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Parallelogram Tilings and Jacobi-Perron Algorithm
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0. Introduction.

The most simple example of quasiperiodic tilings is known as follows (See [1]).
Consider a line /(«) ={(x, y) | x + ay =0} for each a & [0, 1). Let C(«) be the set of squares
(translates of the fundamental square) that / intersects, ‘and let S(a) be the path along
one side of the boundary of C(a). See Figure 1.
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FIGURE 1. Figure of /() and projecting images of the vertical and horizontal edges
along (1, a)

If we project the stepped curve S() onto /() along the vector (1, ) then the images
of the vertical and horizontal edges in C(x) form a tiling of /(«). We claim that the
tiling is quasiperiodic iff « is irrational. We know also the generating method of the
stepped curve S(a«) by using the continued fraction algorithm and by introducing the
substitutions of edges. In this paper we consider the stepped surface of a plane in R3
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constructed from three unit squares as an analogue of stepped curves. If we project the
stepped surface onto the plane, then the images form a tiling of the plane constructed
from three basis parallelograms. See Figure 2.

FIGURE 2. Stepped surfaces

The purpose of this paper is to give a generating method of the stepped surface
by using Jacobi-Perron algorithm and by introducing substitutions of squares.
As an application of the generating method we have the following theorem:

THEOREM. Let (1, «, B) be rationally independent, that is, if |+ mo+nf =0 for some
l, m, ne Z then I=m=n=0. Then the tiling of the orthogonal plane of (1, a, B) induced
from the projection of the stepped surface is not periodic but quasi-periodic.

1.. Definition of Jacobi-Perron algorithm.

Let us define an algorithm called Jacobi-Perron algorithm by the following manner
(See [2]). Let X be the domain given by X=[0, 1)x [0, 1) and let us define the
transformation 7 on X by

B_(B|1_[1 - _
T(o, f)= (Z [a]’a [a]) o pex—t (1-1)

(0! p) lf (a, ﬁ)EI,
where Iis given by I={(0, ) | B€[0, 1)}. By using the following integer valued functions

a(a, B):= [ﬁ] and b(a, B): =|:%i|

o
on X — I, we define for each (a, f)e X—1I a sequence of digits ‘(a,, b,) by
(@ by):=(a(T" (o, B)), (T, B)))  if T" '(a, B)eX—I.
For each (a, f)e X—I which has an infinite sequence of digits {*(a,, b,) | n>0}, the
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sequence satisfies the following properties:

(1) - a,e NU {0} and b,e N,

2 0<a,<b,

(3) if a,=b, then a,,, #0.
The triple (X, T, (a(a, B), b(a, B))) is called Jacobi-Perron algorithm, and the sequence
of digits of (a, B) is called the name of («, ) with respect to Jacobi-Perron algorithm
and we denote («,, 8,):=T""1(«, B).

REMARK 1.1.  We define a simple continued fraction algorithm S on 7 as follows:

for each (0, B)er!
1 1
0, —| — if B#0
S(O,,B)=< B [BD r

0,0) if B=0.
For each (0, B) e I the sequence of digits, called partial quotient, is given by

“:[Aq}

where B,_, is the second coordinate of S"~1(0, f). Therefore even if there exists an n
such that 7"(a, B) e I we are able to get the infinite squence of digits {bpim|m=1,2, -}
by using S, except the case that f e Q. In other words, we consider the simple continued
fraction algorithm as a subalgorithm of Jacobi-Perron algorithm. In this paper, we will
discuss this exceptional case in Remarks.

Let us introduce the family of matrices as follows: for each pair of integers (a, b)

b 01

A(g):-—- 1 0 0. (1-2)
aloO

Then we see
0 o0 1
t4—1 _. _ _ -

A(‘;)_ 1 a b|. (.1 3)

0 1 0

Using these matrices, we have the following proposition.
PROPOSITION 1.1.  Assume that T, )¢ 1,0<k<n—1. Then we have

1 1
% )T Ay Agy| @ |-

B B
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where (:‘ o Z:) is the name of (a, B) with respect to Jacobi-Perron algorithm.

1°°°

PrOOF. From the definition of the algorithm (1-1) and (1-2), we have

1 1 1
oy l=—A(_gxl) o if (xp)¢l,
B/ * TU\B
that is,
1 1
o =aA(g:) oy if (o, p)é¢l.
B B

Therefore, we have the conclusion.

REMARK 1.2. For thecase of a =0, we introduce the family of matrices as follows:

b 01
A,:=0 1 0]. (1-49)
100
Then from the definition of the continued fraction algorithm, we have
1 i 1
0 =F A1 O if B+#0.
B/ B
Therefore, putting (by, b,, - - -, b,) the sequence of the partial quotients of §, we have
1 1 1
0 =ﬁAb1 0 =ﬁﬁl"'ﬂm—1Ab1Ab2"'Abm 0],
B ﬂ 1 ﬁm

where B, is the second coordinate of Sk, p).

For each n, let us introduce a transformation P (an) from R3 whose coordinate is
denoted by ‘(x,, y,, z,) to R® whose coordinate is denoted by *(x,_;, Yo—1, Z,—1) aS
follows: :

Xn—1 Xn Xn
V-1 |=@@n)| Yn |:="A@n)|

Zn-1 Zy Zn

LEMMA 1.2. Let(a, fp)e X—1Iand(a,, b,) be the first digits of (., B). Then we have
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X1 ) 1 X 1
Y1 |l % =a (P(g:) Yi || @ . (1-5)
2 B Z B

The proof is easy from the definition of P(@n) and Proposition 1.1. Hereafter we

denote also a,='(1, a,, B,), X,="(X,, ¥, z,). For each (o, B)€ X, let us denote the plane
which is orthogonal to a='(1, «, f) by

P, p={x | (x,®)=0}

and let us define the domain P(«, B) by
P(x, B)={x | (x, x)>0} .

Then from Lemma 1.2 we have

COROLLARY 1.3.  On the same assumption as in Lemma 1.2 we have

021y (P(@s, B)=P(%, )

and
PPy, B1))=P(, B) .

REMARK 1.3. 1In the case of a=0, we also define ¢,:R3*—>R3 by

X1 X1
_t4-1

Q| y1 |='4, Y1

Zy Zy

Then Lemma 1.2 and Corolary 1.3 are also valid.

2. Substitutions on stepped surfaces. .

LetE,, E,and E be unit squares spanned by {e,, e;}, {e,, e, } and {e,, e,}, fhat is,
E :={le;+pe; | 0<i, u<l1},
Ey:={les+pe, |0<i, u<l1},
Ey:={le,+pe, | 0<i, u<l},

1 0 0
e1= 0 ’ e2= 1 and e3= 0
0 0 1

Foreach (o, f) € X, let us define & («, B), which is a subset of Z3 x {E,, E,, E;},asfollows:

where
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Se{E,, E,, E}, xe Z*, x+ S P(, p) }
and x—e,; ¢ P(a, p) if S=E; ’

and let us define %(a, B) to be the family of all finite subsets of #(a, B), that is,

#A <00, (xla S}.) € y(as ﬂ)a }
(x2, S #(xy, Sy) if A#A ’
where an element of ¥%(a, f) is denoted as a formal sum. For each (a, f)e X— 1, let us
define a map Z(;,") from %(a,, B,) to 9(a, B) as follows:

(0, El) i Zl sksb,(el _ke29 El) +'21 5jsa,(e3 _jeZa E3) + (0, Ez)

Z(::): (O, Ez) i (0’ E3)

(Oa E3) - (Oa El)

and for (x,, S)e ¥(a,, B,), we define

SL(a, B):= { (x,S)

g(a, ﬁ) : ={ Z (xb S.l)

AeAd

z(g:)(xp S): =‘P(g:)(x1)+z(g:)(0a S)
and for ) ,_,(x;, S;))e%(ay, B,), we define

Z(g:)( Z (x2 Sz)) = Z (Z(::)(xb S,

AeA AeA

where y+ (x, S) means (y+x, S).
Then we see by the following two lemmas that Z(.;!) is a map from %(«,, B,)
1

to 9(a, B). See Figure 3.

FiGUre 3. Figure of substitutions 2?(:.)(0, E),i=1,2,3
1
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LEMMA 2.1. For each (x{, S;) e F(ay, B,), Z(gl)(xl, S,) is an element of %(a, p).

ProoF. (i) The case that x, + E, =P(ay, §,) and x, —e, ¢ P(ay, B,).
Remarking <P(gn)(x1 + E,)<P(a, B) by Lemma 1.2, we see that

‘P(g;)(-’h) eP(, B),
‘P(g:)(-‘ﬁ +ey)= (P(g:)(xﬂ +e3—a e, eP(a, ),
(P(gi)(-’ﬁ +e3)= (P(g:)(xl) +e,—be;eP(x, f) .

Therefore

(P(g:)(-’ﬁ) +e3—je, e P(, p) 0<j<ay),
(p(g:)(xl) +e,—ke,eP(a, p) (0<k<bd,).

Hence we have
Z(g:)(xp E)<P(a, p).

On the other hand, we see that

(a, fp(g:)(xl)—ez)'—"(aa (P(g:)(x1 —ey)) (by (1-3))
=L (@, x;—ey) (by Lemma 1.2)

o

<0.

Therefore, we see (p(gl)(xl)—e2 ¢ P(a, B) and so q)(g,)(xl)—kez(f.lp(a, B) for 1<k. This
1 ° 1
means

Z(ﬁ;)(xl’- El)c.y(cx, B .

(i) The case of x; + E, = P(a,, B;) and x, —e, ¢ P(ay, B;).
From Z(gl)(xl, E2)=(p(gl)(x1)+E3, it is sufficient to see that

(=, q’(g:)(-’h) —e3)<0
holds. We know from («,, x; —e,) <0, Lemma 1.2 and (1-3) that
0> (@, @(ary(x1) — @(ary(e2))
=(a, (p(g:)(xl) +a,e;—ej).
Therefore from (e, e,) >0 we have

(a, (0(‘;;)(-‘71)“93):(“, (P(g:)(xﬂ—‘P(gi)(ez))—(“, ae;)<0.




40 SHUNIJI ITO AND MAKOTO OHTSUKI

(iii) The case of x, + E;=P(ay, B,) and x, —e3 ¢ P(a,, B;).
It is sufficient to see that (a, (p(g,)(x) —e,)<0. Weknow from («,, x; —e;) <0 and Lemma
1.2 and (1.6) that '

0> (a, (P(g:)(-‘fl) - ‘P(g:)(ea))
=(a, fl’(g:)(xﬂ —e,;+bse;).
| Therefore, we have from (a, e,) >0,

(a, ‘P(gx)(x1) —e)=(a, (D(g:)(xl) - ‘P(g:)(es)) —(«, bye;)<0.
! (q.ed.)

LemMa 2.2. If (x,, S)#(x}, S"), then
Z(g:)(xl, S)n ZG:)(x,l’ S)=¢.
PrROOF. (1) Suppose that
Z(g:)(xn E1)nz(g:)(x'1, E)+J (x, #x9),

that is, suppose that
(1-i) there exist k, j, 1<k, j<b,, such that

(P(g:)(x1)+e1 —ke,+E; = (P(g:)(x'1)+el —je;+E,,

(1-ii) there exist k, j, 0<k, j<a,, such that
(p(g:)(xl) +ey—ke,+E,= (p(g:)(x’l) +ey;—je,+E,,
(1-iii)) or
‘P(g:)(-ﬁ) +E;= (P(::)(x'l) +E;.
In case of (1-i), the assumption yields
P@nyx1—x)=(k—j)e, .

Therefore, we see that if k> then

x,—xi=(k—j)e,, thatis,

x,—e =x1+(k—j—1)e,eP(a, ).
This contradicts

x,—e, ¢P(ay, B,).

The assumption (1-ii) leads to a contradiction similar to (1-i) and the assumption (1-iii)
contradicts x, #x/.
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(2) Suppose that
2@y, E) N Zayxy, E)#F (ki #x7),
that is, suppose that there exists j, 0 <j<a,, such that
<p(g;)(x1)+e3 —je,+ E, =<p(g:)(x’1)+E3 .
Therefore, we have
x)—x,=(a;—j)e; +e,.

This contradicts x| —e, ¢ P(«,, B,).
(3) The assumption that

Z(g:)(xl, El) N Z(gi)(xrls E3)¢®

leads to a contradiction similar to (2).
(4) We see from the definition of ¥ @) that the cases
1

2@y, E) N Zan(xL, BN+ (,j=2,3)
do not occur. (@ed)

By Lemma 2.1 and Lemma 2.2 we see that the map E(gl) is well defined as a
- 1
map from %(a,, B,) to ¥(a, f). From now on, the map Z(g.) is called the substitution
associated with Jacobi-Perron algorithm.

LEMMA 2.3. For any (x, S)e ¥(a, B), there exists (x,, S;) € F(ay, B,) such that
(x, S)e Zgry®s, S1)
Proor. (1) Assume that (x, E,)e &(a, B), that is,
x+E,cP(a,f) and x—e,¢P(a, p).
Put x, = (p(‘gil)(x), theq
(cp('g;)(x)—el, a)= ((p(‘g:l)(x—ez), o) (by Lemma 1.2)
=a(x—e,, )<0.
This means
(x, Ey))e E(g:)(xl, E).
(2) Assume that (x, E,)e ¥(a, B), that is,
| x+E cP(a,f) and x—e, ¢P(a, B).

From (x —e,, @) <0, there exists k such that
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(x—e;+(k—1)ey,@)<0 and (x—e, +ke,, a)>0,

and k satisfies 1 <k<b, + 1. Because, from —1= —(e,, ) and (x, ®)>0 we know that

0>(x—e,, ®)> —1. Therefore we see 1 <k=[(x—e,, a)/a]+1<[1/a]+1. In the case

of 1<k<b,, we take ((p(‘ﬂ,‘)(.x:——e1 +ke,), E,), then we see that ((p(‘a,l)(x—el +ke,), @)=
b, bl

o(x—e, +ke,, a)>0 and

(‘P(—g:l)(x —e,tkey))—e;,a)= ((p(_g:l)(x—el +key)— ‘P(_gil)(ez), @;)<0.
That is, ((p(‘g})(x —e, +key), E\)e ¥(a,, B;). Therefore, we see from the definition of
X ay that
G
Z(g:)(‘P(_gi)(x—el +ke,), E,)

= Y (x—e t+key,+e,—jes, EN)+ Y (x+e,+ke,+es—j'e,, Es)
1<j<by 1<j'<a;

+(x+e, +ke,, E,)
a(x, E,).

In case of k=b,+1, we take
((p(’g%)(x—el +ke,)—e, +es, E;) .
Then we see that
((p('g;)(x—el +(by +1)e;)—e, +e3,a;)

= (@@ (x—e1+ b1+ Dex) — (an(e2) + @(ary(e) —b1p(ai)(e2), ar)

=a(x, 2)>0. ’
That is,

((p(‘g:‘)(x—el +b,e,)+es, E3)e L (ay, By) -
Therefore, we see that
Z(g:)(cp("gil)(x—el +b,e;)+es, Ej)=(x, E,).
(3) Assume that (x, E;) e ¥(a, B), that is,
x+E;eP(a,f) and x—ez¢P(a, B).

From (x —e;, @) <0, there exists k such that (x —e; + (k— 1)e,, ) <0, (x —e; + ke,, €)>0
and k satisfies 1<k<a,+1. Because from —f=(—e,;, ) and (x, a)>0, we know
0> (x—e;, )> — B. Therefore, we see 1 <k=[(x—e;, a)/a]+1<[B/a]+1. In the case
of 1<k<a,, we take

(‘P(g:)(x —e3+ke,), E;)
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and in the case of k=a, + 1, we take
((P(_gil)(x“es +ke,), E,) .
Then we see ‘
- 1 _
2(;:)(‘/’(3:)(" es+ke,), E1)>(x, E3)
and
—_ 1 _
Z(‘;;)(‘P(‘;;)(x e3+ke,), E;)3(x, E3),
respectively. (g.e.d.)
Let us define a geometrical realization map " from %(«, B) to the set of compact
sets of R? as follows:

A ((x,S):=x+S,

f( Y (x5 SA)>3= U @xi+S).

AeAd AeAd

Let us denote

F@p:i=_ U A (S)

(x,S)e F(a, p)

and call it the stepped surface of the plane orthogonal to a="*(1, «, 8). Then from Lemma
2.2 and Lemma 2.3 we have

PROPOSITION 2.4. For any (o, f)e X—1 the stepped surface ¥(a, B) is invariant
under the substitution X~ @) in the following sense:
1

F@h= U H(Egy, ).
(x1,S)e F (a1, B1) 1
ReMARK 2.1. If(a, B)eI—{(0, 0)}, let us define the substitution X, from %(a;, f,)
to 9(a, p) by
0, Ey) = (0, E3)+ YL (e —ies, Ey)
Zb; : (0’ EZ) - (O, Ez)
©, E3) — 0, E,)
and for (x,, S)e F(«,, f,) we define
2y (%1, S)=@p,(x)+2,,(0, S),

where ¢@,, is given in Remark 1.3. Note that the stepped surface #(0, B) is constructed
only by the unit square E; and E;. By an analogous proof, it is easy to see that Lemma
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2.1, 2.2, 2.3 and Proposition 2.1 also hold for the substitution Zy,-

3. A generating method of stepped surfaces.

In this section, we discuss a generating method of the stepped surface S(«, f) by
using substitutions E(g,.), n>1. We mention firstly the statement of the theorem. Let

‘us introduce a subset ¥ of X. We say (a, f)e & if the name of (a, B) satisfies the
following condition:
There exists an n, such that for all k>0,

1 bno+3k=ano+3ks
() buy+3k+1—Gnysan+1 21 and Qpo+3k+1 70,
(3) any+3k+2=0.

FIGURE 4. Figure of  and ¥~

THEOREM 3.1. Let us denote %=Z?=1(e,-, E) and V' =% +(e,—e,, E))+ (e, —
ey, E;) (See Figure 4). The stepped surface & (a, B) is generated in the following way:

(1) y(a, ﬁ)= lim X(E(::)E(g:) . Z(g:)(%)) if(oz, B)EX—.? and (a,,, ﬂ,,)eX—Ifor

n— a0

all n.
(2) .5’(0:, ﬂ)=klim x'(}:(g:)Z(g:)' . 'Z(g.,o+3k+§)("/)) if(a, B)e.?

no+ 3k +

3) (o, p)=1lim J((E(’fﬁ) : 'Z(g:::)zbm' : 'Eb,,.“.(zkez(el +ke,, E;)+(e3 +ke,, Ejy))),

n—+oo

if there exists an m such that (a,,, B, €I and B, ¢ Q.

To prove the theorem, we will prepare several lemmas. Firstly let us introduce a

Figure of €,
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and introduce a subset € of %(«, B):
%={Tz’y | YE%Os zeZ3, Tz'yeg(a’ ﬂ)} ’

where T, is a translation map given by

Tz( > (%3 Sz))'= Y (x342,8).

AeA AeAd

We say that a set 6 of %(a, ) is. €-covered if there exists a finite subset {y, | Ae A} of
€ satisfying the following properties:

(1) For any vy, y,€é, there exist y,e¥, i=1,2, --,n, such that y,=y,,
YinYim1#J (i=1,2,--,n—1) and Yu="Vns

@) Usea X )=o)

LEMMA 3.1. Assume that e %(a,, B,) is €-covered. Then X (g,)(é) is also €-covered.
1

Proor. For each yed, it is not difficult to see from the definition of Z(gl) and

|

|

5%}5

|

$ |

b ¢ )

FIGURE 5. Figure of Z‘(g)(y), Ye¥,
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Lemma 2.2 that E(g,)(y) is ¥-covered (See Figure 5). Therefore, we see that for any
%-covered set 9, Z(ﬁ')(é) is ¥-covered.

DEFINITION 3.1. A @-covered set § is called a @-covered cell (resp. annulus) if its
geometric realization J¢"(5) is a topological cell (resp. annulus).

PrOPOSITION 3.1. (1) If 6€%(ay, By) is a €-covered cell, then 2(:,)(6) is a
€-covered cell. '

(2) If 6e%(ay, B,) is a €-covered annulus, then Z(gl)(é) is a €-covered annulus.

PrOOF. Suppose that ¢ (E(gl)(é)) is not a @¥-covered cell, that is, the set
A (L(x, B)—H (Z(gl)(é)) has a bounded component D; and one unbounded compo-

nent D,. Then we are able to choose (x, S)e%(a, f) and (x’, S") e %(a, B) such that
H'(x,S)=D, and A (x’, S"Y=D,. By Lemma 2.3, there exist (x4, S;)e%(a,, B,) and
(x}, S1)e%(a,, B,) such that

' E(g:)(xn S1)3(x, S), Z(g:)(xﬁ, Dax,Ss).

On the other hand, from the assumption that & is a topological cell, and from the fact.
that (x,, S;) and (x/, S}) do not belong to J, there exists a chain {y; | y:€%9(ay, B;) and
')’,»E(g, i= 1’ 29 ) m} such that 710 (xl’ S1)¢Q, YiO Vit #g9 Ym O (x,l’ ’1)5&@s
y: 0 0= . Therefore the sequence = (g:)(y,-), i=1, 2, - - -, msatisfy the following property:

1) Zeno)3(, S),

2 Z(g:)(')’i) N Z(g:)(')’w V#* D,

B ZeEytma(', ),

4 Z@En) 0 2@ =9.
This means that D, and D, are connected by using pieces of %, which are in the outside
of (2 (g:)(é)). This is a contradiction. The proof of (2) in Proposition 3.1 is easy from (1).

LeEMMA 3.2. Let (o, f)eX such that there exist infinitely many indices n, <
m, <n,<m,< - - such that for all j, z(g,,)z(g..,“)- . -Z(g,..j)(%)—% contains a €-covered
- g g s
annulus, then lim,,_, , X (Z(g;)’:(gg) Z(g:)(%))—.?(a, B).
ProOF. From the assumption and that # is ¥-covered, we see
G I ) et
contains a ¥-covered annulus. Noticing that

Gy Ee =gy Ea-y @),

n—~

W¢€ s€e
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W 2y 2(emy(#)>U,
(i) - Z(g,)- X (Zm)(%)—% contains a #¢-covered annulus.
1 my
In general, we have from the assumption that
g E G M )

contains a ¥-covered annulus and by Proposition 3.1,

R U ) St IR G Sl

@y X @) - (m)(@l)—Z(g:)- . -Z(gm,_,)(%) contains a ¥-covered annulus.

mj—1

Thus the sequence {X @ 2 (g.,.j)%} is increasing so that
1 mj

2@ 2Ry Eam )™

contains the annulus in (ii)’. (q.e.d.)

To obtain Theorem 3.1(1), we will show that for (x, f)e X— % and (o, f,)eX— &
for all n, we are able to choose the indices n; <m; in Lemma 3.2. For this purpose we
prepare several notations and lemmas. We decompose X into four parts:

Xo={(pB)|a—p=0,1—a—p>0},
Xg:={(e, p) | a—p<0,1—a—p5=>0},
Xc:={(@,p)|a—p=0,1—a—p<0},
Xp:={(a, )| a—B<0,1—a—p<0}.
Let us denote the configurations around # as follows:
04:=U+(ey—e,+e;, E)+(e;—e;—es, Ey)+(e3, Ey)
+(ex;—e3, Ey)+(e;—e3, E))+(ey+e5, Ey)
Op:=U+(e;—e,—es, E\)+(—e,+e3, E))+(—ey+e3, Ej)
+(ez, E3)+(e;+e,—e3, Ey) +(ex+es, Ey),
Oc:=U'+(e,—e,y, E3)+ (e, —e3, E;)+ (e, —e,+e3, Ey) .
+(e3, E;)+(e;—es, Ey) +(e,—e3, E))+ (e +es—e,y, Ey)+(e;+e3—ey, B,
Op:=U +(es—e,, E3)+(e;—e3, E))+ (e +e,—e3, Eq)+(ez, E3) |
+(es—ey, E))+(e3—ey, Ej)+(e;+es—ey, E;)+(e;+e3—ey, E3),
where %' =%U + (e, —e,, E,)+ (e, —e;3, E,)+(e,, E,)+(es, E;). (See Figure 6.)
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FIGURE 6. Figure of 64, 85, 6 and &,

Then we have the following lemma.
LEMMA 3.3. For each Ue{A, B, C, D}, if («, B)e Xy then
5U < y(as ﬂ) .

The proof is easy. For example, to see that (—e,+e, +e,, E,)e ¥(a, f) when
(x, pe X, it is enough to check the following inequality (—e,+e; - e5,2)>0 and
(—e,+e,+e;—e;,x)<0. These inequalities follow from the fact that the point
(2, B) e X,. The other case can be checked in the same way.

From now on, we will observe patterns of growth of configurations around %
under X ary p) (@) For this purpose, let us introduce a class of subsets of é ,, dg, ¢
and 4, as follows:
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N~ R
N oy ~>
Y T3 TP

A-5

A-4

A-3

e
NN
=64

A-8

-
2

7 :

I £ 8

EERia= sk
[ ] ..”

,(D-4) (To be continued)

Figure of %,, #,, (4-0), - - -
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Cc9 C-10 C-11= é¢
<> .’4» <> <o
PR e SR

NNy N 5

Figure of #,, ¥,, (4-0), - - -, (D-4) (Continued)

Let us consider %, %4, U ,, (A-0), - - -, (D-4) as states. Then we have the following
lemma.

LEMMA 3.4. We get the following transition graph, of which the transition of states

C
from (U-k) to (V-j) with condition C: (U-k)— (V-j) means that EG)(U-k):(V-j)
Sor (a, b) satisfying the condition C.

@D an
D-0
= B _~B1 __-D3
% =— C0 A0 =T A2 B0 =B
@ " T~ A-0 Q:D-l T~ A4
N, — BD-(()) 2
2 -
TT— A0
B-1
C-0 <—"’g 1 Do =B



PARALLELOGRAM TILINGS 51

(I
A-3] [A-1 (A-2] [C-1 C-2{=B

- ]
C-10
A P D-3
B - Y
B.
/
A 6’ D-2
Yy
A-B

Iv)
A V) -l D-3

B \b—a=0
(8 — c =21 3
D

b-a>=2
a0

TRANSITION GRAPH

‘ The proof is obtained by the observation of tedious combinations of growth of
‘ configuration patterns by the substitution Z(g). Therefore, the proof is given as an
! appendix in the final section.

|

From Lemma 3.4 we have the following result.

COROLLARY 3.5. Assume that (o, B) ¢ &, then for any n there exists an n’ such that
D ZnZern 2=,

2 z(g,,)z(g,.+.)~ . 'Z(gm,.')o?l —%U is a €-covered annulus.

n+n

PROOF. The transition graph in Lemma 3.4 contains a cycle:

e
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D-3
b—a=/ | '\—FO
B-17 "2%%° D=2
s o
A-6
Therefore, if («, f) ¢ £, we know that for any » there exists n’ and 8 € {045 08, 8¢, Op}
such that z(g:)z(g:::)- . -Z(g,.+..:)021 >dg. Notice the fact that if E=A4 or B then

n+n

0g—% is a €¥-covered annulus. Therefore, we have the conclusion. If E=C or D then
O0g—% is an annulus but not €-covered, because (e, —es, E,) + (e, —e,, E;) does not
belong to €. But it is easy to see that E(g)(é,;—%) is ¥-covered.

LEMMA 3.6. Assume that (o, B)e ¥, that is, there exists n such that for all
ke Nu {0}

(D) bpt3k=an+30

(2) bn+3k+1_ n+3k+1219

3) a,43k+2=0.

Then
O Cepieuy ey’
2 E(g::::)f(g:::::: ---Z(:::::::g::)"lf—"lf is a €-covered annulus.

Proor. We know that if («, f)e X or X, then ¥ €%(a, B), and if a, =b, then
(e, p)eXp,. Therefore we know that ¥ €9(o,43x+2 Bn+3c+2) and E(g:)- ..

Z(a..+3k+2)(“// )e%(a, f) (by Lemma 2.4). By the analogous method as in Lemma 3.4,
b

n+3k+2

we see that for any [ 2 © “ c“) such that ¢, =d,, c,=d,, d,—c,>1, ¢, #0,
d, d, dy d, ds dg

ds—cSZ 1, 05 #0 and 03=66=0,
D ZEnZey 2c” =7
2)- ZGI)Z(‘?)- . -Z‘Gs)"// —v¥  is a ¢¥-covered annulus.

Therefore we have the conclusion.

PROOF OF THE THEOREM. In case of (a, f)e X— % and (a,,, B,,) ¢ I for all m, we see
from Corollary 3.5 that («, B) satisfies the assumption of Lemma 3.2. Therefore we see
that

y(d, ﬂ)= lim f(Z(ab:)Z(gi) . E(g:)(%))

n— oo

In case of (a, B)e ¥, we see from Lemma 3.6 and Lemma 3.2 that

‘Sp(a’ B) =klg1:) f(z(gi)z(g:)' . .E(gn+3k+2)(V)) .

n+3k+2
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REMARK 3.1. Assume that («, B)e7 and B¢ Q then from Remark 2.1 we see that
the set

lim H(Zp, 2, 2y, ((e1, Ey)+(e3, Ej3)))

is the stepped surface of the belt

{692 | ((xy,2,'0,0,8)=0and 0<y<1}.
The stepped surface &(0, p) is given by

lim X" (Z,,2,," - 'Xb,.< Z ((ey +ke,, E1)+(e3 +ke,, Es))) .
keZ

n— oo

In case of (@, f)e I and B e Q, that is, there exists an m such that (a,,, 8,.) = (0, 0), ¥(a, B
is given by

H (2, 2y, " 'Ebm( « Z (ey + ke, +je,, El)) .
,NeZ?

Now we discuss about the quasi-periodicity of the tiling

A (x, S) .
(x,S)e L (a, )

DEFINITION 3.2. A tiling by #(a, p) is said to be quasi-periodic if for any f>0,
there exists R>0 such that any configuration 2 (y) € 4(«, ) whose diameter is smaller
than r occurs somewhere in a neighborhood of any point of radius R.

THEOREM 3.8. Let (1,a, B) be rationally independent, that is, assume that if
I+ma+nB=0 for some |, m, ne Z then I=m=n=0. Then the tiling by ¥(a, B) is not
periodic but quasi-periodic.

Before the proof of this theorein, we introduce a notation. For two configurations
y and é of %(«a, B), we write y>>6 if y and 6 have the following relation: there exists
z€ Z? such that :

A (T,y) > A ().

PROOF OF THE THEOREM. From the assumption of the rational independence we
know that (a,, B.) ¢1 for all n. Firstly, let us assume that (¢, f)e X—%. By Theorem
3.1(1), we see that for any r>0 there exists N such that

2@y g ¥>y
for any ye 9 whose diameter is smaller than r. From the fact that

2@, E)>%,

L
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Z(g)(o, E2)>(O! El) s
220, E5)>(0, E3),
we see that for any r >0 there exists M such that for each i=1,2,3

2@y 20 B>y

for any y €% whose diameter is smaller than r. Let us take R as

R= max dld"l(ﬂZ(g:) . Z(’a’x)f(o, Ei)) .

i=1,2,3

Then from Lemma 2.3 we see that for any (z, S)e ¥(a, f) there exists (x, E;) e £(a, B)
such that

(2, S)Ez(la,x)' : 'Z(gM)(xa E;) .
Therefore the neighborhood Uy of z with radius R includes the set
an(g:) : 'Z(g:)(x, E,-) .

This is the conclusion of the theorem.
In case of (a, f) € &, it is easy to see that for any sequence satisfying the admissible
conditions a; =b,, b, —a,>1, a,#0, a;=0 in Lemma 3.6,

Zen2EnZ e E)>7 .

Therefore we obtain the conclusion by an analogous discussion. (q.e.d.)

4. Appendix.
In this section, we give a sketch of proof of Lemma 3.4.

LEMMA 4.1. By the substitution Z(g), each configuration on the left hand side is
translated to the one on the right hand side:
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FIGURE 7. Patterns of configurations (To be continued)



56 SHUNII ITO AND MAKOTO OHTSUKI

FIGURE 7. Patterns of configurations (Continued)

Using (I) (II) (IIT) in Lemma 4.1, we have the following transition:

The case a=b does not
occur because of the
condition

if a =b, then 8, <0.
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FiGUrg 8

This is nothing but the statement (I) in Lemma 3.4.

Using Lemma 4.1, we obtain the statement (IT) (III) (IV) analogously. For example,
by using' (X) in Lemma 4.1, we obtain the following transition:

FIGURE 9

This is nothing but
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