Tokyo J. MATH.
VoL. 16, No. 2, 1993

On Certain Infinite Series

Masao TOYOQOIZUMI

Toyo University
(Communicated by K. Katase)

§0. Introduction.

The Riemann zeta function ((s) is defined by
® 1

OEDIER
n=1H

where n°=exp(sLogn) and Logz denotes the principal branch of logz. The series is
locally uniformly convergent for Re(s)> 1, so that {(s) represents a regular function of
s there. It is known that {(s) possesses an analytic continuation into the whole s-plane
which is regular except for a simple pole at s=1 with residue 1 and that {(s) has the
Laurent expansion at s=1 of the form

1 2 (=1)
) (@W=—"v3% T oe—1y,
S—l n=0 n!
where
. N Log'k Log"“N}
—1 _
o) Nl—{]:o{k§1 k n+1

for all values of n. In particular,

N1
©)) y=9(0)= lim { > ———LogN}
N-oo (k=1 k
is called the Euler constant. The above expansion has been discovered independently
by Briggs and Chowla [1] and a lot of mathematicians. It is also known that
1 B,,,

) {@=——, {(~2m)=0 and ((1—2m)=—
2 2m
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for any positive integer m, where B, denotes the k-th Bernoulli number defined by

X < B
=Y Exk,
e*—1 =0 k!

In the present paper, we shall show that similar results to the above hold for a class of
infinite series.

Let h(z) be a complex valued function which is regular and non-vanishing in the
half plane Re(z) >«, where « is a real number. We consider the infinite series of the form
< H(n)
s)= B

Cu(s) n=ZM free
where M =[a+1/2]+1, [x] denotes the integral part of x and A'(z) stands for the
derivative of h(z). Here and in what follows, h(z)*=exp(slogh(z)) with a fixed branch
of logh(z). Moreover, we assume the following conditions:

(A.1) {,(s) converges for all sufficiently large real values of s.

(A.2) log|h(z)|, argh(z)«<log|z| (|z|>0), where argh(z) stands for the argument of
h(z).

(A.3) |h(z)|> 0 as|z|—o0.
Then we obtain

THEOREM 1. Under the above hypothesis, {,(s) is extended to a meromorphic function
of s in the whole complex s-plane which is regular except for a simple pole at s=1 with
residue 1.

The usefulness of this theorem is shown by the fact that we can deduce from it a
lot of old and new results on analytic continuations for certain infinite series.

ExaMPLE 1. Let A(z) be a non-constant polynomial of z with complex coefficients.
Take an integer M such that A(z) has no zeros in Re(z)>M —1 and put a=M —1. Then
the infinite series {,(s) is absolutely convergent for s>1 and for any fixed branch of
logh(z). Hence, in view of Theorem 1, {,(s) is extended to a meromorphic function of
s in the whole s-plane which is holomorphic except for a simple pole at s=1 with residue
1. In particular, if we take A(z)=z, M =1 and the principal branch of logz, then {,(s)
coincides with the Riemann zeta function {(s). Further, if we take h(z)=z+a (0<a=1),
M =1 and the principal branch of log(z + a), then {,(s) coincides with {(s, a) —a™*, where
{(s, a) denotes the Hurwitz zeta function defined by

{(s,a)= i

Lomrar (Re(s)>1)

and reduces to {(s) in the case of a=1.
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More generally, we have

ExaMPLE 2. Let a(z) and b(z) be polynomials of z with complex coefficients
satisfying dega(z) >degb(z). Take an integer M such that both a(z) and b(z) have no
zeros in Re(z) > M — 1. Putting h(z) =a(z)/b(z) and a =M —1, the infinite series
x {a'(n)b(n)—a(m)b'(n)}/b*(n)

C;.(S)= z { ) ( ) ( : }
n=M {a(n)/b(n)}

is absolutely convergent for s> 1 and for any fixed branch of log{a(z)/b(z)}. Thus, by

virtue of Theorem 1, {,(s) can be continued analytically to a meromorphic function of

s in the whole s-plane which is regular except for a simple pole at s=1 with residue 1.

ExaMPLE 3. Let g(x, y) be a non-constant polynomial in x and y with complex
coefficients. Take a positive integer M such that g(z, logz) has no zeros in Re(z) > M —1,
where any fixed branch is taken for the logarithm. If we take A(z)=g(z, logz) and
o= M —1, then the infinite series

2 gx(n, logn) +(1/n)g,(n, logn)
2 ;
n=M {g(n, logn)}
is absolutely convergent for s>1 and for any fixed branch of logh(z). Therefore, by

Theorem 1, {,(s) is extended to a meromorphic function of s in the whole s-plane which
is holomorphic except for a simple pole at s=1 with residue 1.

En(9) =

ExaAMPLE 4. Let h(z), logh(z) and a be as in Theorem 1. Take an integer M such
that both A(z) and logh(z) have no zeros in Re(z)> M —1=a. We set
& H'(n)
Cog®)= Y

o= 2 h(n){logh(n)}*

where {logh(z)}*=exp{slog(logh(z))} with a fixed branch of log(logh(z)). Suppose that
{10gn(8) is convergent for all sufficiently large real values of s. Then it follows easily from
Theorem 1 that {;,,,(s) has an analytic continuation into the whole s-plane which is
regular except for a simple pole at s=1 with residue 1. In particular, when h(z)=z,
Logz, LogLogz, - -+ and the principal branch is taken for logh(z), {j,z4(s) was also
studied by Hurwitz [3].

The organization of the paper is as follows. In Section 1, we will establish the
proof of Theorem 1. We shall discuss in Section 2 the Laurent coefficients for {,(s) at
s=1. Section 3 is devoted to prove Kronecker limit formula for {,(s) when A(z) is a
rational function of z. In Section 4, we will study the values of {,(s) at non-positive
integers when A(z) is a polynomial of z.

The author wishes to thank Professor T. Arakawa for useful suggestion.
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§1. Proof of Theorem 1.

Let C be the rectangle in the z-plane consisting of the line segments C,, C,, C;
and Cy, joining { — Ni, (N+1/2)— Ni, (N4 1/2) + Ni, ¢+ Niand & — Ni, where E=M—1/2
and N is a sufficiently large integer. We note here that ¢ >«. Consider the integral

1(S)=f Sf(s, 2)dz
C
where

e(2)
{e(2—1}2

e(z) denotes an abbreviation of exp(27iz) and s is a sufficiently large real number. By
the residue theorem, we have

[ )= h2)' ",

I(s)=2mi i Res f(s, z) .

n=M z=n
Noticing that
e€z) _ 1 1 1
{e(z)—1}2 @2mi)* (z—n)®* 12
and
1-s__ 1-5s_ (o h’(n) — e
h(z)" ~*=h(n) (s—1) pre (z—n)+ ,
we obtain
@ 1=-"1y ¥®

27i nSh(n)®
On the other hand, we see that

&) I(s)= (f f j f)f(s z)dz

=L +L+I1,+1,,

Since s>1 and |h(2)! ~*|=|h(z)|' %, given any >0, in view of (A.3) we can find a
number N, depending on & such that

|h(x—Ni)!"%|<e  (N>N,)

for any real number x= ¢, so that
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2nN

I <— jN+1/2dx<s
11> 2aN _ 12 )
(e2 N___l)z P

This implies that 7, -0 as N—oco. Similarly, I,, I;—»0 as N— 0. Letting N— oo, we infer
from (4) and (5) that

. &+ioo
“law=| s 2z,

2mi E—iw
‘which yields
(6) (s—1D{(s)=2n j - v(s, x)dx ,

0
where
2nx
—_ iv)1l—s iy}l -—s
v(s, x)—(ehx_*_ e {h(E+ix)' "5+ h(E—ix)' 5} .

Hence the formula (6) holds for all sufficiently large real values of s. Now we study the

behavior of the above integral in the whole plane of the complex variable s=¢ +it.
Since

| h(2)! ~*|=exp{(1 — o) log| h(z) | + targh(z)} ,

if|s| < Rand Ris large enough, then by (A.2), there exists a positive integer K depending
on R satisfying

| h(E+ix)! 75 | < xX (Ix]>0).

Thus, when ¢>p and p is large enough,

J ! v(s, x)dx

p

q q
§2J e”z""xxdx<2j e *e *xXdx

p p

<2K!fqe_"dx<2K!e"’——>0 as p— .
14

This shows that the integral of (6) converges uniformly in any finite region of the
complex s-plane and so defines an integral function of s. Therefore the formula (6)
provides the analytic continuation of {,(s) over the whole s-plane. It is easily verified
that the only possible singularity is a simple pole at s=1 with residue 1. Thus we have
completed the proof of Theorem 1.

§2. The Laurent coefficients for {,(s) at s=1.

Let A(z) and logh(z) be as in Theorem 1. Then the Laurent expansion of {,(s) at
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s=1 can be written in the form

™ =t 3 D

1 n=0 n!

) s— 1)

The purpose of this section is to investigate these coefficients y,(n). First we have

PROPOSITION 1. For any non-negative integer n,

_ 2n [ e +1 . tipr
ya(n)= - L @11y {log"* *h(¢ +ix) +log™* *h(§ —ix)}dx .

PrOOF. We note that

mexim-r= 5

n=0 n!

log"h(&+ix)-(s—1)".

Then substituting this into (6) and integrating term by term, the assertion is immediately

derived from (7) provided the process is justifiable. But, from (A.2) it is easily justified.
The next corollary follows at once from (6) and the above proposition.

COROLLARY 1. Let h(z) and {o44(s) be as in Example 4. Then y,(n) ={,,g4(—n) for
any non-negative integer n.

If we put h(z)=z in Proposition 1, then from (1) and (2), we obtain a new
representation of the Euler constant y.

COROLLARY 2.

® 1 X
=Log2—8 . dx
Vo8 L e*™+1 4x?+1

Hereafter, we add the following condition:

(A.4) There exist positive constants ¢ and n such that

h'(x) {h(x)}? 1

(8) h(x)s ’ h(x)s+ 1 <<xl +e

(x>0)

for all s on the line segment from (1—#n)—i to (1 —n)+i.

We remark that every function h(z) of Examples 1, 2 and 3 in the previous section
satisfies the above condition.
By virtue of (A.3), the next lemma is obvious.

LEMMA 1. Let ¢ and n be as above. The estimate (8) also holds for all s in the
region H, defined by 1 —n<Re(s) and —1 <Im(s)<1.

Now applying Euler summation formula to the function A'(x)/h(x)*, we get
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Y W) [(NH(x) 1 (H(M) h’(N))
FZM h(ny' )y h(x) dx+_(h(M)s+h(N)s

N 1
+ f (x —[x]—- —) w(s, x)dx ,
M 2

where N is an integer greater than M and
h'(x) {h’(x)}2
h( x)s h( x)s +1

Let s be any sufficiently large real number. When N— oo, in view of (A.1), #'(N)/h(N)*
tends to 0, so that we have

w(s, x)=

1 1—s ih’(M)
Ch(s)—';h(M) + h———(M)s+E(S),
where
E(s)=fw<x——[x]-——l—) w(s, x)dx .
M 2
Since
K (M) h’(M)( M)t
h(M)y* h(M)
and
non == § Elogniany-- 1y,
we see that
_ 1 (=D e e 1)n
) {n(s) 1 —nzo D)l log"* *h(M)-(s—1)
1 (M) & (1) e T8
+— > WD) ,,Zo log"h(M)+(s—1)" + E(s)

for all sufficiently large real values of s. Lemma 1 shows that E(s) is a regular function
of s in H,. By Theorem 1, the left-hand side of (9) represents an integral function of
s, so the equality (9) also holds in H,. To obtain the Laurent expansion for {,(s) at
s=1, we have only to investigate the Taylor expansion for E(s) at s=1.

LEMMA 2. The Taylor expansion for E(s) at s=1 is given by
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E(s)= S

where

1 WM
C(n)=n+—llog"“h(M) ?Z(S'AT))I og” h(M)

+ lim { z h’(k)l g"h(k)— log"“h(N)}
N-ow (k)

Sor all values of n.

PROOF. Since

an n,,/
[6s" w(s, x)l= =(—1)"/(x)
where
K (x)
u(x)= e )1 og"h(x) ,
we get

[ o]

E®D)=(-1) f <x— [x —%) ' (x)dx

M
N

—(~1y lim (x—[x]—%) G .

N—- oo M

Therefore, by Euler summation formula, we find that

(10) E®(1)=(—1y lim{ S ui)— f Nu(x)dx—u(M)-'-u(N)}_
k=M M

n— oo 2
Applying Lemma 1 to the case of s=1, we have

K@) 1

W) N

Hence, by virtue of (A.2), we see that #(N)—0 as N—oo. Then the assertion follows
easily from (10).

With the help of (7), (9) and Lemma 2, we obtain another representation of y,(n).

PROPOSITION 2. Under the above hypothesis,
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. N KH(k)
Ya(n) = lim { Y. —log"h(k)—
k=M h(k

(k 1 n+1
Noco h(ko) j o8 h(N)}

n+

Jor any non-negative integer n.

§3. Kronecker limit formula for {,(s).

Let h(z)=a(z)/b(z), M and {,(s) be as in Example 2. Then the Laurent expansion
of {,(s) at s=1 is given by

1
Ci(S)=——+7,0)+-- - .
s—1

In the present section, we study the constant term 74(0). By Proposition 2, y,(0) may
be written as

L YKk
11 . 74(0) = ;er; {k;M o logh(N)}.

For brevity, we assume that M is a positive integer. Let the decompositions into linear
factors be

D
a(z) =day 1;]1 (Z—“j)
and
d
b:)=bo I (z—B,).

where D and d denote the degrees of a(z) and b(z), respectively, satisfying D>d. We
take a branch of logh(z) such that

(12) A}im {logh(N)—(D—d)LogN} =Log(ay/b,) .

First of all, we notice that

Nh'k D N 1 d N 1
> Ay y L

k=M h(k) j=1 k=Mk—a; p=1k=Mk—B, ’

where N is a sufficiently large integer. For any real number ¢ < M, we set

¥ /1 1
Z(%_——> if reN,,

k=M

A(t, N)=
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and

{ 0 if M=1,

M-1 1

Z — if M=2,teN,,

B(t, M\)=1{ «=1 k
1 )

Z _ if M=2,t¢N,,

[ k=1 k—t

where N, stands for the set of all non-negative integers. Then we have

N "(k
(13) ) o,

R —logh(N)

= Z {A(a;, N)— B(oj, M)} — Z {A(B,, N)— B(B,, M)}

r=1

+(D—d) {k; %— LogN}—— {logh(N)—(D—d) LogN} .

We introduce the Gauss y-function defined by

l//(Z)——v—~—+ ; (k k+z>
If we put
A(t)=13ifl A(t, N),
then
0 if t=0,
M+t—1 1

— if teN,

1
—¥(=n+——y if 1¢No,

where, as usual, N denotes the set of all positive integers. Hence, by letting N— o0,
from (2), (11), (12) and (13) we obtain

THEOREM 2. Under the above hypothesis,
D d .
0= 3, {A@))—Blay, M)}~ X {A(B,)~ B(B,, M)} +(D —dyy—Log(ao/bo)
i= p=

In particular, when b(z)=1, we have
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COROLLARY 3. If h(z)=a(z), then

D
(0)= Y, {4(a))— B(a;, M)} + Dy—Logay .

j=1

To calculate some examples, we need the following facts (cf. [2], p. 522).
(1) y@)=—y.

(i) yY(@E+D)=y(2)+1/z

(ii)) Y(1—2z)=yY(2)+ ncot(nz).

(iv) For positive integers r and ¢ with t<r,

w(—t—>——y—Logr——l—ncot( )+Z os( )Log(Zsinji).
r 2 r

ExampLE 5. Take A(z)=z%_z+1)’, M=1 and the principal branch of logh(z),
where a is a positive integer and b is a non-negative integer. Then y,(0)=(a+b)y—b.
In particular, when h(z) =z, {,(s)={(s) and y,(0)=7y.

EXAMPLE 6. Take h(z)=2z%2z+ 1), M=1 and the principal branch of logh(z),
where a is a non-negative integer and b is a positive integer. Then 7,(0)=5bLog2+
(a+b)y—2b.

ExaMPLE 7. Take h(z)=2z°3z—1)°’, M=2 and the principal branch of logh(z),
where a is a non-negative integer and b is a positive integer. Then

3
WO =2 Logd +(a+byy— > bn—a——-b.
ExaMPLE 8. Take h(z)=2z%z+6+1)/(z+5), M=1 and the principal branch

of logh(z), where a is a positive integer and ¢ is a positive number. Then y,(0)=ay—
1/(1+9).

ExaMPLE 9. Take h(z)=z%z+1—08)/(z+6), M=1 and the principal branch
of logh(z), where a is a positive integer and § is a positive number satisfying 0 <é<1.
Then

1

1
0 t(md)+ ———
MO =ay—meot(nd) +———— -

§4. On the values of C »(s) at non-positive integers.

Let h(z), M and ,(s) be as in Example 1. Let F be a subfield of the field of complex
numbers. Suppose that all coefficients of h(z) are contained in F. For any non-negative
integer m, we put

D(m+1)

(14) MM—1+2"1= Y a(m)*,

k=0
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where D is the degree of /(z). We note here that all coefficients a,(m) belong to the field
F. Then we obtain

THEOREM 3. Under the above hypothesis,

+

2 1sk=D(m+1)/2

a,(m) Z

—(m+1){(—m)=ay(m)+ az(m)B,,

Jfor any non-negative integer m, where B,, denotes the 2k-th Bernoulli number.
PROOF. Putting A(z)=z in (6), we get

© e21zx 1 ) 1-s 1 . 1-s
(s—l)C(s)=27t J;) (eT_*_l)z‘{<—2—+IX) +(7—lx) }dx,

so that

0 eZu:x 1 ) m+1 1 . m+1
(15) —(m+l)C(—m)=21zJ.0 m{(—2—+lx) +<?——zx) }dx

for any non-negative integer m. It also follows from (6) that
© e21l:x 1 m+1 1 m+1
— —m)=2 ————<h| M ——+i h\M———i dx .
oo G ) )
Therefore, from (14) and (15), we have

D(m-i‘-l) © e21¢x 1 k 1 k
—(m+1)(—m)= ) a,,(m)-27tf —————{( +ix) +(?—ix)}dx

k=0 o (2™ +1)? 2

D(m+1)
=ao(m)+ k‘_Z,l a(m)(—k){(1-k) .
Then the assertion follows immediately from (3).
As an immediate consequence of Theorem 3, we get

COROLLARY 4. Under the same assumptions as in Theorem 3, the value C(—m) is
an element of F for any non-negative integer m.

From this, we have at once

COROLLARY 5. For any non-negative integer m, the value {(—m, a) belongs to F if
ais an element of F, where (s, a) stands for the Hurwitz zeta function defined in Example 1.

By the functional equation for {(s, a) (cf. [4], p. 37), we can prove
COROLLARY 6. For any positive integer r, both values

1 & cos(2mmna)

71'2' me1 m2r
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and

1 X, sin(2mmna)
2r+1 Z 2r+1

Y4 m=1 m

are elements of F if a is a real number belonging to F.

ExaMPLE 10. Take A(z)=z?+a and M =1, where a is a non-negative number.
Then

6a+1 30a%+10a—1
0)=— s —_1)=—
{w(0) ; G(—1) %0
and
2104% + 1054% —21a+5
—N=— .
{(—2) 530
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