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Introduction.

Let g be a complex reductive Lie algebra and let g=f+p be the complexification
of a Cartan decomposition of gg =71z + pg, Where gg is a noncompact real form of g.

Kostant-Rallis [3] stated some results on harmonic polynomials on p. On the other
hand, for classical harmonic polynomials on CP?, there have been many studies. It is
well known that harmonic functions on C? are represented by integrals on the unit
sphere S~ or on some other O(p)-orbits and reproducing kernels of these formulas
are expressed by Legendre polynomials (see, [2], [4], [5], [6], [ 7], [10], [12], [15], etc.).

In our previous paper [14] we obtained explicit integral representation formulas
of harmonic polynomials in the case gg=su(p, 1). From the Lie algebraic viewpoint,
classical harmonic functions on C? corresponds to harmonic functions on p for the case
gr=50(p, 1). Therefore, integral representation formulas of harmonic polynomials in
this case are known.

Our purpose of this paper is to obtain explicit integral representation formulas of
harmonic polynomials and reproducing kernel of these formulas in remaining classical
real rank one case, i.e. the case gg = sp(p, 1). Our main results in this paper are described
in Theorem 2.2, in which harmonic polynomials on p for gg=sp(p, 1) are represented
by an integral on some Kg-orbits. This result is similar to the cases gg=s0(p, 1) and
gr=su(p, 1). ‘

The author would like to thank Professor M. Morimoto and Professor Y. Agaoka
for their helpful advices.

1. Preliminaries.

In this section we fix notations and review known results. For details, see [2], [3],
[5], [7] and [16].
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Let g be a complex reductive Lie algebra and let gz be a noncompact real form of
g. Let gg=Tg+ pg be a Cartan decomposition of gg and let g=F+p be the direct sum
obtained by complexifying Iy and pg. In this paper, for a Lie algebra b, we denote by
expadh the adjoint group of h. We put G=expadg and K,={a€cG; fa=al}, where
0: g— g is the Lie algebra automorphism of order 2 defined by =1 on f, 6=—1 on
p. Let K be the identity component of K. Then we have K=exp adf. Furthermore, we
put Kz=expadf,, which acts on the space p. Then we have Kg=Knexpadgg. We
denote by S the symmetric algebra on p. We put J={u€S; au=u for any ac K,} and
J,={ueJ; du)1 =0}. We denote by J' the ring of K-invariant polynomials on p and
we put J, ={feJ’; £f(0)=0}. Let S’ be the ring of all polynomials on p and let S, be
the space of homogeneous polynomials on p of degree n. For f€S’ and aeK,, af €S’
is defined by (af)(x)= f(a~'x) (xep). It is known that any element of J’ is invariant
under K, ([3] Proposition 10). It is also known that J’ has homogeneous generators
P,, -, P,, where r=dimag and ag is a maximal abelian subalgebra of pg. dimag is
called the real rank of gg. Let # ={feS’; d(u)f=0 for any ueJ,} be the space of
harmonic polynomials on p. We put #,=S,n# and J,=5,nJ. We put
J,.8),=J:8S"nS,,andZ,={0,1,2,3, ---}. Itisknown that S, =" S"),® #,(neZ,)
(see [3]). We put N={Xep; P(X)=0 for any PeJ’,}. It is known that the restriction
mapping f — f|n is a bijection from # onto J# |y (see [8], [14]).

H,(C% denotes the space of homogeneous harmonic polynomials of degree n on
C? and H,, denotes the space of spherical harmonics of degree n on S?71 1t is well
known that

. _ (2n+q—2)(n+q—3)!
dimH, ,= nlig—2)! .

It is well known that the restriction mapping f — f|s¢-: is a bijection from H,(C%
onto H, ,. For spherical harmonics and harmonic functions on C9%, we refer the reader
to [5], [6], [7], etc.

P, , denotes the Legendre polynomial of degree n and dimension ¢. For z, weC?
we put z+ w="‘zw. We put N9~ ! ={zeC% z-2z=0, z- Z=2}. Then the following lemma
is known.

Lemma 1.1 ([2], [S], [6], [7], [16]). ()) We put h(x)=P, /(x - a) and gy(x)=(x * b)"
(x, a, be C9). Then H, , is generated by the set {hy|sa-1; ae S '} and H,(C is generated
by the set {g,; be N4~ 1}.

(i) For any fe H,(C% and g€ H,(C? it is valid that
(1.1 dimH, , f S$)P, (s a)ds=9,,,.f(a) (aesS?™Y,

Sa

12 dim H, , J f@E - wrdN@)=2"5,,.f (W)  (weC9),
Na-1
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n!'I'(q/2) 5
IT'n+q/2) ™
where ds and dN denote the unique O(q)-invariant measures on S"‘f and on N~ such
that {¢,-1 1 ds={y,-.1 dN(z)=1, respectively.

(1.3) J f($)g(s)ds=2"2" dimHMJ f(2)9(2)dN(z) ,
Sa-1 Na-1

For zeC? and ae S9! we put

F,,,q(z, a)=P

z-a gy
)

Then P, ( , a) belongs to H,(C% and P, (s, a)=P, (s a) for any se S7™".

2. The case gg=sp(p, 1).

In this section we obtain integral representation formulas of harmonic polynomials
on some Kg-orbits in the case gg=sp(p, 1) (peZ ., p=2). We put

A B |
g=sp(p+1,C)= ,A); A, B, CeM(p+1,0), ‘B=B,‘C=C},
A B
‘e z . Z Aeu(p), acu(l)
gr=s5p(p, )= _ Y ; B is p x p symmetric p,
By 4 beC, x,yeC?
v —b —='x a ’ ’_y
A 0 B O
0 a 0 b | Aeu(p),acu(l),beC
—B 0 A 0 [ Bispxp symmetric
0 -5 0 a
0 x O y
‘x 0 Yy 0
,yeC?
(o 5 0 —x €
‘v 0 —='x 0

Then we have

40 B 0
| A, B, Ce M(p,C)
1= 2 0 B Lp_pic=c
B CO0 —'4 0 ,a; ’ec— ’
- L) ©B
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0 x O w
t t
_ y 0 'w O . »
p= 0 z 0 _ ,X,y’Z,WEC s
'z 0 -'x O
G=AdSp(p+1, C),
A B 0
0 2 0 B A,B,C,DeM(p,C),a, B,y,6€C
=< Ad Co0DO ;'CA='AC,'DB='BD, R
*‘AD—'CB=1,, a6 —By=1
L 0906 p @0 =By
-
con
Kp=< Ad _ . e AdUQ2p+2);'AB="BA ,
—B 0 40 ad+ pp=1
. 0 —B 0 & -
For this Lie algebra g the Killing form B(X, Y) equals (2p+4)Tr(XY). The generator
0 x O w
of J'is B(X, X) (X ep). For X=<‘(};(z) '(v)v _0y>ep, we put P(X)=4(x-y+z-w)=
'z 0 ='x 0

D
TrX2 Then #,={feS.; P(D)f(X)=0}, where P(D)=4 3 ( A ) Further-
j=1 Ox;0y; 0z;0w;

more N={Xep; BX, X)=0}={Xep; x*y+z-w=0}. We put

=1}.

(g

Ny

Z={Xep;y=X,w=Z,x*X+z*

A 0 B O x 0 w'

_ 0 oo 08 [ Yy 0 w 0
Letg-Ad(_E o i 0>EKR. If we put gX—( o > 0 _y,)ep, we have

0 —-f 0 & iz 0 =% 0

x’ = A(d&x + pw)+ B(@z— By),

z' = — B(ax + pw)+ A(a@z—By) ,
y' =B(—Bx+aw)+ A(axy + B2) ,
w'=A(— fx+aw)— B(ay + fz) .

2.1

By putting &(X )=( ), we can rewrite (2.1) as follows:

T e N X

(2.2) P(gX)=Ag)P(X),

where
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A(g)=< ady _‘B__A2>, A1=( 4 If), A2=<€ —_A>.
—BA, ad, B 4 A B

We see that 4,, A, e U(2p) and A(g)e U4p).
Next for Xep we define the mapping ¥ : p —» C*? by

xX+y

1 z4+w
PO=3\ —ix-»
—i(z—w)

It is clear that ¥ is the bijection from X onto S*?~!. We can see that feJf, if
and only if f-¥~'eH,,, Therefore, we have dim#,=dimH, ,,. We put <X, Y)=

% Tr(XY)=&(X) - &(Y) and Q, (X, Z)=P, . (P(X), ¥(Z)) (X, Yep, ZeZ). Then

_ X,z "
0,,(X, 2)=2 "P,,,4,,<< >>(P(X)) 2.
V P(X)
A, is generated by {Q, ( ,Z); ZeZXZ}. It is also known that J#, is generated by
A 0 BO
{ ,Z)>" ZeR} (see [3]). For g=Ad< _OE g ?{ g € Kg we get
0 —-B 0 &

Y(gX)=M(@¥(X),
where
Mig)= ( Re(@d,—pA,) —Im(@d; —p4) ) .
Im(@A4,+pA,) Re(@d,+pA4,)
Note that M(g)e O(4p). Let

0 ¢ O 0
t
e; 0O 0 0
E,= Z:
o 00 0 —e |F
t

0 0 —%¢ O
where ¢, =100 - -- 0)e C?. Then we have the following
LemMA 2.1. It is valid that X = KxE,.
Proor. From (2.1) and (2.2) it is easy to show that KgE, < X because A(g) belongs
to U(4p). Suppose X=® ((x z x Z))e Z. Then (Z) and (

-z

) form an orthonormal
P
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system of C??. There is some <b )GCZP \{0} such that ( ) <___) and (b ) form an
2

X

orthonormal system of C2?. Then we see that ( ) < ) ( ) and ( ) form an

orthonormal system of CZ2?. Repeating this procedure, we can ﬁnd a;, bjeCr

(j=2,3, - -+, p) such that {(x), (__Z_), (a">' (—_b-"> 2 Sj_<_p)} is an orthonormal basis
z a;

x b;
of C??. If we put A=(xa,- - -a,) and B=(—2 —b,- - - —b,), we have ‘44 +'BB=1I, and
A 0 B O
B tE 4 B . _ 0 100
AB='BA because (—E Z)e U(2p). Therefore, by putting g—Ad( B o 40 ), we
0 001
get ge Kz and gE,=X. Hence we have £'=KgFE|,. Q.E.D.
We denote by K, the isotropy group of Ky at E,. Then we have
( 0 —B 0 0 A
00BN amma,,
K=< Ad | cKy, ‘AB=BA,
0 & 00 ad+pp=1
0 0 A0 B
re,
Next we put E‘,=¢‘1< g )GSR and N(r)=KgE, (0<r<1), where
(1_'.2)1/2e2 .
=01 ---0)eCP. Let du; and du, be the unique Kg-invariant measures on 2 and
N(r) such that [ ldus={y, 1du,=1. Since M(g)e O(dp), we get [, f(Z)dui(Z)=
A 0 BO
-1 0 o 0 ﬂ
fgap-1f o ¥~ (s)ds. For g=Ad< 5 o0 Ao )GKR we have
0 —-B 0 &
P(gE,)= :

T = N X

where
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(x)_(o?ral + B(1—r*)1a, )
z) \ —arb,—p1—r?'35, )’
(y >_< —Brb, + (1 —1r?)'/?b, )
w —Bra, +o(1—=r»)"%,a, )’
and a;=Ae;, b;=Be; (j=1, 2). Now from the condition on Ky we have

a \ (b\_ a \.( 4 \_ -
v () (G)(5)w w-a

Let
A 0 B O
0O 100
= _ . K,
H, Ad B o 40 € Kg ,
0 0 0 1
I, 0 0O
0 a 0 p
H, = Ad 0 0 1, 0 € Ky
0 —B 0 &«

Then H, and H, are subgroups of Kz, and for any ge Ky there are unique 4;€ H;

(J=1, 2) such that g=h,h,. If g;e H; (j=1, 2), we have g,9, =g,9,. From the proof of
Lemma 2.1 ¥=H,E,. We have from (2.3)

e o (M- )

We denote by dy; the Haar measures on H; such that [, 1du;=1 (j=1,2). If f
and A are continuous functions on X and N(r) respectively, then we have

S(9Eo)duy(g)= f S (X)duy(X)

H,

and

(2.4) j h(Z)dp(Z)= (j h(glgzﬁr)dul(go)duz(gz)-
N(r) H, H;

We define the function p on [0, 1] by
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F<2p-~;—>
r*?=3(1—

__94p-3
@ PO =2 a2

r2)2p— 3(2)‘2 — 1)2 .

Then our main theorem in this section is stated as follows:

THEOREM 2.2. (i) For fe #, and Xe€ X we have
(2.6) dim %, J SN0 Y, X)dpu(Y)=06pmnf(X).
z

(i) For any Xep and Ye X we have

n!'I’'(2p)

nTzl’) 6m,nQn,p(Xs Y) .

1 -
2.7 J P(r)< (Z,Y)Z, X >"dﬂr(Z)>dr=
N(r)

V]

(iii)) For any fe K, and any Xe€p we have

1 -
(2.8) f P(r)( f(ZKZ, X)"du(Z ))dr =(dim ;)" 0 0 S (X) .
N(r)

0

(iv) For any fe #, and g€ #, we have

n'I['(2p)dims#, (!
I'(n+2p) °

To prove Theorem 2.2, we need some lemmas.

Lemma 2.3 ([2], [5], [7], [15]). (i) For BeR we have

24"_2F<2p—%>

2 2[(2p—1)
(i) Let o, BeC*, a-a=p-p=0. Then we have

2.9) ff(X)E(Y)duz(X)= p(r>< f(X)aBF)du,(X))dr.
z N(r)

(2.10) P, ,,(cosO)=

1
f {cosO+(2r>—1)isinO}"r*P~3(1 —r?)*?~2dr .
(4]

(5 Byds=>_H@p) . By
@11 L,,,-,(s s BYds="re o bl B
(ii)) If X and Y belong to N, then we get
— n\I'(2p)
. ™Y, ZYdul(Z)=———— "
(2.12) _L(X,Z>< , Z)"dus(Z) T+ 2p) Om X, YD

Proor. (i) It is well known that the following formula holds for 0<7<1:

1
t+-1_t21/2 n1_22p—2d
72T (2p 1)L{"'( P =y

Pn,4p(t) =
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(see [5], [7]). From this formula we get (2.10) by putting r=/(x + 1)/2.
(i) Suppose o a=p-f=0. Then we have (z* 2)" € H,(C*?) and (z - f)"€ H,(C*?).
Hence, (2.11) follows from (1.2) and (1.3).

Cy U1 X
iii) We put X=0"1| 2 ), Y=0"1 # JeR and Z=d"!| % |eX (x=
p d 11 X
1 1
d, z

N2
x,+ix,, z=z,+1iz,, X;, X, Z1, 2, € RP). Then we have by (2.11)

j (X, ZY™Y, ZY"duy(Z)
)

Cy +d1 X1 m Hi +7Il X n
=J Al B I [P/ PR Y S dus
st id, —cy) *2 iy — Ky) X2
i(dz_cZ) 22 l'(rlz—”z) 22
27 (2 o s
_ n!I"(ZB)“(s X, Y
F(n+2p) m,n s

because

2
.;1 {(c;+d)) - (c;+dj)—(dj—cj) - (dj—c;)}

Me

J

1

{(uj+ny)* (y+n)—m;— ;) - (n;— 1)} =0 Q.E.D.

LemMma 2.4. We put

« 0 —p O
0 « 0 B o _
Gy = o & 0]¢ U4); ag+ =1
0 -8 0 &
and
0 x, O w,
yi 0wy
= M4
pO 0 Zl 0 _yl € ( ) C)

21 O "‘xl O

We denote by J'(p,) the ring of Ad G-invariant polynomials with complex coefficients on
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b 1
zz, 0 —x;, O

S(X)=0(x;+y1, X1¥1+2,wy4),

where @ is some polynomial on C2.

0 x;, O wy
Po- If feJ'(po), then we have for X=(J(')‘ zo “(;‘ 0 )epo
1

ProoF. Let g, be the Lie algebra of the group G,. Then we have

a 0 —B0
0 « 0 B\ _
G0= F 0 i 0 ;a, feC,a+a&=0
: 0 —f 0 &

Let S'(po) be the space of polynomials with complex coefficients on p, and let S,,(p,)
be the space of homogeneous polynomials on p, of degree m. Remark that S;(p,) is
isomorphic to pg. Since G, is connected, feS'(p,) belongs to J'(p,) if and only if
—(ad Y)*f=0for any Ye gy, where (ad Y)*: S'(po) = S'(po) is the map naturally induced
by the dual of ad Y: py — po. We put

i 00 0 0 0 —10 0 0 —i 0
0i 0 0O 0 0 0 1 0 0 0 i
Yi=l o0 0 i > =t 1 9 o 0] =\ Zio o0 o)
00 0 —i 0 -1 0 0 0 i 0 0
01 0 0 000 O 0000
00 0 O 100 0 0000
Xi=\ g0 o0 o | X~ 000—1’X3“0100>’
00 —1 0 000 O 1000
0001 ‘
0010
=l 0000
0000

{Y; 1<j<3} is a basis of g,. {X}; 1 <j<4} is a basis of p, and {X}; 1 <j<4} denotes
its dual basis of pg. Clearly, we have X{=x,, X¥=y,, X¥=z,, X}¥=w,. By using the
bracket table
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X, X, X, X,
Y, 0 0 —2iX, 2iX,

Y, | X:—X. | —Xs+X, | —X,+X, | X,—X,
Y | —iXy—iX, | iXs+iX, | —iX,+iX, | —iX,+iX,

we have —(ad Y,)*X¥=—(ad Y,)*X¥=0, —(ad Y,)*X¥=2iX} and —(adY,)*XF=
—2iX¥. In particular, we see that the space of —(ad Y;)*-invariant polynomials is
generated by {X¥, X¥, X3X}}.
Next, from the above table, we have

—(ad Y )*X¥=X¥— X7,

—(@dY,)*XF=—-X¥+ X7,

—(@dY,)*X¥=—-XF+ X7,

—(@d Y )*X*=X*—X*.
Hence, the eigenvalues of the linear transform —(ad Y,)* on Si(po) are 0, 2i, and —2i
and we have V(0)=<X¥+X*, X¥+ X}, VRi)=<iX§F—iXF+XF—X}), and V(—2i)=
(X ¥—iX¥—X¥+X¥), where V(J) is the eigenspace corresponding to the eigenvalue

A. Therefore, the space of —(ad Y,)*-invariant polynomials is generated by {X§+
X¥, X¥+ X}, X¥X¥+ X$X¥}. From these facts, we can express f€J'(po) in the form

f= k; A XX (X3 X"

= 2 (XF+XP o (Xi+ X3, XTXF+XIXT),

r=0
where ¢, is a polynomial of XF+ X¥ and X}X¥+ X¥X¥, and 4,,,€C. Then, since
the term corresponding to r=0 is expressed as a polynomial of X¥, X¥, X3 X¥, we have

Y (XF+ XE o (XF+ X5, XFXE+X3X})

rx1

= Y BoinXHXP(XEXH™,

k,l,m

where B, ;. € C. By putting X3 = — X}, we have from this equality

Z Bk,l,m(Xf‘)k(Xik)l(“Xé")zm =0.

k,l,m

Hence, B,;,.=0 and we get f=¢@ (X¥+X¥, X¥X¥+X$FX¥). The invariance by
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—(ad Y;)* follows immediately from that of —(ad Y,)* and —(ad Y,)*. Q.E.D.

LEMMA 2.5. Let L, be a homogeneous polynomial on p of degree n with complex
coefficients. If L (kX)=L,(X) for any ke K, then L(X) is expressed as follows:

(2.13) L(X)= Y Cx;+y)Ceys+zyw Y (x »y'+2z" - w)n=i=202

(,r)eA
X1
ep, x=(")

z w -
yz(yt),z=< l’)a W=< :>’ X1, V15 Zy, Wlecandx,,yla Z,’ w'ECp 1‘
y z W

where A={(l,r)eZ%;n=1 (mod?2), I+2r<n}, C,,eC, X=€D"1(

T e N X

ProOF. Since L, is a homogeneous polynomial of degree n, L, can be expressed
as follows:

L(X)= )3 x{yiziwi Ag, s ((x" 2" y' W),
O0<gq,r,;s,t<n
0<g+rts+t<n
xl
where A4, ;, is a homogeneous polynomial of ( ;, ) of degree n—(q+r+s+t).
wl
« 0 0 —B 0 0 ’ :
0 A4 0 0 B 0 X
_ 0 0 a« 0 08 ¢\ () (&
Foranyk=Ad. B 0o 0 & 00 eKoweput<6)—di(kX),x—(x,),C—(C,),
0 -8B 0 0 A0 v
0 0 —-fF 0 0 &
¢=(§{ ) v=(”{ ) Then we have from (2.2)
v
xl xl
’ —AI — AI ’
2.14) ¢ =( s ﬁiz) ‘.
v w’
a 0 -8 0
, (4 B\ , (B -4 _ 0 « 0 B
where we put Al_(—F' ,Z')’AZ_<,Z' J ) Furthermore g-—Ad(ﬁ o & 0)
0 -8 0 &
belongs to AdG,. Remark that ( &:,ET' _?") belongs to U(d4p—4). The action of
—pA; aA,

g€ Ad G, on the space p, can be expressed as follows:
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0 x, O vy 0 x;, O Wy
él O vl 0 yl 0 W1 0
2.15 =
¢ ) 0 ¢ O —&4 g 0 z 0 —WN
. Cl 0 — X1 0 Zq 0 — X1 0
We put

| A4, 0 : A B
H|= C eudp—a; A= 7. T leuep-2),
O T (A T

A, B'eM(p—1, C)}.

When a=1 and =0, from (2.14) and (2.15) it is valid

L(X)= . ZK x§y1ziwidg s B (x" 2" y' W)
Osqs-t?;r-i-séft'lSn

for any he H; because L, (X) is Ky-invariant. This implies

(2.16) Agrs (X 2"y W) =Ag, s (H(x 2"y W)
x’ — ——

for any he H;. We put Z’={< Z; )EC‘*P“"';(y >=(x ), (x )(x )-—-1}. We can
y w’ z' z' z’
W!

prove that H; acts on X’ transitively similarly to the proof of Lemma 2.1. Hence 4, ;, is

xr

’

’

constant on X’ by (2.16). For X =( )eC‘*”"4 we define the mapping

¥4
y
w’

Y, : C4 45 C4 4 by
xl+y/
z'+w
—ix"'—y")
—i(z'—w’)

¥.(0=1

Then it is clear that ¥, is the bijection from X’ onto S*?~ V"' Hence, 4,,,,¥; ' is
constant on S*P~ V=1 Since 4,,,,o ¥ ! is 2 homogeneous polynomial on C*?~*, we
have for (A; A, A5 A,)eR4P™4

4 (n—q-r—s—12
(2.17) Agrso P (g Ag Ay A)= Cq,r,s,,( Zl lf) ’
P-

where C,,,,€C, and C,,,,=0 when n—g—r—s—t is odd. Since AgpsoPrlt s
holomorphic on C*?~#, (2.17) is valid for any ‘(A; A, 43 A,)e C*?~*. Therefore we get
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t, r ’ ny . , . —g—r—s—1)/2
Agrsl(X 27y W) =Cop X"+ y' +2' w)nTaTrmsToiz
From this equation we can write

Q18) L= T xiswiCpury 4z w)rmar o
0<gq,r,st<n
O0<qtr+s+t<n

[n/2]
’ ’ ’ nk
= Z { Z Cq,r.S.rx‘lly;Ziwi}(x Yy +z' W)
k=0 {g+r+s+t=n—2k

[n/2]
=kZ Jn-2al0ey zy yy w))x' -y’ + 2" whk,
=0

where f, _,, is a homogeneous polynomial of degree n— 2k. Next, we consider the action
of ke K, on L, (X), not assuming a=1, $=0. (2.18) and (2.14) imply that
(/2]

L(X)= k;Q./;:—Zk(t(XI CoEy v =&+ v

[n/2]
= k;()fn—u(t(h CLliv))x =y +z/ - w

because x’'+y'+z’'-w’ is K,-invariant. Hence, we have
(0

Jo—2(01 &1 & vi)) = Sre (X1 20 ¥y W),

which implies that f,_,, is Gy-invariant on account of (2.15). Then by Lemma 2.4 we
obtain

(2.19) Jn—2(x1 21 ¥4 Wl))=,+2 Z w Crxy +y1) ey +z,w1) .
From (2.18) and (2.19) we get (2.13). . Q.E.D.
LEMMA 2.6. For any Xep we have
1 — n'I'(2p)
2.20 Y, EQ>™(Y, X>"du(Y) Jdr=——2" 5 0O (X, E,).
(2.20) L P(r)< N(f)( 0>"< ) H(Y)> r T(n+2p) 1@, pl o)

ProoOF. For any Xep we put
1 -
F(X) =J p(f)( Y, Eo>™Y, XD du,( Y)>dr -
0 N(r)

Then F(X) belongs to J#, because N(r) = N. Furthermore, F(X) is K,-invariant because
the inner product { , ) and du, are Kg-invariant. Hence, by Lemma 2.5, F(X) can be
expressed as follows:

(2.21) FX)= 3 Cx+y)(xpi+zw)x -y +z -w)e-i=2z,

(I,r)ea
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i,

ee; Ip 0 O O
—if
We put X9=<P‘1<e_?,,e )e}:, h;1=Ad( ¢ ;) g )EHZ. Then we have X,=
1

0
hg 'E, and ghy=heg for any ge H,. We put

G (Xp)=| <Y, E>"Y, X du(Y).
N(r)
Then it is valid that for any ge H,

G(Xp) = (Y, Eg)™(Y, hg "Eo)"du(Y)
JN@E)
= Y, Eq>™hgY, Eo)"dp,(Y)

(Y N(r)

=| <97'Y, Eo>"™Chog” Y, Eo"du(Y)
J N(r)

= <g_1Y9 E0>m<g_1h0Ya EO>"dur(Y)
o N(r)

= Y, gEq>™heY, gEo)"du(Y) .

JNE)

From this equality we have
(2.22) G (Xo)=| G Xo)dps(9)
JvH;y

r‘

= < J\ <Y, gEy>"™hyY, gEo>"dp( Y)>dﬂl(g)
JvH; N()

r

= ( Y, gEy )™ hyY, gEo>"du1(g)>d#,(Y)-
H,

JN(r)

Since H,E,=2, and Y and 4,Y belong to N(r)= N, we have from (2.12)

(2.23) <Y, gEo>™<heY, gEo)"dp,(9) = j Y, ZY™heY, Z)"dus(Z)
z

H,

!
G 5 v hyy
F(n+2p) ™

From (2.4), (2.22) and (2.23) we have
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n'I'(2p) [
G Xg)=————"—0pmn
I'(n+2p) J N

_ n!l(2p) 5 i (
r(n+2p) ™" Ju,\J

_ nlr2p) [ < [
F(n+2p) m’”de I,

_ n'I'(2p) 5 ( ( [

I'(n+2p) mm.aH; J
_ n'I'(2p) [
T(n+2p) ™",

<h 'Y, Y"dpu(Y)

<hg 19 19 2En 919 2Er>"dﬂ1(g 1))‘#‘2(9 2)

H,

<g1hg lngr’ g 192Er>"dl‘1(9 1)>dll2(gz)
H,

<h tg,E,, ng,>"du1(gl))duz(gz)

H,

<h9_ IQZE‘r’ gZEr>"d”2(gZ) .

I, 0 00
_ 0 o 0 B

For gz—Ad( 0o 0 I, O)GHZ, we have
0 - 0 &

Chy 'goE,, g2E,> =cosO+i(|o|*—| B|*)N2r*—1)sinf .
Therefore, it is valid

n\['(2p)

(2.24) G(Xo)= m

Omom J {cosO+i(|a|*—|B|*)(2r*—1)sin0}"dudp ,
s3

where S3={<;)6C2; |o¢|2+|ﬁ|2=1}, and dodp is the volume element of S3 which
satisfies [, 1dadf=1. If we put a=te’? and f=(1 —1%)"/%¢", we have
cosO+i(la|?>—| B|*)2r*—1)sinf =cos B + i(2t> — 1)(2r* — 1) sinf

and

(2.25 J {cosO+i(|a|>—| B|*}2r*—1)sin 0}"dadp
s3
2n 2n 1
= % =2 f (j (J {cos0+i(2t>* —1)(2r* — 1) sin 9}"tdt)d(p)d|// .
o (o) o
=2 Jl {cos 0 +i(2t2 —1)(2r* —1)sin 0}"tdt

o
1
=—;— J {cos 0 +i(2r* —1)p sin6}"dp
-1
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1
T 2in+1)2r*—1)sin6
1
T 2i(n+ 1)2r2—1)sin6
—{cosO—i(2r* —1)sin6}"*1).

[{cosO+i(2r:—1)psinf}"*1]L |

({cosO+i(2r*—1)sinf}"*1!

If we put ¢, ,=—1%P 5 from (2.24) and (2.25) we have
I'(n+2p)

1
f G (Xr*? = 5(1 —r?)*?~32r* — 1)%dr

0
_. J‘l r4p—5(1 -—7‘2)21’.—'3(21‘2—1)
™ o 2i(n+1)sinf
—{cos0—i(2r? —1)sin6}"* )dr .

By putting t=(1—r?*)!'? we have

({cos0+i(2r* —1)sinf}"*!

1
J‘ r*?=5(1 —r?)27=32r2 — 1){cos 0 —i(2r> — 1) sin 0} * 1dr

4]
1

=— J t4775(1—1%)?P73(2t2 — 1){cos 0 + i(2t> — 1) sin 0}"* 'dr .
[0}

Hence, we have

1
(2.26) J G(Xr*?=3(1 —r3)2P=3(2r2 — 1)%dr
0
_c‘ Jl r4p-—5(1_r2)2p—3(2r2_1)

0 +i(2r*—1)sin6}"* 'di
(it )sinb {cos0+i(2r*>—1)sin 6} r

{ 4p—4(1 2)2p 2}
J {cosO+i(2r* —1)sin6}"* 1dr
i(n+1)4p—4)sinf

4p 4(1 2)2p 2
I: i(n+1)4p—4)sin0

1

{cosO+i(2r? —1)sin0}"* 1:‘

o

1 ,4p=3(1 _,2)2p~2
+Cm,nj ! ( I ) {cosO+i(2r? —1)sin6}"dr
0 p—

1 .4p-3 1— 2\2p—2
=Cm,nJv ’ ( ; ) {cos@+i(2r* —1)sin0}"dr
0 p—

n'?I'(2p—2)

= Co,nP,4,(COS 0)
24”—3F(2p—~;—>

369
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from (2.10). Because P(X,)=4 and {X,, E,)=2cos0, we have

Q. Xy, Eg)=P, 4,(cos0) .
Therefore, from (2.5) and (2.26) we have

1 _
F(Xp)= f p(’)( <Y, Eo>™Y, Xod dp,( Y))dr
0 N(r)

1
=f p(r)G(Xo)dr

0
_ nlI'2p)
—F(n+2p)

On the other hand, from (2.21) we have

5m,nQn,p(X0, EO) .

(2.27) F(X,)= Z Ciin-n2(2cos o)

lEon%nllfan)
because x'=y'=z'=w'=z,=w,; =0 and x, =e", y, =e . Since Fe #,, we have from
(2.21) and the definition of P(D) '

P(D)F(X)= > {(n—1—2r)(n—1—2r+4p—6)C,,
og(i"i)resAn—z

+4C, 1, U+ 2X+ 1) +4C, 4 (I +7+2)(r+ D}xy + )
cpyHZw (X Y w220
If (,r)e A and 0</+2r<n—2, we have by this equation
(2.28) (n—1=2r\(n—1—2r+4p—6)C,,
=—4C,,,,(I+2) I+ 1)—4C,, . (I+r+2)r+1).
(2.28) shows that we can determine all coefficients of F(X) uniquely by C,_;,-
(I=n—2[n/2], n—2[n/2]+2, - - -, n—2, n). If we put H(X)=1:'(;rf;;) 0, X, Eo), then H

belongs to 5%, and H(kX)= H(X) for any k € K, because P(X) is K-invariant. Hence we
can express

HX)= ), Dy (x;+y)(xyi+zw)(x - y'+z' w7202
(I,rea

where D, , € C. In addition, D,, also satisfies (2.28). In the case n=m, since H(X,) = F(X,)
and
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H(X,)= Z Dz,(n-l)/z(z COSB)’ >
o<l<n
l=n(mod 2)

we have D, ,_ ;2= Cj ,—p2 by (2.27). Therefore, for any (I, r)e A we obtain D,,=C,,
which implies (2.20).

When n#m, we have C,,_;,,=0 (I=n—2[n/2], n—2[n/21+2, ---,n—2,n)
because F(Xy)=0. Therefore, we get F(X)=0 by (2.28). Q.E.D.

PrOOF OF THEOREM 2.2. (i) We get (2.6) easily from (1.1).
(ii) From Lemma 2.6 we have for any XeX

1
j p(F)(J (Z,E\)™Z, X >"d#r(Z)>dr
N(r)

0

n!I'(2p) (1 >

" 5 p (X ED).
F(n+2p) m,nt n,4p 2 < O>

For any Ye X there exists some g€ K such that Y=gE,. Hence, we have

(2.29) j 1 p(r)( Z, Y>”<Z—X>"du,(2))dr
N(r)

0

= p(r)( (Z, gEo>'"<z—,?>"du,(Z)>dr

JO N(r)

r1 r
= p(f)( 97'Z, E»™(g7'Z, g“X>"d#r(Z)>dr

Jo N(r)

r1 r
= p(r)( (Z,Eo»™Z,97'X >"dur(Z))dr

v O N(r)

n'I'(2p) < 1, )
= =<9 'X,E

r(n+2p) m,n* n,4p 2 <g O>

r
_nrep , pw(i (X, Y>)
I'(n+2p) 2

_ n!I'2p)

—m 5m,nQn,p(X9 Y) .

It is clear that the restriction mapping f — f]; is the bijection from #, onto J,|;s. Since
the left-hand side of (2.29) and (n!I'(2p)/T'(n+ 2p))d,, . Q.. (X, Y) belong to 5#,, we obtain
(2.7) from (2.29).

(iii) For any fe#, there exist some positive integer M, q,€C and Y, eZX
(k=1,2, ---, M) such that
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M
(2.30) fz )=k§,1 aOnZ, Y) (Zep).
(2.30) implies
1 _
(2.31) f p(f)( f(ZXZ, X >"dur(Z))dr
0 N(r)

= kzl a f p(r)( OmoZ, Yk)<z,_X>"du,<Z)>dr (Xep).
= N(r)

0

Let C, be the coefficient of the highest power of ¢ in P, 4 (). Then it is known that

2.32) C, = 2 I"(n+.2p)
n!I'(2p) dim S,

(cf. [51, [7D) and Q,, (Z, Y)=2""C,(Z, Y, )" for Ze N(r)=R. Hence, the right-hand
side of (2.31) equals

0o

27 "G, f a 1P(ﬁ(j Z, Y )"Z, X >"d#,(2)>dr
k=1 N(r)

M Ire
=2_nC" a; —n ( p)
k=1 I'(n+2p)
=(dim 5#,) ™ '8 pn,nf (X)
by (2.7), (2.30) and (2.32).
(iv) For any ge#, there exist some positive integer M, X;eX and a,eC

k=1,2,---, M) such that g(Z)=ZkM=1akQ,,,p(Z, X,). Then we have ¢g(Z)=
27"C,Y M a(Z, X,>" for ZeN. Hence, from (2.6) and (2.8) we get

6m,n Qn,p(X3 Yk)

M

1 —_—
(2.33) j p(f)( S (Z)g(Z)dur(Z))dr=2"‘C..(dim9ﬁ)"5».,.. Y. auf(X,)
N(r)

0 k=1

=2""C, f f(Z2)g(Z)dux(Z)
T

because Q, ,(Z, X,) is real valued on X. Therefore, (2.9) follows from (2.32) and
(2.33). » Q.E.D.
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