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Abstract. Let X, X,, -+ be a sequence of independent replicates of a random variable X and let
{N}:>0 be a non-negative integer valued random process and assume that {N,},,, and X are independent.
Then, under some conditions it is shown that the probability P(Zf’;1 X;>0) decays exponentially fast as
t—o0. Moreover, we consider a testing problem in a compound Poisson process, and we study the exact
slope of a test statistic based on the sum of random number of independent and exponentially distributed
random variables.

1. Introduction

Probabilities of large deviations for sums of independent identically distributed
(i.i.d.) random variables have been studied by many authors. For a brief review, we
may refer to Chernoff [11], Bahadur and Ranga Rao [6], Sethuraman [20], Hoeffding
[14], Nagaev [17], and Efron and Traux [12]. Bahadur ([2], [3], [4] and [5]) studied
the efficiency of tests and estimates using the probabilities of large deviations for sums
of i.i.d. random variables. For the testing problems, Bahadur introduced a concept of
the exact slope of a sequence of test statistics and built a theory of efficiency. Many
studies have been done since Bahadur proposed a concept of efficiency in the testing
problems (e.g., Gleser [13], Sievers [21], Raghavachari [18], Kallenberg [15], Koziol
[16], Berk and Brown [8], and Rukhin [19]). In this paper, we study the probabilities
of large deviations for sums of random number of i.i.d. random variables. Moreover
we apply the results to the exact slope of a test statistic in a compound Poisson process.
In particular, we obtain a results of the large deviations probability as follows. Let
X, X,, -+ be a sequence of independent replicates of a random variable X and let
{Ni}:>0 be a nonnegative integer valued random process. Suppose that {N,},., is
independent of X and let S,=)7_, X;, where 7 is an integer. Then, under the suitable
conditions with respect to the distributions of X and {N,},. ,, we obtain
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%logP(SNt20)=%logp,+o(l) as 100,

where p,=inf; @y, (log px(s)), and ¢y, and @y denote the moment generating functions
(m.g.f.) of the distribution functions of N, and X, respectively.

In section 2, we will state several conditions which are required in this paper, and
in section 3 we will obtain the results of the probabilities of large deviations for sums
of random number of i.i.d. random variables. In section 4, we will apply the results to
the exact slope of a test statistic in a compound Poisson process.

2. Conditions.

Let X be a random variable and let X, X,, - - - be a sequence of independent
replicates of X. We assume that {N,},, ( is a non-negative integer valued random process,
and that {N,},., and X are independent, and furthermore assume that N,/t—A in
probability as t— o0, where A is a positive constant. Let ¢y(s) denote the m.g.f. of the
distribution function of a random variable Y, i.e.,

oy(s)=E(e®), —00<§<0.

It is well known that if P(Y=0)#1 and ¢y(a)<oo for some a>0 then ¢y is strictly
convex and continuous on [0, a] and has derivatives of all orders on (0, a), and the
first derivative @y(s) is strictly increasing on (0, a) (cf., Bahadur [5]).

We assume the following conditions (C1) through (CS5):
(C1) There exists an interval  which contains origin and @x(s) < oo for each sel.
(C2) There exists a unique 7, 0<t<a, such that ¢@y(7)=inf,px(s), where a=

sup{s: sel}.

(C3) For each seR! and each >0, ¢y (s) < c0.
(C4) There exists a twice differentiable function ¥, satisfying

|2~ log on(s) —¥1(s)|=0(1/1) uniformly on R! as t— o0 .

(C5) For each seR!, the first derivative of 1~ 'log ¢y (s) has a positive limit, which
is denoted by y¥,(s), as t— 00, and for each se R!,

[(t™ ' log u (s)) —¥2(s)[=0(1/f)  as t—o0.

We note that ¥, is a strictly increasing function, because, by Fatou’s lemma, it
follows that for any s, s, (s, <s,)

Y1(s2)—¥4(sy) =tlfg (t"'log oy, (s;)—1 " log oy ,(51))

=lim | (¢ 'logoy,(s))ds

t— o s1
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ZJ lim (¢~ 'log (pNt(s))’ds=J V,(s)ds>0.
t— oo 51

S1

3. Probabilities of large deviations for sums of random number of i.i.d. random
- variables.

First, we obtain the m.g.f. of the distribution of Sy,.

LemMa 3.1. If {N,}.»o and X are independent then for each sl
Psy () =on(logox(s)),  t=0.

ProOF. Since {N,},,, and X are independent, we obtain

Psy () =E(e*¥)= 3 et X2t Xgp = kzl (@x()*P(N,=k)

k=1 J(N,=k}
— 2 eklos@xNP(N, =k)=¢ n(log @x(s)) .
k=1

This completes the proof. , O

Suppose that the distribution function of X satisfies condition (C2). Then 7t is the
unique solution of ¢%(s) =0. Since {Nr};zo is a positive integer valued random process,
@n(5) 1s a strictly increasing function of s. Hence, by Lemma 3.1, if the distribution
function of X satisfies condition (C2) then the distribution function of Sy, >0, also
satisfies condition (C2), and

irslf @sy (5)=1nf gy (log @x(s)) = @y, ( i1>1£ log ‘Px(s)) =@y (log x(7)) .
Using the method of exponential centering, we study the probabilities of large
deviations for the random variables Sy, in the following. Before we state some lemmas,

we need to introduce some notations. Let F, be the distribution function of Sy, and let
p, be defined by

pi=10f g5, () =gn(log ¢x(1) .

Furthermore, we let

(3.1 G(»=pi' f e dFy(x),

x<y

(3.2 o= Jy 2dG(y),
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(3.3) H(2)=G(o.2) .

Let Y, and Z, be the random variables with distribution functions G, and H,, respec-
tively.

LeEMMA 3.2. Under conditions (C1) through (CS), we obtain
34 E(Y)=0,
(3.5) al=at+o(l) as t— oo,
where a.=(px(v)/@x(1))Y 2(l0g ¢ x(7)).

Proor. By virtue of (3.1), we obtain

Pr(s)= fe”th(y) =p ! fe‘s +ox g (x) = PO Px(5+TD)

oy (log ox(1)
Hence, it follows that
on(logox(s+1))  @x(s+1)
3.6 L (s) =—= ,
-9 or(5) on(log @x(1)) 8 Px(s+1)
1 ox(s+1)\’
3.7 s (s)= v.(1 -
G v @x(l0g x(7)) {%"( 08 Px(s+ ) ( Px(s+17) )
, %’E(S+T)<Px(S+T)—(<P&(S+T))2}
+ lo s+1)) X .
¢n(log @x( ) (OxG+1))2
By (3.6), (3.7), and condition (CS5), we obtain
E(Y,)=0¢y,(0)=0,
o2 =i (0)= 201082+  ¢x(7)
T o (logox(®) T x(r)
— ([, (10g 9x(0) +o(1/] x XD _ ( @x(%) )wz(log ox(t+o(l).
ox(1) @ x(7)
This completes the proof. O

LemMA 3.3.  Suppose that conditions (C1) through (C5) are satisfied. Then it follows
that

Hy(z) - &(c,2) as t— oo,
where ® denotes the standard normal distribution function and c, is a constant.

Proor. By (3.1), (3.2), (3.3), and condition (C4), we obtain
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?z(8)= je ¥dH(z) = je CrPdG ()

(38) ___pt— 1 fe(s/0t+t)xdE(x) — (pN:(log ¢X(S/at +T))
on(log x(1))
=exp(t[¥(log ¢x(s/0, + 1)) — ¥ 1(log x(7))]) x exp(o(1)) .

Here, put x,(s)=y,(log ¢x(s/o,+ 1)) —¥,(log px(1)). Since ¥, is a strictly increasing
function and @x(7) =inf; @x(s), it follows that «,(s) >0 and «,(0)=0. By Lemma 3.2, for
all sufficiently large >0 there exists an interval I, including origin, such that
sup{x,(s) : se I} <sup{y,(s) : seR'}. Therefore, for all sufficiently large >0 we have
{¥1(s): seR*} 2{x(s) : sel}. Hence, for each seT and for all sufficiently large >0
there exists a unique »=u,(s) such that y,(x) =x,(s). In view of (3.8), it follows that

39) P2.(5)exp(tr(5)) explo(1) = exp(e, (U7 *((5)))) exp(o(1)
= oy, (og e ) exp(o(1)) .

Now, for each sufficiently large >0, gy (loge¥: '*«) is the m.g.f. of U, ,+ U, ,+
-+ +Uy,, where U, ,, U, ,, - - - are independent identically distributed random variables
with the common m.g.f. ¢y, (s)=e¥: ' ®, and U, , is independent of N,. We obtain

Ki(s) Vi)
Vi1 '(eds))
ex(s/o+7) 1
ex(s/o,+7) o,

" = 'l’;i(xt(s)) K{(S) >2
90, s)=e {(wi(z//;‘(x,(S)))

oy, (9=

K,(5) =¥ 1(log ¢x(s/0,+ 1)) X

” ’ -1 gt " -1 Kt,(s)
SOV O KW ) (S)))}
Wi o))’ ’
’ 2 2
k()= (log <px<s/a,+r»(M‘i?—) (i) +¥i(log px(s/0,+ 7))
@ x(s/ o, +1) L
 OHSSo A Dox(s/0,+0) — (P3(s/o,+ ) _ ( 1 ) |
(ox(5/0,+ )2 .
Since x,(0)=0, k,;(0)=0 and ¥ }(0)=0, we obtain
E(U, ) =0,

k' OY1(0) _ yilogox(ex(m) 1 _ b

Var( U 1 ,t) = (|// i (O))z w i (O)qo x('f) 0-12 o‘,z

b
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where

p. = ¥1(0g 9x()9x(7)
' ¥1(0)px(7)
Let V,,=0o,U;, (i=1,2, - - -). Then we have

Py, () =0y, (3:5)=exp(Y1 '(x(05)))
=exp(¥1 ‘(¥ 1(1og px(s+ 1)) — ¥, (log 9x(7)))) -
Hence, ¢y, (s) is independent of z. Therefore, we put V;=V;, Consequently,
oy (loge?i '®) is the m.g.f. of the random sums (V;+ V,+ - +Vy)/6,, where
Vi, Vs, -+ - are ii.d. random variables with the m.g.f. ¢y, (s)=exp(y (¥ (log px(s+
7)) — ¥ (log 9 x(1)))). Since E(V,)=0 and Var(V,)=5,, by the central limit theorem for
sums of i.i.d. random variables it follows that

Vi+ Vot -+ V,
nb,

— N, 1) inlaw as n—oo.

Since N,/t—A>0 in probability as t— o0, by Anscombe [1] (cf., also, Billingsley [9]),
we obtain

V1+V2+"'+VN'
Nb,

- N@©, 1) in law as t— .

Hence, it follows that

V1+V2+'..+VN2__V1+V2+'..+VNtx Ntbt
0, N,b, o,

V.+V. /N, A .
Vet +VN‘x b N(O, b’) in law as t— 0.

Vv Nb. Jait+o(l) - a

From the continuity theorem for the m.g.f. (cf., Billingsley [10]), @y (loge¥: )
converges to the m.g.f. of N(0, Ab,/a,) as t — o0, and by (3.9), for each sel, ©z.(5)
converges to the same m.g.f. as ¢t - oo. Therefore we obtain

14

H(z) - @(c.2) as t— o0,
where ¢, =./a,/(4b,). This completes the proof. O

THEOREM 3.1. Suppose that conditions (C1) through (CS) are satisfied. Then it
Sfollows that

1

TlogP(SNt20)——%logp, 0 as too.
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PrOOF. By Markov inequality, for each s>0 we have
P(Sy,=0)=P(e*":>1)< E(e™™) .

Thus we obtain

P(Sy,20)<inf 5, (5)=p, .
s>0 ¢

Hence, it follows that _

(3.10) lim sup (¢~ ! log P(Sy,>0)—¢ 'logp,)<0.
t—

Next, we shall consider the lower bound. Let ¢>0. For each s>0, by (3.1), (3.2),
and (3.3), we have

[e o] &0

VG > p, j e=odG(y)

0

@3.11) P(Sy,20)= f " aF)=p, f
0

0

2pe f dG(y)=pe *"*(He)—H(0)) .

(0]

By Lemma 3.2 and Lemma 3.3, we have

im 2 =0,  lim L log(H ) — H0))=0.

t—owo [ t=o0 [

In view of (3.11), it follows that

(3.12) lim inf(% log P(SNtzo)—%log p,)ZO :
t— o
By (3.10) and (3.12), the proof has been completed. O

Before we state the next theorem, we introduce the following notations. For a
constant d, let

Pt(d)=P( % (Xi—d)Z()) ;
i=1

p(d)=inf Psn, - an(8)=1nf oy (logox_4(5)) .

Next theorem is a generalization of Theorem 3.1.
THEOREM 3.2. Let {d,},., be a random process such that
d,/N,—d in probability as t— oo,

where d#0 is a constant. Suppose that the distributions of X—d and {N},., satisfy
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conditions (C1) through (C5) and P(X>d)>0, and moreover, for all sufficiently small
e>0
P(d/N,—d|>¢)

- as t—oo.
mln{pt(d—{- 8)’ Pt(d_ 8)}

Then we obtain

N:
lim {—i-logP( 3 Xizd,)——%log p,(d)}=0 .
i=1

t— o0

Proor. For any £¢>0, we have

N; N, N, ’
P( > X,.zd,>=P< Y X.>d, ]d,/N,—d|58>+P(Z X,>d, |d,/N,—d|>s)
i=1 i=1 i=1

=11 +12 >

where
Ng N:
11=P( Y X,>d, |d,/N,-d|sa), 12=P( > X;>d, |d,/N,—dl>e>.
i=1 i=1

It follows that

=

(3.13)

—
IA
~

_—
v
v

I
P

X,-_>.(d—8)Nz)=P(€:, (X.-—(d—S))ZO),
i=1

(3.14) X,=N(d+¢), |d,/N,~d| se)

1\
~

X;>=N(d+ e)) —P(|d/N,—d|>¢)

DMz Mz 1z

I
N

i=1

(X,-—(d+s))20)—P(|d,/N,—d|>s) .
It is clear that 0< /I, < P(|d/N,—d|>¢). By (3.13) and (3.14), we obtain
Ne
P( > (Xi—(d+8))20)—P(Id./Nz—d|>8)
i=1

<I, +IZSP( ﬁ (Xi—(d—s))20)+P(|d,/N,——dI>8) .
_ i=1

Hence, we have

__ P(4/N,—d|>¢)
pd+e¢)

P(|d,/Nt—d|>£):|

]511+12s1;,(d—s)[1+ Y

p(d+¢) [1
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Thus we obtain for all sufficiently large >0,

- A

_ P(ld/N, d|>8)]silogP<Z X,-zd,)

p(d+e) t i=1
P(Idt/Nr'—d|>8):|

pt(d - 8)

If the distribution of X' —d satisfies conditions (C1) and (C2) then for all sufficiently
small >0, the distributions of X — (d+¢) and X — (d — ¢) also satisfy the same conditions.
Let t(d) denote the unique solution of @j_,(s)=0, i.e., @x_4(t(d))=inf,, o Px_ 5).
From the right-hand side inequality in (3.15), using Theorem 3.1 and condition (C4)
we have

3.15) %logp,(d+s)+—i~log[l

s%—logp,(d—a)+%log[l +

Ne
lim sup<i log P( 2 XiZdt>—%108P:(d)>
i=1

t— o t

t— oo t

<lim sup <~1- logp(d—e)— % IOgP:(d)>

=lim sup (% log p(d—¢)— % log p.(d )>
t— oo

=¥1(10g ¢x - - o(v(d—2))) — ¥, (log 9x - (T(d))) -

By lemma 3.3 in Bahadur [5], log ¢x_4(1(d)) is continuous in a neighborhood of d.
Therefore, by letting e—0, we have

t— oo

Ne
lim sup(—}—logP( > Xizdt)—%logp,(d))SO :
i=1

Similarly, from the left-hand side inequality in (3.15), we have

Ne
lim inf(%logP( Y X,-Zd,)——i—logpt(d))ZO .

t— o i=1

This completes the proof. U

4. Exact slope for a test statistic in a compound Poisson process.

Let X be a random variable with exponential distribution. Its density function is
fx; W=pe ™™  (x20),
=0 (x<0),

where 4 >0. Let X, X,, - - - be a sequence of independent replicates of X and let {N,},. ,
be the Poisson process with parameter A>0 starting at 0. We assume that A is known
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and that X and {N,},,, are independent. Let Z,=Y ™ X;. Then {Z,},,, is a compound
Poisson process defined on a probability space (2, F, P,), where the probability measure
P, depends on an unknown parameter u€® and @ is an open set in (0, o). Let F,,
t>0, denote the o-field generated by the random process {Z,},..<,, and let P, be the
restriction of P, on F,. Fix any o€ @. Then for any ue ® and all 1> 0, P, , is dominated
by P,,. and the likelihood ratio statistics, denoting it as A,(uo, u), is given by

dP
dP

ot

Ne
bl = (L> exp(— (1 —po)Z,)

Ko

4.1) Apo, W=

(cf., Basawa and Prakasa Rao [7]). We consider a simple test: u, against p (u# po).
For each t>0 let T,=T/(N,, Z,) be a real valued test statistic based on (¥V,, Z,) and
assume that the large value of 7, is significant. Let J, denote the distribution function
of T, when pu, obtains, i.e., '

J(x)=P,(T,<Xx).
We define the attained level of T, to be
L=1-J(T).
We shall say that the process {7}, has the exact slope c(u) when p obtains if

lim ilog L= —% c(p) as. P

t— o t

-

Following theorem is useful to find the exact slope of {T},.,. It is analogous to
Theorem 7.2 in Bahadur [5] in case when number of random variables is non-random.
Its proof may be obtained along Bahadur [5]. Therefore we omit the proof.

THEOREM 4.1. Suppose that

lim T,=b(u) as. P

t— o0

o

where — o0 <b(u) < oo, and that

lim % log[1—-J(x)]=—f(x) as. P

Ho
t— oo t

for each x €I, where I is an open interval and f is a continuous function on I and b(p)el.
Then we obtain c(u) =2f(b(n)).

Here we let

1
T,= 7 log A, (po, 1) -

t

We assume that o> u. For the testing problem: u, against u, we find the exact slope
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of {T}},., in the following. Note that

lim£=i>0 as. P

uno
t+oo [

u

s U< Py (s)=eXeD,

Px(s)=

when u obtains.
We have

1 U Z, Z,
T,=—"I1og A (o, p)=log——(u—po) —=A—B—,
=N, g A(po, ) =log e (#—1o) N, N,
where A =log(u/uy), B=u— pe. Therefore, we have

PMO(T,Zx)=PuO< i (A—x—BX,-)ZO).

1

We suppose that x> A4 — B/u,. It is easy to see that the distribution of random variable
A—x—BX satisfies conditions (C1) and (C2), and that the distributions of {N,},.,
satisfy conditions (C3), (C4), and (C5). Under the null hypothesis u, we obtain

- X)s —X)s ”
Pa-x-px() =€ P py(—Bs)=e“ ™ —,u—_fE; (—Bs<p) .
0

By a straightforward calculation we obtain

Ko

infeo, ., gls)=ed@sx_ 79
>0 Pa Bx($) 1o + Bs(x)

s

where s(x) =1/(4—x)—po/B>0, because x> A — B/u,. Hence
log p,=log ( inf oy, (l0g ¢ 4 —BX(S))> =log ¢y,(108 ¢ 4 x - px(5(x)))
=g,(m<A—x)”° 1=t _ 1) .
B

Since lim,_, ,, N,/t=4 a.s. P,, by Theorem 3.1 we have

. A—
lim Nilog(l—Ft(x))=——( Bx)”" e~ Om/B_1 a5 P

Ho ?
t— t

. B
m7,=4—-— as. P

u -
t— © u

Since A—B/u> A— B/u,, in view of Theorem 4.1, we obtain
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c(,u)=2(1 —ﬂel-ﬂoﬂ*) .
| Py
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