification by the Gauss map.
It has been known through recent investigation about minimal surfaces of finite

total curvature that such a surface has the limiting tangent plane at each end $p$ and
is, around $p$ , a local graph over the plane. If the end $p$ is embedded, the graph has at
most logarithmic growth. The embedded end $p$ is called a catenoid end if $M$ is a graph
of logarithmic growth around $p$ . It is called aflat end if $M$ is locally a bounded graph.
Here we will define a flat end when the end $p$ is non-embedded. As seen in \S 2, the unit
normal vector $\Phi$ of $M$ converges to $\Phi(p)$ around $p$ of $M$. We call a non-embedded end
$p$ aflat end when \langle X, $\Phi(p)\rangle$ is uniformly bounded near $p$ . It should be remarked that
\langle X, $\Phi(p)\rangle$ is a function of at most logarithmic growth when $p$ is embedded, while it
may have higher order growth if $p$ is non-embedded. In this section, we will give a
number of characterization of flat ends. We will use those characterization to prove
Theorem A in \S 4.

We first characterize flat ends in terms of a series expansion;

$X_{z}=\frac{1}{z^{k}}V_{-k}+\cdots+\frac{1}{z}V_{-1}+holomorphic$ part

where $z$ is a local isothermal coordinate around $p$ with $z(p)=0$ and $V_{t}’ s$ are constant
vectors in $C^{3}$ .

PROPOSITION 3.1. An end $p$ is flat if and only if
$V_{-k}//\cdots//V_{-2}$ and $V_{-1}=0$ .

Note that $X_{z}$ has the residue $V_{-1}=0$ , which comes from well definedness of the
immersion $X={\rm Re}\{\int X_{z}dz\}$ .

Let $\underline{C^{3}}=\hat{M}\times C^{3}$ be the trivial bundle over M. $\underline{C^{3}}$ is decomposed as $\{\Phi\}\oplus L_{1}\oplus L_{2}$ ,
where $L_{1}$ and $L_{2}$ stand for the line bundles spanned by $\Phi_{z}$ and $\Phi_{\overline{z}}$ respectively. Since

$\langle\Phi, \Phi_{z}\rangle=\frac{\partial}{\partial z}|\Phi|^{2}=0$ and $\langle\Phi_{z}, \Phi_{z}\rangle=0$ ,
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it follows that

$L_{1}=$ { $\xi\in\underline{C^{3}}$ : $\langle\xi,$ $\Phi\rangle=0$ and $\langle\xi,$ $\Phi_{z}\rangle=0$}.
Remark that

$L=$ { $\xi\in\underline{C^{3}}$ : $\langle\xi,$ $\Phi\rangle=0$ and $\langle\zeta,$ $\xi\rangle=0$ for all $\zeta\in L_{1}$ }
is one-dimensional.

PROOF OF PROPOSmON 3.1. Since $\Phi(p)$ is the limiting normal vector at $p$ and $X_{z}$

is a null vector, we get
$\langle V_{-k}, \Phi(p)\rangle=0$ and $\langle V_{-k}, V_{-k}\rangle=0$ .

So, together with the above remark, we have

$\{\xi\in\underline{C^{3}} : \langle\xi, \Phi(p)\rangle=0, \langle\xi, V_{-k}\rangle=0\}=CV_{-k}$ .
The function \langle X, $\Phi(p)\rangle$ is uniformly bounded nearp if and only if

$\langle V_{-k+l}, \Phi(p)\rangle=0$ for $l=0,$ $\cdots,$ $k-1$ .
Note that $X_{z}$ is a null vector. We also get

$\sum_{j=0}^{m}\langle V_{-k+j}, V_{-k+m-j}\rangle=0$ for $m=0,$ $\cdots,$ $k-1$ .

We prove inductively that $V_{-k+l}$ is parallel to $V_{-k}$ for $l=0,$ $\cdots,$ $k-1$ . Since $X_{z}$ has no
real period, ${\rm Im}(V_{-1})=0$ , which implies $V_{-1}=0$ . q.e.d.

Next we shall characterize flat ends in terms of the Gauss parametrization of $X$.
PROPOSITION 3.2. Let $p$ be an end ofX. Then $p$ isflat if and only if $ F=\langle X, \Phi\rangle$ is

unformly bounded near $p$ .
As in \S 2, the position vector $X$ can be written as

$X=\langle\Phi, X\rangle\Phi+|\Phi_{z}|^{-2}\{F_{\overline{z}}\Phi_{z}+F_{z}\Phi_{\overline{z}}\}$ .
Flatness, from the definition, requires that

\langle X, $\Phi(p)\rangle$ $=\langle X, \Phi\rangle\langle\Phi, \Phi(p)\rangle+|\Phi_{z}|^{-2}\{F_{\overline{z}}\langle\Phi_{z}, \Phi(p)\rangle+F_{z}\langle\Phi_{\overline{z}}, \Phi(p)\rangle\}$

is bounded near $p$ .
If $ F=\langle X, \Phi\rangle$ is bounded, then, by elliptic regularity, $F_{z}$ and $F_{\overline{z}}$ are also bounded

and

$|\langle\Phi, \Phi(p)\rangle|\leq|\Phi||\Phi(p)|=1$ .
Therefore \langle X, $\Phi(p)\rangle$ is bounded if $|\Phi_{z}|^{-2}\langle\Phi_{z}, \Phi(p)\rangle$ is bounded. As noted in \S 1, $\Phi_{z}$ is
zero at every end. Hence we can write locally $\Phi_{z}=z^{m}\eta$ near $p$ with $\eta(p)\neq 0$ and $z(p)=0$ .
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First we shall see that all $\eta^{\langle k,0)}=(\partial^{k}/\partial z^{k})\eta$ are parallel.

LEMMA 3.3. $\eta^{\langle k.0)}$ are parallel to each other for $k=0,1,$ $\cdots$

Let $L_{1}$ be as before. We are going to see that all $\{\eta^{\langle k,O)}\}$ are local sections of the
line bundle $L_{1}$ . Note that $\eta\in L_{1}$ . Assume that $\eta^{\langle k,0)}\in L_{1}$ for some $k$ . Then we get

$\langle\eta^{(k+1,0)}, \eta^{\langle k,0)}\rangle=\frac{1}{2}\frac{\partial}{\partial z}\langle\eta^{\langle k,O)}, \eta^{\langle k,0)}\rangle=0$ ,

which implies that

$\langle\eta^{\langle k+1,0)}, \Phi_{z}\rangle=0$ .

We also get

$\langle\eta^{\langle k+1,0)}, \Phi\rangle=\frac{\partial}{\partial z}\langle\eta^{\langle k,0)}, \Phi\rangle-\langle\eta^{\langle k,0)}, \Phi_{z}\rangle=0$ .

These prove that $\eta^{\langle k+1.0)}\in L_{1}$ .
Remark that $\langle\partial\eta/\partial\overline{z}, \Phi\rangle=-\langle\eta, \Phi_{\overline{z}}\rangle=-\overline{z}^{m}\langle\eta,\overline{\eta}\rangle$ . By a similar computation as in

Lemma 3.3, we have

LEMMA 3.4. $\langle\eta^{\langle 0,l)}, \Phi\rangle=\overline{z}^{m-l+1}A_{0.l}(z,\overline{z})$ for $l=1,$ $\cdots,$ $m+1$ , where $A_{0,1}(z,\overline{z})$ is
a non zero boundedfunction in $z$ and $\overline{z}$.

Using Lemmas 3.3-3.4, we will show the ’if’ part of Proposition 3.2. We need to
see that

$|\Phi_{z}|^{-2}\langle\Phi_{z}, \Phi(p)\rangle=\overline{z}^{-m}\langle\eta,\overline{\eta}\rangle^{-1}\langle\eta, \Phi(p)\rangle$

is bounded near $p$ . On the other hand the Taylor expansion of $\langle\eta, \Phi(p)\rangle$ around $p$ is
given by

$\langle\eta, \Phi(p)\rangle=\sum_{k,l}\langle\eta^{\langle k,l)}(p)z^{k}\overline{z}^{l}, \Phi(p)\rangle=\overline{z}^{m+1}C(z,\overline{z})$ ,

where $C(z,\overline{z})$ is a non zero bounded function in $z$ and $\overline{z}$. The last equation follows from
Lemma 3.3 and Lemma 3.4. Therefore

$|\Phi_{z}|^{-2}\langle\Phi_{z}, \Phi(p)\rangle=\overline{z}|\eta|^{-2}C(z,\overline{z})\rightarrow 0$ as $z\rightarrow 0$ .

This completes the proof of “if” part. We leave “only if” part after Proposition 3.5.
We now give the most useful characterization of flat ends in the following:

PROPOSITION 3.5. Let $p$ be an end of $X:M\rightarrow R^{3}$ . Then $p$ is a flat end if and only
if the following inequality holds.

The order of a zero of $\Phi_{z}$ at $ p\geq$ ( $The$ order of a pole of $X_{z}$ at $p$) $-1$ .
PROOF. We identify $G_{2,4}(R)\simeq R^{3}$ under the isometry given by
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$(e ’ \wedge e^{2})^{*}=e^{3}$ , $(e^{2}\wedge e^{3})^{*}=e$ ’ and $(e^{3}\wedge e^{1})^{*}=e^{2}$

for the orthonormal frames $\{e^{1}, e^{2}, e^{3}\}$ of $R^{3}$ . Then we get

$|\{\frac{X_{z}}{|X_{z}|}\wedge(\frac{X_{z}}{|X_{z}|})_{z}\}^{*}|=|\Phi_{\overline{z}}|$ ,

since $z$ is the isothermal coordinate.
On the other hand, using the Taylor expansion

$ X_{z}=z^{-k}V_{-k}+\cdots+z^{-1}V_{-1}+V_{0}+\cdots$ ,

we get

$\frac{X_{z}}{|X_{z}|}\wedge(\frac{X_{z}}{|X_{z}|})_{z}=O(\sum_{i.j\geq-k}z^{2k+l+j-1}V_{i}\wedge V_{j})$ .

Thus the order of a zero $of|\Phi_{z}|$ is equal to $k+i-1$ , where $i$ is the smallest number of
$V_{i}$ which is not parallel to $V_{-k}$ .

From Proposition 3.1, $i\geq 0$ is the condition for flatness. Thus we complete the proof.

PROOF OF PROPOSITION 3.2. We have proved ‘if’ part of the proposition and now
prove ‘only if’ part. Namely, we prove that if$p$ is a flat end, then $ F=\langle X, \Phi\rangle$ is uniformly
bounded near $p$ .

From Proposition 3.1 $X$ has the Taylor expansion

$X={\rm Re}$ {$(a_{k}z^{1-k}+a_{k-1}z^{2-k}+\cdots+a_{2}z^{-1})V+holomorphic$ part}

around a flat end $z=0$ . We also know from Proposition 3.5 that $\Phi_{z}=z^{k-1}\eta(z,\overline{z})$ , where
$\eta$ may be zero at $z=0$ . Therefore we get \langle X, $\Phi_{z}\rangle$ $=(\partial/\partial z)\langle X, \Phi\rangle$ is bounded, which
implies that $F$ is bounded near $z=0$ . q.e.d.

By Proposition 3.2, we obtain that a minimal surface $X$ given in Proposition 2.2
is a flat-ended minimal surface, since $F$ is a smooth function on a compact Riemann
surface $\hat{M}$, and is bounded on $M=\hat{M}-$ {$finite$ points}.

Now we apply Propositions 3.1 and 3.2 to a study of Willmore surfaces. Let $X$ be
a complete orientable minimal surface in $R^{3}$ and $p$ be an embedded end. Bryant proved
in [B] that \langle X, $\Phi\rangle$ is uniformly bounded near $p$ if and only if $p$ is a flat end, and $X_{z}$

has no residues at embedded flat ends. By using those facts, he showed that we get a
branched Willmore surface as the image of a flat-ended minimal surface in $R^{3}$ of the
stereographic projection from $S^{3}$ to $R^{3}$ if all ends are embedded. By Propositions 3.1
and 3.2, we prove his argument still works even if we remove the condition that all
ends are embedded.

COROLLARY 3.6. There is a branched Willmore surface of an arbitrary genus $g$ in
$S^{3}(1)$ .
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PROOF. It is enough to show the existence of a flat-ended minimal surface for
each genus $g$ . Costa and Hoffman-Meeks gave examples of complete orientable
embedded minimal surfaces $M_{g}$ of genus $g$ in [H-M]. On the other hand, Choe ([C])
proved that there exists a smooth function $F$ on $\hat{M}_{g}$ satisfying that $\Delta^{*}F+2F=0$ and
$\Omega\neq 0$ with respect to the induced metric by the Gauss map of $M_{g}$ . The construction in
\S 2 offers flat-ended minimal surfaces of genus $g$ .

\S 4. The space of meromorphic functions and the index.

First we will review briefly relevant results in [F]. Let $M$ be a complete orientable
finitely bramched minimal immersion in $R^{3}$ with finite total curvature. For a bounded
domain $\Omega$ in $M$, we consider the quadratic form

$I_{\Omega}(\psi)=\int_{\Omega}\{|\nabla\psi|^{2}-|\nabla\Phi|^{2}\psi^{2}\}d(volM)$

on $C_{0}^{\infty}(\Omega)$ , where $\Phi$ is the Gauss map of M. Index$(\Omega)$ is, by definition, the number of
negative eigenvalues of $I_{\Omega}$ . The least upper bound of Index$(\Omega)$ among all bounded
domains is called the index of $M$ and is denoted by Index$(M)$ . $M$ has finite total
curvature if and only if Index$(M)$ is finite. In that case, we have a compact Riemann
surface $\hat{M}$ with the metric $g_{*}$ induced from the Gauss map $\Phi$ as we see in \S 2. In stead
of the operator $I_{\Omega}$, put

$I_{g}(\psi)=\int_{\hat{M}}(|\nabla\psi|^{2}-|\nabla g|^{2}\psi^{2})d(vo1_{g}\hat{M})$

for the meromorphic function $g$ defined by the composition of the stereographic
projection $S^{2}(1)\rightarrow C$ and the Gauss map $\Phi$ of $M$. Identifying $S^{2}(1)\simeq Cu\{\infty\}$ , we may
call $g$ the Gauss map of $M$. It is known that the index of $I_{g}$ is equal to Index$(M)$ . It is
easy to see $I_{g}(\psi)$ is conformally invariant and depends only on $g$ . Therefore we can
define, for each meromorphic function $g$ on $\hat{M}$, the operator

$L_{g}=-\Delta_{\hat{M}}-|\nabla_{\hat{M}}g|^{2}=-\Delta_{\hat{M}}-2$ ,

Index$(g)$ and Nullity$(g)$ , regardless of $g$ being a Gauss map of some minimal surface
or not. We remark that each element of the nullity space for $L_{g}$ is a bounded Jacobi
field on $M$. Via the Gauss map of $M$, eigenfunctions of $S^{2}(1)$ with eigenvalues 2 can
be considered as nullity functions for $L_{g}$ . Henoe the coordinate functions $X_{1},$ $X_{2}$ and
$X_{3}$ of $R^{3}$ restricted to $S^{2}(1)$ give three linearly independent elements of the nullity
space. We state

LEMMA 4.1. Nullity(g) $\geq 3$ for any meromorphic function $g$ on $\hat{M}$.
A nullity function $F$ is said to be trivial if $\Omega(F)\equiv 0$ . Notice that the coordinate

functions are trivial and all trivial nullity functions are linear combinations of $X_{1},$ $X_{2}$
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and $X_{3}$ from the lemma in \S 2.

THEOREM B. For a meromorphic function $g:\hat{M}\rightarrow C$, Nullity(g) $\geq 4$ if and only if
there is a completefinitely branched minimal surface all of whose ends areflat in $R^{3}$ and
whose Gauss map is $g$ .

PROOF. If $M$ is flat-ended then $ F=\langle X, \Phi\rangle$ yields a non-trivial nullity function.
Conversely if $g$ has nullity $\geq 4$, then we have a non-trivial nullity function $f$ We
can construct a finitely branched complete minimal surface which is flat-ended given
by the map

$X=f\Phi+grad_{S^{2}}f$

where $\Phi$ is a pull back of $g$ by the stereographic projection.

Therefore we can prove the main theorem if we show that the spaoe $\mathfrak{G}_{F}$ of all
meromorphic functions on $\hat{M}$ corresponding to Gauss maps of some minimal branched
flat-ended surfaces is a subset with co-dimension greater than 1 in the space or of all
meromorphic functions on $\hat{M}$.

From now on we assume that the genus of $\hat{M}$ is zero. Any $g(z)\in \mathfrak{G}$ with $k$ poles and
lzeros of degreed has the form

$g(z)=\alpha\frac{\prod(z-b_{i})^{i_{i}}}{\prod(z-a_{j})^{k_{j}}}$

for all distinct $l$ points $b_{i}$ and $k$ points $a_{j}\in C$ and $\alpha\in C$. We may assume that $\sum_{i}l_{i}=d$

without loss of generality. By using the expression, we define parametrization of
$\mathfrak{G}_{k_{1}\cdots k_{k}l_{1}\cdots l_{l}}$ of all such functions over a domain in $C^{k+l+1}$ by

$g(z)-(\alpha, a_{1}, \cdots, a_{k}, b_{1}, \cdots, b_{l})$ ,

$a_{i}$ and $b_{j}$ being all distinct.
For brevity, we denote $\mathfrak{G}_{k_{1}\cdots k_{k}l_{1}\cdots l_{l}}$ simply by $\mathfrak{G}_{k,l}$ .
Under this identification, $\mathfrak{G}_{F,k.1}=\mathfrak{G}_{F}\cap \mathfrak{G}_{k,1}$ is contained in an algebraic subvariety

in this parameter space of $\mathfrak{E}_{k,l}$ . In fact $p$ is a flat end if and only if the Weierstrass
representation

$X_{z}=(f(1-g^{2}), if(1+g^{2}),$ $2fg$)

has no residues and

{the order of a zero $of|\Phi_{z}(z)|=|g^{\prime}(z)|/(1+|g(z)|^{2})$ at $p$}
$\geq$ { $the$ order of apole $of|f(z)|(1+|g(z)|^{2})$ at $p$} $-1$ .

Those follow from propositions in \S 3.
The conditions under which such an $f$ exists are algebraic and $\mathfrak{G}_{F,k,l}$ is an algebraic

subset in $C^{k+l+1}$ . However it does not cover the whole parameter space. In fact,
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LEMMA 4.2. $g(z)=z^{d}$ cannot be the Gauss map of any minimal branchedflat-ended
surface. Moreover a little perturbation gives a family of meromorphic functions $g_{k,l}^{0}$ in
$\mathfrak{G}_{k,l}\backslash \mathfrak{G}_{F,k,1}$ for any pair of $(k, 1)$ . We also know that Index$(g_{k,l}^{0})=2d-1$ and
Nullity$(g_{k,l}^{0})=3$ .

PROOF. The index and the nullity of $g_{k,l}^{0}$ is computed in [N]. If $g(z)=z^{d}$ is the
Gauss map of a flat-ended minimal surface and $(f(z), g(z))$ is its Weierstrass pair, $f(z)$

has poles only at its ends. We know that each end occurs at a zero of $\Phi_{z}$ . In our case
$\Phi_{z}$ has zeros of orders $d-1$ at both $z=0$ and $ z=\infty$ . At these points we apply the above
inequality. More precisely, let

$f(z)=z^{-k}(c_{0}+\cdots+c_{l}z^{l})$

where $c_{0},$ $\cdots,$ $c_{l}(c_{0}, c_{l}\neq 0)$ denote constants and $k$ and $l$ are nonnegative integers. We
get $d\geq k$ and $d\geq 2d+2+l-k\geq d+2+l$, which implies that such an $f(z)$ cannot exist.
Therefore $g(z)\in \mathfrak{G}\backslash \mathfrak{G}_{F}$ . The same argument holds for $g_{k,l}^{0}$ .

THEOREM A. Let $M$ be a complete orientable finitely branched minimal surface of
genus zero with finite total curvature $\int|K|=4\pi d$. Then we get

Index$(M)\leq 2d-1$ .

Moreover, for generic $M,$ $Index(M)=2d-1$ and Nullity(M) $=3$ .
PROOF. We have proved that $\mathfrak{G}_{F,k,l}$ is contained in some algebraic subvarieties in

$\mathfrak{G}_{k,l}$ which does not cover the whole parameter space. Therefore it has real codimension
greater than 1. Hence $\mathfrak{G}_{k,l}\backslash \mathfrak{G}_{F,k,l}$ is arcwise-connected. For any $g\in \mathfrak{G}_{k,l}\backslash \mathfrak{G}_{F,k,l}$ , there
is a path which connects $g$ to $g_{k,l}^{0}$ and does not intersect $\mathfrak{G}_{F,k,l}$ . Since the eigenvalues
of the corresponding operator vary continuously along this path ([K-S]), if
Index$(g)\neq 2d-1$ , at least one element of the negative eigenspace must move to the
nullity space. This means that the path intersects $\mathfrak{G}_{F}$ , which contradicts the choice of
the path. Therefore Index$(g)$ must be $2d-1$ and Nullity$(g)=3$ for any $g\in \mathfrak{G}\backslash \mathfrak{G}_{F}$ . To
prove that Index$(M)$ is not greater than $2d-1$ for any $M$, we will see what happens if
there exists $g$ such that Index$(g)$ is greater than $2d-1$ . Then there exists a neighborhood
$U$ of $g$ in $\mathfrak{G}_{k,l}$ , any ofwhose element has index greater than $2d-1$ . That is a contradiction
to the fact that Index$(g)=2d-1$ for generic $g$ .

COROLLARY 4.3. For any complete orientable finitely branched minimal surface of
genus zero with finite total curvature $ 8\pi$ , we have

Index$(M)=3$ and Nullity(M) $=3$ .
PROOF. IfNullity$(M)$ is greater than three for a minimal surface $M$, then its Gauss

map belongs to $\mathfrak{G}_{F}$ . From lemma in \S 2 $\Phi_{z}$ has at least 4 distinct zeros. Hence by
Riemann-Hurwitz’ theorem we get $2d-2\geq 4$ , which says that $d=(1/4\pi)\int|K|\geq 3$ .



48 NORIO EJIRI AND MOTOKO KOTANI

References

[B] R. BRYANT, A duality theorem for Willmore surfaoes, J. Differential Geom., 20 (1984), 23-53.
[B-B] P. BERARD and G. BESSON, Number of bound states and estimates on some geometric invariants,

preprint.
[B-C] J. L. M. BARBOSA and A. G. COLARES, Minimal Surfaces in $R^{3}$ , Lecture Notes in Math., 1195

(1986), Springer-Verlag.
[C] J.CHOE, Index vision number and stability of complete minimal surfaces, Arch. Rational. Mech.

Anal., 109 (1990), 195-212.
[C-T. 1] S. Y. CHENG and J. TYSK, An index characterization of the catenoid and index bounds for minimal

surfaces in $R^{4}$ , Pacific J. Math., 134 (1988), 251-260.
[C-T.2] S. Y. CHENG and J. TYSK, Schr\"odinger operators and index bounds for minimal submanifolds,

preprint.
[D-G] M. DAJCZER and D. GROMOLL, Gauss parametrizations and rigidity aspects of submanifolds, J.

Differential Geom., 22 (1985), 1-12.
[E-M] N. EJIRI and M. J. MICALLEF, in preparation.
[E] N. EJIRI, Two applications of the unit normal bundle of a minimal surface in $R^{N}$ , Pacific J. Math.,

147 (1991), 291-300.
[F] D. FISCHER-COLBRIE, On complete minimal surfaces with finite Morse index in three manifolds,

Invent. Math., 82 (1985), 121-132.
[G] R. GULLIVER, Index and total curvature of complete minimal surfaces, Proc. Sympos. Pure Math.,

44 (1986), 207-211.
[G-L] R. GULLIVER and H. B. LAWSON, JR., The structure of stable minimal hypersurfaces near a

singularity, Proc. Sympos. Pure Math., u (1986), 213-237.
[H-M] D. A. HOFFMAN and W. H. MEEKS III, Complete embedded minimal surfaces of finite total cur-

vature, Bull. Amer. Math. Soc., 12 (1985), 134-136.
[K-S] K. KODAIRA and D. C. SPENCER, On deformations of complex analytic structures, III, Stability

theorems for complex structures, Ann. of Math., 71 (1960), 43-76.
[N] S. NAYATANI, Lower bounds for the Morse index of complete minimal surfaces in Euclidean

3-spaoe, Osaka J. Math., 27 (1990), 453-464.
[L-R] F. J. LOPEZ and A. Ros, Complete minimal surfaces with index one and stable constant mean

curvature surfaces, Comment. Math. Helv., 64 (1989), 34-43.
[O] R. OSSERMAN, A Survey ofMinimal Surfaces, Van Nostrand Reinhold, 1969.
[R-T] H. ROSENBERG and E. TOUBIANA, Some remarks on deformations of minimal surfaces, Trans.

Amer. Math. Soc., 295 (1986), 491-499.
[T1] J. TYSK, Eigenvalue estimates with applications to minimal surfaces, Pacific J. Math., 128 (1987),

361-366.
[T2] J. TYSK, Finiteness of index and total scalar curvature for minimal hypersurfaces, Proc. Amer.

Math. Soc., 105 (1989), 429-435.
[W] T. J. WILLMORE, Total Curvature in Riemannian Geometry, Ellis Horwood Ser.: Math. Appl., 1982.

Present Address:
NORIO $EnRI$

DEPARTMENT OF $MATfflMAn\alpha$, COLLEGE OF GENERAL EDUCAnON, NAGOYA UNIVERSITY
CHIKUSA-KU, NAGOyA 464-01, JAPAN

MOTOKO KOTANI
DEPARTMENT OF MATIEMATICS, FACULTY OF SCIENCE, TOHO UNIVERSITY
MIYAMA, $FuNABASHI$ , CHIBA 274, JAPAN


