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On a Variety of Algebraic Minimal Surfaces
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Abstract. In this paper, we show that the moduli space of the Weierstrass data for algebraic minimal
surfaces in Euclidean 4-space with fixed topological type, orders of branched points and ends, and total
curvature, has the structure of a real analytic variety. We provide the lower bounds of its dimension. We
also show that the moduli space of the Weierstrass data for stable algebraic minimal surfaces in Euclidean
4-space has the structure of a complex analytic variety.

1. Introduction.

Let M be a Riemann surface and f: M —R"” a branched conformal minimal
immersion whose induced degenerate Riemannian metric ds? is complete in the sense
that any locally rectifiable divergent path has infinite length. Then, by modifying the
Chern-Osserman theorem [ChOs, Theorem 1], we can prove that the total curvature
is finite if and only if the Gauss map &, is algebraic, i.e. M is biholomorphic to a
compact Riemann surface M, punctured at a finite set of points and &, extends to a
holomorphic map from M, to Q,_,(C). We call a branched immersed minimal surface
with finite total curvature an algebraic minimal surface.

X. Mo constructed the moduli space of pairs of certain meromorphic functions on
a compact Riemann surface which give algebraic minimal surfaces in R® by the
Weierstrass formula. He proved that the moduli space has the structure of a real analytic
variety and that it contains a subset having the structure of a complex analytic variety.
We can see this work in the book written by Yang [Ya2, Chapter 3]. His idea of the
proof is to clarify the conditions satisfied by the divisors of meromorphic functions.

In this paper, by following this idea, we will construct the moduli space of the
triples of certain meromorphic functions on a compact Riemann surface which give
algebraic minimal surfaces in R*, and give a lower bound of the dimension of the
moduli space.
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We fix a compact Riemann surface M, of genus g, a holomorphic (if g=0, then
a meromorphic) 1-form Q on M, integers k, r (k=0,7>=1), and an integer vector
Bi,=(U; L)eZ*x 2" (J;=1, I,=2).
We denote by AM=AM(M,, B,,) the set of algebraic minimal surfaces
f=U1 f2 3 f%: M- (R* ds?) in R* satisfying the following conditions:
The Riemann surface M is biholomorphic to M, — {puncture points};
It is branched at k points with order J; (j=1, - - -, k) and
punctured at r points with order I; (i=1, - - -, r);
f'+./=1f?is not holomorphic.
We denote by FD=FD(M,, Q, B, ,, «, p) the set of the triples (F, ¢, ¢,) of meromorphic
functions on M, satisfying the following conditions:

F?éo ’ deg((Pl)ao =a, deg((pZ)oo Zﬂ ’

k r
(D) —(@ 1) —(@2) +(F)+(2)= .;1 Jjbj_ ';1 Lp;,

P) 1 ‘n” EaFQ}=O
2 Y

for any ye H(M,—{p,, - -, p,}) (a=1, - - -, 4); where {b;; p;} are distinct points. We
denote by (¢)=(¢)o —(¢). the divisor of a meromorphic function on M, where (¢), is
the zero divisor and (¢),, is the polar divisor. In particular, deg(c),, =0 for ce C* and
we define (0)=0 and deg(0),=oco for later use. Similarly, () is the divisor of a
meromorphic 1-form on M, We define

E=14+¢,0,, E,=/—1(1-¢,0,),

Es=¢,—9¢;, E,=——le,+05).
We call the condition (D) divisor condition and the condition (P) period condition.
By using the result of Osserman [Os], we will show the following lemma (§3):

LeEMMA 1.1. There is a bijective correspondence between AM(M,, B,,)/~ and
I_[M FD(M,, Q, By, ®, B), where for G and He AM(M,,, B ,), G~ H means G and H are
congruent by a parallel transformation in R*.

The above lemma provides a correspondence between the space AM/~ of algebraic
minimal surfaces in R* and the moduli space FD of triples of meromorphic functions
on a compact Riemann surface.

We fix a, Be{0, 1,2, - - -} U {00} and let / be the number of 0 or co in {a, }. When
a, B are finite, i.e. (F, ¢y, )€ FD(M,, 2, B, ,, a, f) are functions not identically zero,
our results are

THEOREM 1.2. If FD(M,, Q, B, ,, o, B) is nonempty, then it has the structure of a
real analytic variety of real dimension at least 2[(k + 20+ 2B+ 5)—{(7T—Dg+r}].
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Tueorem 1.3. If FD(M,, Q, B, o, f§) is nonempty, then it contains a subset which
has the structure of a complex analytic variety of complex dimension at least

(k+2a+2B+7)—{(11—1)g+ 3r}.

When « or =0, i.e. ¢, or ¢, =0, our minimal surfaces are considered as branched
holomorphic curves in C? which is identified with R* in a certain manner (§4). In this
case, we can construct the moduli space in a similar fashion as above. Let m be the
number of oo € {a, }. Then, 1<m<I/<2. For xeZ u {0}, we define «’ by a'=0 if
a= oo and by a’=a otherwise. Using the results of Micallef ((Mil, Corollary 5.2] and
[Mi2, Theorem]), we can prove

THEOREM 1.4. If o or B= 0, then the element of FD(M,, Q, By ,, a, B) corresponds
to a branched complete stable minimal surface in R* of finite total curvature. If FD is
nonempty, then it has the structure of a complex analytic variety of complex dimension
at least {k+2a'+28 +2(3—m)} —{2—m)r+©O—1—-2m)g}.

The author would like to express his gratitude to Professor Y. Ohnita for his
encouragement and for his advice on Theorem 1.4. He also would like to thank Doctor
M. Kokubu for his useful suggestion in the proof of Lemma 1.1.

2. A modified Chern-Osserman theorem.

In the theory of immersed algebraic minimal surfaces, the Chern-Osserman theorem
[ChOs, Theorem 1] plays an important role. In this section, we shall modify it to apply
to the theory of branched immersed algebraic minimal surfaces.

First, we shall define a singular Hermitian metric on a Riemann surface (cf. [Y all,
p. 141). Let M be a Riemann surface and U a coordinate neighborhood of M. We
define a (1, 0)-form 5 of meromoprhic type on U as a form n=z’rhdz for each pe U,
where z is a holomorphic coordinate with z(p) =0, & is a complex-valued smooth function
with A(p)#0, and J,, is an integer. We call the integer J, the order of n at p and denote
it by ord,n. If J,>0 for each pe U, we call n a (1, 0)-form of holomorphic type. We
write ()= pev (0rd,n)p and call it a divisor of . We say that ds? is a singular Hermitian
metric on M if it is given locally as ds? = * 7], where n £0 is a (1, 0)-form of meromorphic
type. We call ds? degenerate at p if ord,n >0, regular at p if ord,n=0, and divergent
at p if ord,n <0. We note that ds? is a Hermitian metric on M if ds? is regular for any
peM. We call pe M a singular point of ds? if ds” is degenerate or divergent at p. We
define the singular divisor S of a singular Hermitian metric ds? as the divisor of 7, i.e.,
S=Y e (0rd,n)p.

Next, we generalize the Gauss-Bonnet theorem. Let M be a Riemann surface,
ds?=n - # a singular Hermitian metric on M with finitely many singular points, dA4 the
area element of ds2, and K the Gaussian curvature of ds®>. We denote by U an open
subset of M such that its closure U is compact and that the boundary of U consists of
finitely many smooth Jordan curves f; (i=1, - - -, m) whose orientation is chosen as U



124 KATSUHIRO MORIYA

lies on the left-hand side. We define k,; to be the geodesic curvature of f;. We assume
that there is no singular point on each f;. Then we state a generalized local Gauss-Bonnet
theorem as follows:

LemMMA 2.1. Under the above situation, we have

J KdA =2n(x(U)+deg(S|y)) — i k,.ds,

i=1Jg
where y(U) is the Euler number of U.

ProOF. Let {q,, - -, q.} be all the singular points of ds? contained in U. Since
ds? is a singular Hermitian metric, we can write #=z'+h,(z)dz on a neighborhood of ¢,
(@a=1, - -+, e), where z is a holomorphic coordinate around ¢, with z(g,)=0, A,(z) is a
complex valued smooth function with 4(0) #0, and J, is the order of 5 at g,. We denote
by D(q,, R) the set {|z|]<R}. We choose a sufficiently small R>0 such that
D(q;, R)n D(g;, R)= & for i#j. Let p,, r=0D(q,, R) where its orientation is chosen as
D(q,, R) lies on the left-hand side. We denote by k,,_x the geodesic curvature along
Hgor» and Ug=U\ | J:_, D(q,, R). Then, by the local Gauss-Bonnet theorem, we have

e

J KdA=2ny(Up)— Y. | k,ds+ Y kgyq.rd5s .

Ur i=1Jg, a=1 Jyu, .r

We express k, , grds explicitly. Let ds’=0"'® 0'+0%® 62 be the singular Hermitian
metric, where {0, 02} is a oriented orthonormal frame. We define ¢; to be the dual of
0’ (i=1, 2). We denote by w] the Levi-Civita connection form satisfying df’= —w} A 6/,
wj=—w{ (i,j=1, 2). Let y be the curve in M such that dy/ds=¢&'e, + E2e, where s is
the arc-length parameter, and v be the vector field normal to dy/ds expressed by
v=—¢%e, +&'e,. We denote by k, the geodesic curvature along y. Then we have

kyds=[(dE" +E*wy)e, +(dE2+ E w)e,]|, - v .

Introducing polar coordinates (r, t) to a neighborhood around gq,, we can express the
singular Hermitian metric ds? in the form ds2 =r?’<| h, |*(dr ® dr +r*dt ® df). We assume
0'=r'e|h,|dr and 62=r’=*1|h,|dt. Then we have

r~J« 9 r-Vs*t g
= — . e2 =

| hal Or |ha| Ot

€
In terms of polar coordinates, we can express the curve u in the form pu,, x=(R,t),
te[0, 2n]. Hence, du,, g/ds=e,. Since

_ 1 Jlog|h,|
r ot

do' = drn 02, d92=—<(J,,+1)+r_aE’a_g'h—')thol,
r

we obtain
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Olog|h
w;;ﬁ.lgglh_a'd,_((,ﬁl)wﬁl_d)d,,
¥ ot or

Thus,

dlog| h
K, .. rds= ((J,, +1)+R _igﬁ)dt .
r

Hence,

m e 2n 1 h
j KdA=2my(Ux)— Y. | k,.ds+ 3 f ((Ja+1)+R ﬁigbl)dz
Ur i a=1Jo

i=1Jg; r
n e 2 dloglh,
=27r(x(U)+deg(S|U))— Z k, ds+ Z RJ _%'—ldt.
i=1Jg; a=1 0 r
Since dlog|h,|/0r is bounded on D(q,, R), we have
2n

lim R f Ologlhal 4 g |

R-0 J, or
Thus, as R tends to 0, we obtain

j KdA =2n(y(U)+ deg(S|y) — > k,ds . O
U i=1Jg;

Immediately, we also obtain
COROLLARY 2.2. If M is a compact Riemann surface with a singular Hermitian
metric ds?, then we have

j KdA=2n(x(M)+deg(S)) .
M

The following lemma is an analogue of the theorem of Huber [Hu, Theorem 13]
in the case where a singular Hermitian metric with finitely many degenerate point and
no divergent point is equipped on a Riemann surface.

LEMMA 2.3. Let M be an infinitely connected Riemann surface, ds* =n - if a singular
Hermitian metric on M with finitely many degenerate points and no divergent point. If
ds? is complete, then

J K dAd=+ w0,
M

where K~ =max{0, —K}.

PROOF. We prove that if [,, K~ < + oo, then ds? is not complete.



126 KATSUHIRO MORIYA

We denote by {U;} an exhaustion of M, i.e., a sequence of open subsets of M such
that U;c U; for i<}, that the closure U; of each U; is compact, that the boundary of
U, consists of finitely many smooth Jordan curves B;; (j=1, ---,m;), and that

* , Ui=M. We choose the orientation of each B;;as U; lies on the left-hand side. Let
M \Ui=]_[;.”" Q,, where 0Q;=p;, We assume that all the singular points {b,}
(a=1, - -+, e) of ds? on M are contained in the U,. By Lemma 2.1, we have

J KdA=2m(y(U)+deg(S)— ¥, | Kyuds.

i=1Jgi;

Hence,

@.1) —j KdA+2n(x(U)+deg(S)= 5 | kyids.
U;

J=1 Jg,;

As itends to oo, the left-hand side of (2.1) tends to — oo. Therefore, for sufficiently large 7,

Z kg'I"dS<—2J‘ K_dA .

i=1Jpy; M

Hence, there exists J, £>0 such that

J kg’IJdS=—2{J K—dA—*-S}.
Brs Q15

We can choose a Jordan curve 8 in 2;; homotopic to B, and satisfying |, ; K*dA4<e,
where K* =max{0, K}, (B, 6) is a domain surrounded by ;; and é. The following
two lemmas are proved in [Hu, p. 62, Lemma 6] and [Hu, p. 23, Lemma 2]:

LEMMA 2.4. Under the above situation, there exists a number C>0 which satisfies
the following property:

For any integer i, there exists a rectifiable curve o;: [0, 1) > M
such that o;(0)€d, lim,_,, aft)edU, |, ds<C.

t—1
LEMMA 2.5. We denote by Q a doubly connected region in S*. Let I, y denote the
two boundaries of Q, and Q, the simply connected open set containing y and surrounded
by T'. Assume that there exist a sequence of rectifiable curves {6,}, 0,:[0,1)>Q, a
compact subset K < Q, and anumber C > 0 such that they satisfy the following conditions:

For each ¢,, Im{o,} N K# &;
For any compact subset L Q,, | ), Im{a,} is not contained in L;
§,,ds<C for all n.

Then there exists a locally rectifiable divergent path ¢ in Q such that {,ds<+ o and
that im__ . a(t)el.

t—1

By Lemma 2.4, we obtain a sequence of curves in ©;,, a compact set é and a
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number C>0 satisfying the assumption of Lemma 2.5. Hence, there is a locally
rectifiable divergent path o: [0, 1) > M such that jads< + 00. Therefore, ds? is not
complete. O

Now, we can modify the Chern-Osserman theorem as follows:

PROPOSITION 2.6. Let f: M —R" be a branched conformal minimal immersion such
that the singular Riemannian metric ds? induced by f is complete. Then, the total curvature
is finite if and only if the Gauss map P is algebraic.

Proor. First, we observe that we can extend @, over all branch points. Indeed,
a branch point b is locally a common zero point of holomorphic functions p— (0.1 °/0z)(p)
(@=1, - - -, n). Hence there exists the minimum of orders of their functions at a branch
point b, which we denote by k. We define

d>f(b)=[zl T oL e o (b)]

0z

Then &, becomes holomorphic at 5. We also observe that ds? is a singular Hermitian
metric on M with no divergent point in this case. Indeed, we have locally

naa
;f

Since df?%/0z(a=1, - - -, n)is holomorphic, we have 6f¢/0z =z"h,(z) (a=1, - - -, n), where
u, is a nonnegative integer and 4, is a holomorphic function not equal to 0 at 0. Thus,
ds?=|z|*h(z)dz - dz, where u=min{u, | a=1, - - -, n} is a nonnegative integer and 4 is
a local real-valued positive smooth function. When we set #=z%/h(z)dz, we see that
ds?>=n -1 is a singular Hermitian metric with no divergent point.

We assume that the total curvature is finite. Then M is finitely connected by Lemma
2.3. Then, in the same way as the proof of the Chern-Osserman theorem ([ChOs],
Theorem 1), we can prove that M is biholomorphic to a compact Riemann surface M,
punctured at finite points and that @, is extended to be holomorphic at all puncture
points. Thus @, is algebraic.

Conversely, we assume that &, is algebraic. Let M, be the compact Riemann
surface on which @, is extended to a holomorphic map, {b,, - - -, b;} the branch points,
{p1, -, p,} the puncture points. Then ds? is a singular Hermitian metric on M,
degenerate at b;(j=1, - - -, k) and divergent at p; (i=1, - - -, r). By Corollary 2.2, we have

2

s

J KdA =2n((M,)+deg(S)) .

Since both x(M,) and deg(S) are finite, the total curvature is finite. O
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3. Representation formula.

We shall prove Lemma 1.1. Let CD=CD(M_,, B, ,, a, B) be the set of all the
quadruplets ({*, (2, (3, (%) of meromorphic 1-forms on M, satisfying the following
conditions:

4
(-V/=100; Y @L=0;
C3+ / 64) (_C3+ /_1C4)
de ( =a, deg =8;
(- —18? N (&
&)= .;1 Jib;— Z‘,l Iip;;

«[efor

for each ye H,(M,—{p,, - -, p,}) and each a (a=1, - - -, 4), where for {*#0, let ({)=
Ype m, Min, (ord,{%)p. Then, by the relations

%Zz: dz; 430, C4)(z)=9{{ chadz}

Ca(fia fz’ f3’ f4)=

(@=1, - - -, 4), we can define a bijective correspondence between AM(M,, B, ,)/~ and
]_[a' P CD(M,, B, ,, o, B). Indeed, it is clear that an element of 4M/~ corresponds to an
element of some CD, and an element of CD corresponds to a minimal surface branched
at k points with orders J; and punctured at r points with orders I,. Let (f*, f2, £, )
be a minimal surface corresponding to an element of CD. For a puncture point p of
order I, we take a local holomorphic coordinate z such that z(p)=0. Then the singular
Hermitian metric ds? induced by f becomes as follows:

h(z)
1zPT

ds’=——"_dz-dz,

~ where h(z) is a positive smooth function. Let o(t)=x(¢) +./— 1 ¥(t) be a smooth locally
rectifiable curve tending to p as ¢ tends to co. Then, we have

do (dx/dt)* +(dy/dt)?

dt (x()* +y(2)*)

Hence, ||do/dt| tends to oo as ¢ tends to co. Thus ¢ has infinite length, and we see that

the induced metric is complete. Therefore, (1, f2, f3, f4) gives an element of AM.
Hence, AM/~ is in one-to-one correspondence with [ | CD through the relation above.

2
=h(a(1)) -
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On the other hand, there is the relations defined by

FEY, 02,00, %)== —VQ'IC ,

orCh, 02 03, (=t 1T
(3.1 -/ -1
1 p2 73 ray__ _C3+\/"1C4 .
(pZ(C ,C aC 9() Cl__\/_:cz ’

1
CUF, ¢1,¢2)=7E‘,FQ (@a=1, ---,4).

Using (3.1), we can define a bijective correspondnece between CD(M,, B, ,. a, B) and
FD(M,, Q, B, ,, o, p) (cf. [Os, Section 4] or [HoOs, §3, Remark 4]). Then, for each
(¢, ¢33, (% e CD and its corresponding (F, ¢, ¢,)€ FD, we have

(3.2) 0)==(¢1)e —(@2)0 +(F)+(£) .
We finished proving Lemma 1.1.

4. Proof of the theorems.

We shall prove Theorem 1.2, Theorem 1.3, and Theorem 1.4. We fix M, Q, k, r,
B,,, a, and B as above. We denote by Div4(M,) the space of effective divisors of degree
d on M, We observe that 2 =2(M,, B, «, B)=Divi(M,) x Divi(M,) x Divi(M,) x
Div¥(M,) x Divi(M,) x Div4(M,), where J =Zf= J;and I=)|_, I, has the structure
of a compact complex manifold of dimension J+ 7+ 2a’+ 2’ (cf. [GrHa, p. 236]). Let
L=LM,, B,,,, ) be the open subset of M;x ---xM, (k+r+20'+2p" times)
consisting of the elements (b;; p;; 55 15 X, ¥,) such that {b; p;} are distinct points and
that {s;} N {t;}={x.} N {y.}=. We will see that {s; t;}({x.; y.}, respectively) cor-
responds to the support of the divisor of ¢, (¢,, respectively). Let DAD'(M,, Q, B, ,, «, B)
be the set of D’s defined by

(D,, 0, 0) if o'=p'=0
5_J D.D20), if a'#0 and B'=0
(D,,0, D), if a’=0 and B’ #0

(Dl’ Dz, DS) s OtherWise .

where D,, D,, and D, are divisors on M, satisfying the following conditions:

k

j=

r a B’
Iip;+ Z s+ Z y.—(Q),
=1 =1 e=1

14
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=1 =1 e=1 e=1

for (bj; pi; 555 ts5; X3 y)€ L. When ({1, - -+, {*)e CD and (F, ¢, ¢,)€ FD are the elements
corresponding to each other such that (¢,)= D, and that (¢,)= D;, we have

4.1) (F)=D,,
by (3.1) and (3.2). We will prove the following lemma:

LemMmA 4.1. The set DAD’ has the structure of a complex analytic subvariety of
2 with the complex dimension k+r+2a’+28'.

PROOF. Let €=%(M,, B,,, «, B) be the subset of 2 consisting of the elements
k r a’ a’ B’ B’
z Jjbj’ Z Ii i Z Sas Z ls Z Xes Z Ve
j=1 i=1 =1 o=1 e=1 e=1
such that (b;; p;; 5 t5; X3 y.)€ L. Then € is an analytic subvariety of 2 and

dimc€=k+r+2a'+2p".

Clearly, we can define a bijective correspondence between ¥ and DAD’. We have thus
proved Lemma 4.1. O

Let DAD(M,, Q, B, ,, «, B) be the subset of DAD’ such that each element consists
of principal divisors on M.

LEMMA 4.2. The set DAD is a complex analytic subvariety of DAD’. If DAD is
nonempty, then

dime DAD >k+r+20'+28' —~(3—1)g .

ProoF. Let J(M,) be the Jacobian variety of M, and u: Div(M,) - J(M,) the
Jacobi map. We define i: DAD — J(M,)? by

(u(D,), 0,0), if a'=p"=0
5 J @D, u(D,), 0), if o'#0and g'=0
)= (u(D,), 0, u(D3)), if a’=0and B’'#0

((D,), u(D,), u(D5)), otherwise .

We note that degD, =degD,=degD;=0. Indeed, by (4.1), degD;=0. degD,=
degD;=0 is clear. By Abel’s theorem (see [GrHa], p. 225), DeDiv®(M,) is a principal
divisor if and only if u(D)=0. Thus, DAD=id"1(0, 0, 0). Since # is holomorphic with
respect to the complex structure induced as above, DAD is a complex analytic subvariety
of DAD’. By the definition of /, we also have
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dime DAD > dime DAD’ —dime (J(M,))>
—k+r+20 +28 —(B—1)g. O

We assume o’ #0 and p’#0. Other cases are similar. Let AD(M,, Q, B, ,, 2, B
be the set of triples (F, ¢,, ®,) of meromorphic functions on M, such that
(F), (¢4), (¢,)) € DAD, deg(¢,),, =2, and deg(,),, = B. We define n: AD - DAD by the
projection 7(F, @1, @,)=((F), (1), (¢,)) and we set V'=DAD~—{all singular points}.

LEMMA 4.3. The set AD has the structure of a complex analytic variety, and then
n: 1~ Y(V)— V becomes a holomorphic principal (C*)* ™ bundle. If AD is nonempty, then

dimcAD>k+r+2a'+2B'—(3—Ng+(3—m).

ProOF. Assume (F, ¢, ;)€ AD. Then ((F), (¢,), (@) =((wy * F), (W2 * @1), (W3 *
®,)) for any (w,, w,, w;)€(C*)3. Hence (C*)? acts on AD. Moreover, we can easily see
that (C*)? acts on (V).

To simplify the proof, we prove the claim for only one of the factors corresponding
to the functions not vanishing identically. We locally induce a complex structure from
DAD and prove that this complex structure is globally defined on AD.

First, we assume that g>1. Let 3 be the Riemann theta function, and
D=Y1?_,b,—Y ¢, p:adivisor of M, with u(D)=0. The following lemma is proved in
[Mu, Chapter 2, §3].

LEMMA 4.4. There exists a constant A in C? depending only on the choice of the
normalized basis for the space of holomorphic 1-forms on M, and satisfying the following
conditions:

FOF a pOint U=(Ul, T, vg—l) in (Mg)g*l Wlth {bla T, bd’pl, © ',pd} N {Ul, T
v,_1} =, the mapping h,: Vx M,— Cu {00} =CP* defined by
d —_ 9-1 . —_ .
h(D)(z)= 1—[;:19(41 zjfi u(v;)+ u(z)—u(b;))
[Ti-: 84 —252 1 ulv)) +uz)—u(py)

is a meromorphic function on M, such that (h(D))=D.

We define 4,(0)=1. We fix such a v for each divisor B in V" and denote it by vj.
Then A, (D)(z) is locally a holomorphic function with respect to D. Assume that Ujy is
a sufficiently small neighborhood of B in V. Then (h, (D))= D for D in Up.

We define

_ S
1
Tug: N H(Up) = Upx C*, fr—>((f),———— .

0 v hool()
Then this is a bijective map between 1~ *(Up) and Uy x C*. Hence we can give 1~ YUy
a complex structure c(vg). If H is another divisor and Upn Uy # &, then Ug n Uy has
two complex structures c(vg) and c(vy). But
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Ty Tun(D, w)=(D, (Gup.uu(D)) - w), Ius.Us =Noy/Poy
for each De Uy n Uy and we C*, and gy, y,, is holomorphic with respect to D. Hence
the two complex structures are compatible. In the same fashion as above, this complex
structure is independent of the choice of {vg}. Therefore, we can induce the complex
structure ¢ to #~ '(V), where n: (n7'(V), c)—> V and 1y,: (n~ Y(Up), ©) > Uz x C* are
holomorphic and the following becomes a commutative diagram.

1~ Y (Ug) —22 Uy x C*

n l lprojection

Ug — U,
BidB

We also have

TJ;(D, WiW,)=w; cw,* hv3=fz751(Ds wi)ew, .

Hence, we can give n: (n~'(V),c)— V a structure of a holomorphic principal C*
bundle. If B’ is a singular point of DAD, then B’ x C* is a singular locus of Uy x C*.
Thus we can give AD the structure of a complex analytic variety. Since the number
of components AD is 3—m, we have

dime AD>k+r+20'+28 —(3—)g+(3—m).

In the case where g=0, we can prove the lemma in a similar fashion as above only
by taking []{_, z—b,)/[]¢., (z—p;) instead of h,_. O

Now, we shall prove our theorems. We note that FD(M. o 8, By ,, o, B) consists of
all the triples of meromorphic functions in 4D satisfying the period condition.

PrOOF OF THEOREM 1.2. We note that m=0, a’=a, f’=f in this case. We fix
(Fo, ®10> ®200€ FD and denote —(©10)0 — (©20) +(Fo)+(9)=z~]jbjo-zlipio- Let

FZ:{Yls s V2gs V2g+1s ')’2g+r—1} be a basis for Hl(Mg_{p109 . DPro}) such that
{r1> == 724} is a basis for H,(M,) and that y,,,; is a simple closed curve around p,,
(i=1, - -+, r—1). We denote by W, a neighborhood of (F,, @0, ;) in AD such that

for (F, ¢, ¢,)e W, I is still a basis for H,M,—{p,, - -, p,}) where p; are puncture
points of (F, ¢, ¢,). We define holomorphic functions A¢: W, —>C (i=1, - -, 2g+
r—1,a=1, ---,4)as

'q"il(F’ P, ¢2)=f Ca(F’ P, (PZ) .
Vi

Then,

FD W= ([ (R{A})1(0).



VARIETY OF ALGEBRAIC MINIMAL SURFACES 133

Hence, FD is a real analytic subvariety of AD and
dimg FD>2{k+r+2a'+28' —(3—1)g+3} —4(r+2g9—1)
=2[k+2a+2B+5)—{(7T—Dg+r}]. O

Proor oF THEOREM 1.3. We pay attention to the elements of W, whose periods
are equal to the (Fy, ¢,0, ®50)’s. Since

FD N W,o ﬂ(lf)—l(J {Fo, @10 (on))7&g s

we have that FD n W, contains a complex analytic subvariety of 4D and
dim¢ FD>dimc FD n W,
>{k+r+20'+2p'—(3—1)g+3}—4(r+29—1)
=(k+20+28+7)—{(11—=1)g+3r} O
PrROOF OF THEOREM 1.4. We may assume that ¢,=0. Then, E; =1, E,=./—1,
E;=¢,,and E,= —\/TI @,. Hence, the period condition becomes as follows:
J FQ=0, J 0, FQ=0 for any ye H,(M,— {puncture points}) .
y 7

Since
FD A Wy= () (A9)~40),

we know that FD is a complex analytic subvariety of 4D and since the number of A{’s
not vanishing identically is at least (3 —m)(r+2g— 1), we obtain

dim¢ FD>k+r+2a'+28'—3—-Dg+(B3—m)—3—m)r+2g—1)
={k+20'+2B" +23—m)} —{2—myr+ (9 —1—-2m)g} .

For the corresponding (f1, f», f3, f4) € AM, we see that f'—./—1f?and f3+./—1f*
are holomorphic functions on M, — {puncture points}. Hence (F, ¢, ¢,) corresponds

to a branched complete holomorphic surface in R* of finite total curvature via
identification R* and C2 by (x,, X, X3, X4) ~ (X, —/— 1x,, x3++/—1x,). It is known
that such a surface is a stable minimal surface (cf. [La, Chapter I, §7, Corollary 28]).
Micallef showed that any branched complete stable minimal surface of finite total
curvature in R# is congruent to such a surface by an isometry of R* (see [Mil, Corollary
5.27 and [Mi2, Theorem]). Hence, we obtain Theorem 1.4. O
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