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0. Introduction.

In [2], Chen investigated extrinsic spheres of (locally) symmetric spaces and
obtained the following.

THEOREM. Let N be an n-dimensional submanifold in a locally symmetric space M.
Then N is an extrinsic sphere in M if and only if N is an extrinsic hypersphere in a
(n+ 1)-dimensional totally geodesic submanifold of constant sectional curvature.

On the other hand the author has proved in [7] the following. Let G be a compact
simple Lie group and K a closed subgroup of G. If the normal homogeneous space G/K
contains a totally geodesic hypersurface N, then G/K is a space with constant sectional
curvature. Then, in this paper, we treat a similar problem in case that G/K is a naturally
reductive homogeneous space and N is an extrinsic hypersphere.

The paper is organized as follows. In Section 2 we write the Levi-Civita connections
of homogeneous spaces in terms of the Lie algebra. In Section 3, using a result of
Section 2, we shall describe circles of homogeneous spaces in terms of Lie algebras.
Section 4 is devoted to prove the following theorem.

MAIN THEOREM. If a naturally reductive homogeneous space G/K admits an extrinsic
hypersphere, then G/K is a space with constant sectional curvature.

1. Preliminaries.

In this section we recall some basic facts with respect to the Levi-Civita connection
on Riemannian manifolds.

Let (M, g) be an n-dimensional Riemannian manifold and V the Levi-Civita
connection of (M, g). Let {e,, - - -, e,} be a local orthonormal frame field and {®?, - - -, ®"}
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their dual 1-forms. Associated with {e,, - - -, e,}, there uniquely exist local 1-forms {7}

(i, j=1, - - -, n), which are called the connection forms, such that
(1.1) wl+wi=0
(1.2) do'+ ) wirwi=0.

ji=1

Then the following holds (see [5]).

(1.3) V€= kzl w'(e;)es -

Next, let G be a Lie group and K a closed subgroup of G such that Ad(K) is
compact. Let g and f be the Lie algebras of G and K, respectively. Then there exist an
Ad(K)-invariant decomposition g=f+p of g and an Ad(K)-invariant scalar product
{, > on p. Then '

(1.4) [f, plcp
(15) <[u9 x]s y>+<[ua .V:Ia x>=0 (uEfs X, )’GP)

Moreover, under the canonical identification of p with the tangent space 7,G/K (0= {K})
of homogeneous space G/K, the scalar product ¢ , ) can be extended to a G-invariant
metric on G/K. Let A be the connection function of (G/K, ¢ , >)(cf.[6]). Thenforx, yep,

(1.6) AX))=%[x, yl,+ Ulx, y)

where

(1.7) U y), 2> =3 {K[z, x1p, > +<[2, ¥]p x>} (z€P).
Furthermore, the curvature tensor R is given by

(1.8) R(x, y)z=[[x, y1i, zZ1+ A([x, y1,)(2) — [A(x), AD)](2) -

In particular, let (G/K, {, ») be a naturally reductive homogeneous space. Then. it
satisfies an additional condition:

(1.9 Ux,y)=0  (x,yep).

Then c(t)=1(exptx)(0) (xep) is a geodesic of (G/K, { , )) where 1(g) (9 € G) denotes the
left transformation of G/K. Moreover the curvature tensor R is given by

(1.10)  R(x, y)z=[[x, yIr, 21+ 3 [[x, y1p, 21, — 3 [%, [y, 2005 + 3 1 [x, 2105 -

2. The Levi-Civita connections on homogeneous spaces.

In this section we shall write the Levi-Civita connections of Riemannian homo-
geneous spaces in terms of the Lie algebras.
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Let (G/K, { , >) be a homogeneous space with a G-invariant metric { , > as stated
in Section 1. Let n: G — G/K be the canonical projection and W an open subset in p
such that 0e W and the mapping

noexp: W n(exp W)

is diffeomorphic. Let {e,},. 4 be a basis of f and {e; };.; an orthonormal basis of (p, < , >).
In this section we use the following convention on the range of indices, unless otherwise
stated:

ij.k,---el, a,B,y,- €A, p,qr,---€luAd.

Let {X,} and {X;} be the left invariant vector fields on G such that (X,),=e, and (X;).=¢;
(e is the identity of G). Furthermore we define an orthonormal frame field {E;} on
n(exp W) and the mapping u: n(exp W) —exp W as follows:

(Ei )n(exp x) = t(exp x)*(ei)
w(r(expx))=expx (xeW).

Then since #,(X;)=E;, n,(X,)=0 and =, u, =id, we can put
(2.1) #*(Ei)=Xi+Z’1aiXa .

Let {®*}, {0} and {6} be the dual 1-forms of {X,}, {X;} and {E;}, respectively. Then
it is easy to see

2.2) pX(w)=6".

Set [X,, X,]1=)_,c%X,. Then the following is known as the equation of Maurer-Cartan
(cf. [5D): '

2.3) dw? = ——;Zcq”,w"/\w’.
q,r

Now for the sake of completeness we shall show the following known fact.

LEMMA 2.1. Let {0%} be the connection forms of (G/K, < , )) associated with {E;}.
Then

9;: —u*{zCi-aw“+—;—2(0;k—0{k—cfj)wk} .
a k
ProoF. It follows from (1.4) and (1.5) that
(2.4) ck =0, clytcl,=0.
Moreover since f is a subalgebra of g, we get

(2.5) | cly=0.
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From equations (2.2), (2.3), (2.4) and (2.5) it follows that

N
J a k

=X u*{ Y. clw® +%;(cj-k— ch— ci-‘j)a)"} A
j a

(note that ) . (c+ch)w/ Aw*=0). Put 0i=—pu*(}, clw*+1Y, (ch—ch—cHo*}.
Then it is easy to check 6+ 67=0. Consequently, by (1.1) and (1.2), the connection
forms coincide with {0}}. O

By (1.3), (2.1) and the above lemma, we have the following.

ProrosITION 2.2.
1 ; i
Ve Ej= ; {Z CéMai +?(c?j_c'zlk_cjk)}Ek .

Next we shall rewrite Proposition 2.2 in terms of the bracket operation[ , Jof g.
For xe W, we define zi(rf)e W and hi(t)e K (1€ R with | ¢]| small enough) to satisfy
the following:

(2.6) expx - expte;=expzi(t) - hi(t)
with z{(0)=x and A(0)=e. Then

d
”*(Ei )n(exp x)= E /‘l'(n(expx * €Xp tei))
(4]

Wm(expz5(1)) = (exp,); (% z (¢t )) -
(1]

0o

Here, the differential map exp, of exp has the following form (see [4]):
LEMMA 2.3. Let x,yeg. Then
(€xP)x(V) = (Lexp s © )
where ®.(y)=) < ((—1)"/(n+ 1) adx)"(y).

Thus we have

a z:;(t)) .
0

(27) ”'*(Ei)n(exp x) = (Lexp x)* ° ¢x (‘(E

On the other hand, (2.6) and Lemma 2.3 give

d
28 Lex X, o(px T
(2.8) (Lexp)x ( 7

Z;(t)> =(Lexpo)al€:) = (Lexp :c)al:(i
0 dr

hi(t)) .
(¢]
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Considering (2.1), (2.7) and (2.8), we obtain

d
(2.9) o

h;(t)= - Zr’ai(expx)ea .
0 a

d hi(t), e; ]} .
0

(2.10) (Vg E j)n(exp x) = T(exp x)*{A(e i)e;)— l:;

Therefore, by (2.9) and Proposition 2.2, we have

REMARK. For xep (x| small), the mapping p,o®,: p—p is an isomorphism
(p,: g— p denotes the canonical projection.). So we can assume that for each xe W
the mapping p, - @, is an isomorphism. Therefore we can regard the equation (2.8) as
a characterization of (d/df)|oz (?) (€p) and (d/df)|ohi(?) (€F).

For Xep, we denote by X, the vector field on n(exp W) defined by
(X*)n(exp x) = 1'-(exp x)*(X) M

Then the following theorem is easily derived from the above arguments.

THEOREM 2.4. Let xe W and X, Yep. Then
(VX* Y*)n(expx) = T(GXPX)*{A(X)( Y) - [hx(X): Y]} .
Here h(X)= —pro P, o(p,° D) (X) (p1: g denotes the canonical projection).
COROLLARY 2.5. Let xe Wand X, Yep. Then

(Vt(exp x)xo ppoPx(X) Y*) = T(exp x)*{A(pp ° ¢x(X))( Y) + [Pt d ¢x(X), Y]} °
. PROOF.

(Ve(exp xome ppe @x(x) Y ) =Zi: (Ppo PAX), €X(VEY Jriexp o
= Z;: { Py PAX), e>t(expx), {AleNY)—[hle), Y1}
=1(exp x)*{A(Pp o P (XNY)— [ ; Ppo PAX), el e:), Y:l} .
From Theorem 2.4 we get
Z.- {ppo PAX), e hfe))=h(ppo PAX))= —pro PX).

This completes the proof of the corollary. [
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3. Circles of homogeneous spaces.

Let (M, g) be a Riemannian manifold and V the Levi-Civita connection of (M, g).
A curve c(t) of (M, g) parameterized by arc length is called a circle if there exist a unit
vector field &(¢) along o(¢) and nonzero constant 4 such that

3.1 Ve )=280),  Veudd)=—ic'(0).

In this section we shall give an asymptotic expansion of a circle of a Riemannian
homogeneous space.

Let (G/K, { , >) be a homogeneous space with a G-invariant Riemannian metric
{, > as stated in Section 1. Let ¢(¢) be a circle of (G/K, <, ) such that ¢(0)=o0 and
¢'(0)=x (xep). Using the same notation as in Section 2 we can put

cdt)=n(expX(t)), (X()eW) for ¢ with |z| small enough.

Then it follows from Lemma 2.3 that

(3.2) c'(t)=(exp X(1))y ° pp° Py X'(?)) -
Thus we get
3.3) X(0)=0, X'0)=x.

Moreover, by (3.1) and Corollary 2.5 we have

(3.4) AE(r)=lexp X(¢ ))*{A(pp ° Py X' (DNPp ° Pxer(X'(2))

d
+Epp ° Py (X' (1)) + [Pro Pxy(X'(2)), Ppo Py X'(2 ))]} .

Set

d
(3.5) F(t)= I (p o Px (X' (D) + L[ Pro Px(X'(2)), Py ° Py X'(2))]

+ A(pp o Pxf( X (DDNPp o Px( X' (1)) -
Then (3.4) gives
(3.6) FO=1 (¢=&).
Furthermore (3.1) is rewritten as follows.

LeMMA 3.1. Let c(t)=n(expX(?)) (X(t)e W, |t|: small enough) be a circle of
(G/K, {, D). Then X(1) satisfies the following.

—A2py o Py (X' (1) =[Pro Px(X'(1)), F(1)]
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+%F (1)+ A(py o Py X (ONF()) .

From (3.4), (3.5) and Lemma 3.1 it is easy to see
3.7) &(t) = o(exp X(1)), (& — tAx + AGNE) +o(0)} -
Here o(t") denotes an infinitesimal of order higher than ¢". Also it follows from (3.2),
(3.3), (3.5) and (3.6) that

2
X(t)= tx+% (1E — A(x)x) + o(t?)

and c'(£)=1(exp X(2)), {x + H(AE — A(x)(x))+ o(2)} .

4. Proof of Main Theorem.

Let N be an n-dimensional submanifold of an m-dimensional Riemannian manifold
(M, g). Let V and ¥V be the Levi-Civita connections on N and M, respectively. Then the
second fundamental form o is given by

4.1 o(X, V)=VyY—-V,Y,

where X and Y are vector fields tangent to N.

N is said to be umbilical if o(X, Y)=g(X, Y)H, where H=(1/n)trace(c) is the mean
curvature vector of N. Moreover N is said to be an extrinsic sphere if N is umbilical
and its mean curvature vector is nonzero and parallel with respect to the normal
connection V+*. In particular, if N is an extrinsic hypersphere, then

(4.2) o(X, Y)=4g(X, Y)E,

for some nonzero constant A, where E is a unit vector field normal to N. Then for each
p€ N the equation of Codazzi gives

4.3) R(T,N, T,NYT,NcT,N

where R denotes the curvature tensor of (M, g).
Suppose that N is an extrinsic hypersphere of M. Let c(¢) (| ¢|: small enough) be a
geodesic of N parameterized by arc length. Then (4.1) and (4.2) give

Vool =2E,  Voué=—2c).

Thus c(¢) is a circle of (M, g).

Now, let (G/K, {, ) be a naturally reductive homogeneous space as in Section 1
and suppose that (G/K, < , >) admits an extrinsic hypersphere N through o={K}. Put
V=T,N (then V is a hyperplane of p). Let ¢(¢)=n(exp X (2)) (X(¢)e W, | t|: small enough)
be a geodesic of N with ¢(0)=o0 and ¢'(0)=x (xe V,|x|=1). Then by (1.6), (1.9) and




42 KOJI TOJO

(3.7) we can write

4.4 E(c(t)) =(exp X(1)),{& — tAx + AGKEN +0(1)} -

REMARK 4.1. If for éep there exists an extrinsic hypersphere N such that it is
tangent to &L at o, then for any x(L &) there exists an extrinsic hypersphere such that
its normal vector .f at o is not normal to x and &. In fact, by (4.4), there is zeR such
that the normal vector

t(exp X(t )); ! {En(exp X(t))}

at o of the extrinsic hypersphere t(exp X(?)), '(N) is not normal to x and &.

Let S be the unit sphere of p and 4 a nonzero constant. Let E; be the set of all
&e S such that there exists an extrinsic hypersphere tangent to ¢+ whose principal
curvature equals A.

LEMMA 4.2. E, contains an open subset of S.

PrROOF. Let & be an element of E; and N an extrinsic hypersphere associated to
E. As before f denotes the unit normal vector field of N such that E(o):f. Let
c.(t) =mn(exp X(t, x)) (X(t, x)e W) be a geodesic of N such that c,(0)=o0 and c,(t)=x
(xe T,N, | x|=1). Let ¢ be a positive number such that n(exp X{(t, x)) is contained in N
for any ¢ (| ¢| <&) and for any x e (S n T,N). Then we define a smooth mapping f: U,— S
(U,={xeT,N: |x|<¢}) as follows:

f(tx)=1lexp X(¢, x)); *{E(r(exp X(t, X))} -

Then as in Remark 4.1 we can see that f(¢x)ep is a unit vector which is normal to the
extrinsic hypersphere t(exp X(t, x))” }(N) at o. Thus we get f(U,)<E,. It follows from
(4.4) that the differential mapping of f at 0e U, is given by (under the identification
of ToU, with T,S)

(fo(¥) = — Ax — A(xX¢) -

By (1.9) the mapping (f, ), is an isomorphism. Thus the inverse function theorem implies
that there is an open subset of S contained in £,. []

For £€ 8, set

h(¢&)= (KRe; ep)ew, £,

n
i,j,k=1

where {e,, - - -, e,} denotes an orthonormal basis of £*. Then 4 is a well-defined real
analytic function on S. From (4.3) we can easily check that A(E;)={0}. Therefore, by

Lemma 4.2, & is identically zero on S. Thus any hyperplane of p is curvature invariant
and hence (G/K, {, ) has constant sectional curvature.
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