C_n -moves and V_n -equivalence for Links

Haruko Aida MIYAZAWA

Tsuda College

Abstract. K. Habiro defined a C_n -move which is a local move on oriented links. He also proved that two knots are not distinguished by any Vassiliev invariants of order less than n if and only if they are related by a finite sequence of C_n -moves. In the case of $n \ge 3$, it is known that the result does not hold for links. In this note we will introduce a special C_n -move and give a "geometrical" necessary and sufficient condition using the terms of C_n -moves for that two links are not distinguished by any Vassiliev invariants of order less than 3 or 4.

1. Introduction

In this paper we consider oriented links in the 3-sphere S^3 . A C_n -move ($n \ge 2$) is a local move indicated in Figure 1.1 on oriented links defined by K. Habiro [5].

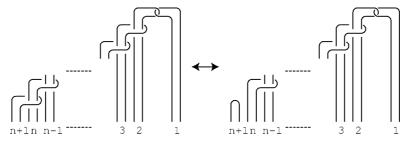


FIGURE 1.1

A C_1 -move is defined as a crossing change. We remark that a C_2 -move is equivalent to a Δ -move in Figure 1.2 (i) and a C_3 -move is also called a clasp-pass move ([6]) in Figure 1.2 (ii).

We say that two links (or knots) are V_n -equivalent ([14]) if they are not distinguished by any Vassiliev invariants of order less than or equal to n. A C_n -move is closely related to Vassiliev invariants. In fact M. N. Goussarov and Habiro showed the following theorem independently:

Received May 12, 2008; revised November 14, 2008

This work was partially supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) 19540101 and the 21st COE program "Constitution of wide-angle mathematical basis focused on knots".

FIGURE 1.2

THEOREM 1.1 ([4, 7]). Let K and K' be oriented knots and n a positive integer. Then K and K' can be transformed into each other by a finite sequence of C_{n+1} -moves if and only if they are V_n -equivalent.

In this paper we consider the link case.

Since a C_2 -move is a Δ -move and a Vassiliev invariant of order 1 for a μ -component link($\mu \geq 2$) is generated by the linking numbers of 2-component sublinks of the link ([11]), the result of H. Murakami and Y. Nakanishi is rewritten to the following:

THEOREM 1.2 ([12]). Let L and L' be oriented links. Then L and L' can be transformed into each other by a finite sequence of C_2 -moves if and only if they are V_1 -equivalent.

In the case of $n \ge 2$, the following theorem holds:

THEOREM 1.3 ([3, 15, 18]). Let L and L' be oriented links in S^3 and n a positive integer. If L and L' can be transformed into each other by a finite sequence of C_n -moves, then v(L) = v(L') for any Vassiliev invariant v of order less than n.

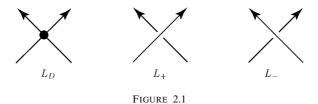
It is known that the V_n -equivalence for links does not imply the C_{n+1} -equivalence which is the equivalence relation generated by C_{n+1} -moves and ambient isotopies. For example, the Whitehead link and the 2-component trivial link are V_2 -equivalent. However they are not C_3 -equivalent(see §5).

We define a special C_n -move which is called an SC_n -move as follows: Let $\alpha_1, \ldots, \alpha_{n+1}$ be the arcs shown in a C_n -move and $c(\alpha_i)$ denote the component of the link which contains α_i for each i with $i = 1, 2, \ldots, n+1$. If there is an arc α_k such that $c(\alpha_k) \neq c(\alpha_i)$ for all i with $i \neq k$, we call the C_n -move an SC_n -move. Using this local move, we obtain the necessary and sufficient conditions for that two links are V_2 -equivalent or V_3 -equivalent:

THEOREM 1.4. Let L and L' be oriented links. Then L and L' can be transformed into each other by a finite sequence of C_3 -moves and SC_2 -moves if and only if they are V_2 -equivalent.

In the case of n = 3, we obtain the following result for 2-component links:

THEOREM 1.5. Let L and L' be 2-component oriented links. Then L and L' can be transformed into each other by a finite sequence of C_4 -moves and SC_3 -moves if and only if they are V_3 -equivalent.


REMARK. After this work, J.-B. Meilhan and A. Yasuhara refine Theorem 1.5 by showing that an SC_3 -move is generated by a finite sequence of C_4 -moves ([10]).

2. Vassiliev invariants and C_n -moves

2.1. Vassiliev invariants for links. We can define Vassiliev invariants for links as for knots. Let v be an invariant for links which takes values in an abelian group. Then we can extend v to an invariant for singular links by the Vassiliev skein relation:

$$v(L_D) = v(L_+) - v(L_-)$$
,

where a singular link is an immersion of a disjoint union of oriented circles in S^3 which has only transversal double points as its singularities, and L_D , L_+ and L_- denote the diagrams of singular links which are identical except near one point as is shown in Figure 2.1. A singular link is considered as a flat vertex graph.

An invariant v is called a *Vassiliev invariant of order n* if v(L) = 0 for any singular link L with more than n double points and there exists a singular link L' with n double points such that $v(L') \neq 0$.

A chord diagram of order n is a disjoint union of counterclockwise oriented circles with n chords. A chord diagram of order n can be associated to a singular link with n double points by connecting the preimage of each double point with a chord. It is known that a Vassiliev invariant of order n is determined by a set of axioms and initial data called an actually table containing values for the chord diagrams of order n and immersions that respect them of order less than n. Moreover any invariant of order n is determined, modulo the invariants of order less than n, by its values on chord diagrams of order n ([2]).

Jacobi diagrams, generalizations of chord diagrams, were introduced by D. Bar-Natan [1]. K. Y. Ng and T. Stanford defined a certain kind of Jacobi diagrams called a one-branch tree diagram in [14] (see also [16]). A one-branch tree diagram of order n is a trivalent graph with 2n vertices as shown in Figure 2.2. It consists of μ circles and a graph G, where G is isomorphic to the standard n-tree in Figure 2.3. All univalent vertices in G are attached to a circle.

The set of all Vassiliev invariants of order less than n forms a vector space. A basis of the vector space of Vassiliev invariants of order less than or equal to 2 is determined by Murakami [11]. From this result, we can see that two μ -component links $L = K_1 \cup K_2 \cup \cdots \cup K_{\mu}$ and

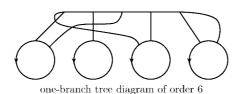


FIGURE 2.2



FIGURE 2.3

 $L' = K'_1 \cup K'_2 \cup \cdots \cup K'_\mu$ are V_2 -equivalent if and only if $lk(K_i \cup K_j) = lk(K'_i \cup K'_j)$ for any i and j with $1 \le i < j \le \mu$ and $a_2(K_i) = a_2(K'_i)$ for any i with $i = 1, \ldots, \mu$, where $lk(K_i, K_j)$ and $a_k(K_i)$ denote the linking number of $K_i \cup K_j$ and the k-th coefficient of the Conway polynomial for K_i , respectively. In the case of order less than or equal to 3, T. Kanenobu, Y. Miyazawa and A. Tani [8] obtained a basis of the vector space. Using the result, we can see that two links L and L' are V_3 -equivalent if and only if they are V_2 -equivalent and $V^{(3)}(K_i) = V^{(3)}(K'_i)$ for any i with $i = 1, \ldots, \mu$ and $a_3(K_i \cup K_j) = a_3(K'_i \cup K'_j)$ for any i and j with $1 \le i < j \le \mu$, where $V^{(3)}(K_i)$ denotes the third derivative at t = 1 of the Jones polynomial of K_i .

2.2. Band description of C_n -moves. As stated above, a C_1 -move is defined as a crossing change. Figure 2.4 shows that a crossing change is realized by fusion with a Hopf link. Similarly Figure 2.5 shows that a Δ -move (a C_2 -move) is realized by fusion with Borromean rings. Generally it is shown that a C_n -move is realized by fusion with an (n+1)-component link which has a Brunnian property by K. Taniyama and Yasuhara in [20]. This (n+1)-component link is called a C_n -link. We remark that a C_1 -link is a Hopf link and a C_2 -link is Borromean rings. A C_3 -link is a 4-component link as illustrated in Figure 2.6.

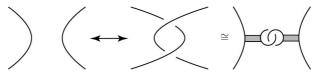


FIGURE 2.4

FIGURE 2.5

Murakami and Nakanishi [12] showed that a fusion-band with a Hopf link can leap over a subarc by a single Δ -move (Figure 2.7). Similarly it is shown that a fusion-band with a C_n -link can leap over a subarc by a finite sequence of C_{n+1} -moves by Taniyama and Yasuhara in [20].

Let F be the result of fusion for a link L with some links L_1, L_2, \ldots, L_n . In this paper, the link which is represented by F is denoted by \tilde{F} . We call the intersection arc of a fusion-band and the link L a *root* of the fusion-band.

2.3. SC_n -moves and Vassiliev invariants of order n for links. We state a relation between SC_n -moves and Vassiliev invariants of order n for links. Let L and L' be two links which are related by a single C_n -move and v a Vassiliev invariant of order n. Then there exists a one-branch tree diagram T such that $v(L) - v(L') = \pm v(T)$ ([16, 17]). Furthermore, by the result of Y. Ohyama, it follows that $v(T_s) = 0$ for the one-branch tree diagram T_s corresponding to an SC_n -move ([16]). Hence we can obtain the following proposition:

PROPOSITION 2.1. Let L and L' be two links which are related by a finite sequence of SC_n -moves. Then v(L) = v(L') for any Vassiliev invariant v of order n.

2.4. Self Delta-moves for links. If three arcs in a Δ -move are contained in the same component, the Δ -move is called a *self* Δ -move. If two links can be transformed into each other by a finite sequence of self Δ -moves, they are said to be Δ -link homotopic (or *self* Δ -equivalent). For 2-component links, Nakanishi and Ohyama gave the self Δ -equivalence classification completely.

THEOREM 2.2 ([13]). Let L and L' be 2-component links. Then L and L' are self Δ -equivalent if and only if $\delta_1(L) = \delta_1(L')$ and $\delta_2(L) = \delta_2(L')$, where $\delta_1(L)$ and $\delta_2(L)$

are defined by $\delta_1(L) = a_1(L)(= lk(L))$ and $\delta_2(L) = a_3(L) - a_1(L)\{a_2(K_1) + a_2(K_2)\}$ for $L = K_1 \cup K_2$ respectively.

In [13], it is shown that for any self Δ -equivalence class, we can choose the result of fusion S for the (2, 2l)-torus link with at most one set of Borromean rings and a finite number of C_3 -links such that \tilde{S} is a representative element of the class (Figure 2.8). We call the fusion the *standard fusion* for the equivalence class in this paper.

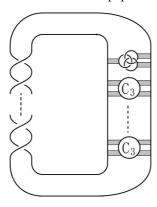


FIGURE 2.8

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Let L and L' be oriented links which can be transformed into each other by a finite sequence of C_3 -moves and SC_2 -moves. If L and L' are related by a C_3 -move, then they are V_2 -equivalent by Theorem 1.3. If L and L' are related by an SC_2 -move, then they are V_1 -equivalent by Theorem 1.3 and v(L) - v(L') = 0 for any Vassiliev invariant v of order 2 by Proposition 2.1. In any cases, we can see that they are V_2 -equivalent.

Next we show the 'if' part of Theorem 1.4. Here we prove the case of 2-component links. The proof for a general case can be done similarly. Assume that 2-component links $L=K_1\cup K_2$ and $L'=K_1'\cup K_2'$ are V_2 -equivalent, namely lk(L)=lk(L') and $a_2(K_i)=a_2(K_i')$ (i=1,2). By the result of [12], both of L and L' can be transformed into the (2,2l)-torus link T_l by a finite sequence of C_2 -moves (where l=lk(L)=lk(L')). Hence L and L' can be realized by the results of fusion for T_l with some Borromean rings. The results of fusion are denoted by L_1 and L'_1 respectively. In the case of L and L' are μ -component links($\mu \geq 3$), they can be realized by the results of fusion for link as illustrated in Figure 3.1 with some Borromean rings, where $l_{i,j}$ denotes the linking number of i-th and j-th components of L for $1 \leq i < j \leq \mu$.

From now we deform L_1 . At first we define types of Borromean rings in L_1 . If the roots of three fusion-bands attached to a set of Borromean rings are contained in one component of

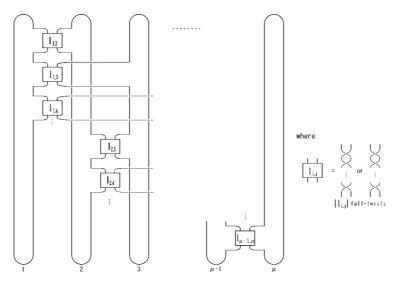


FIGURE 3.1

 L_1 , we say that the set of Borromean rings is of *type I*. If the roots of three bands attached to a set of Borromean rings are contained in two components of L_1 , we say that the set of Borromean rings is of *type II*. A set of Borromean rings of type II can be removed by an SC_2 -move. The result of fusion obtained from L_1 by removing all of the Borromean rings of type II is denoted by L_2 . Obviously \tilde{L}_2 can be obtained from \tilde{L}_1 by applying SC_2 -moves. Figure 3.2 shows an example of L_2 .

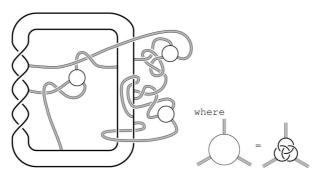
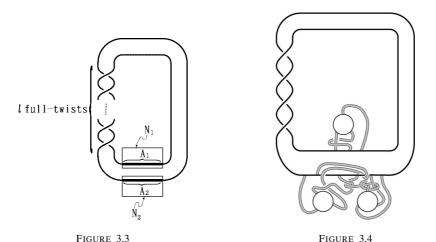



FIGURE 3.2

Let A_1 and A_2 be subarcs of T_l as shown in Figure 3.3. Take tubular neighborhoods N_1 and N_2 of A_1 and A_2 in S^3 respectively. We slide the root of each fusion-band attached to Borromean rings to A_1 or A_2 along T_l . Obviously the link obtained here is ambient isotopic to the link \tilde{L}_2 . Next we move each Borromean rings and fusion-bands attached to the Borromean

rings into N_1 or N_2 by applying C_3 -moves. This is possible because a fusion-band attached to Borromean rings can leap over a subarc of the torus link T_l or another fusion-band by a finite sequence of C_3 -moves. The result of fusion is denoted by L_3 (Figure 3.4).

Similarly we deform L'_1 and obtain L'_3 . We remark that $\tilde{L}_3 = K_{3,1} \cup K_{3,2}$ and $\tilde{L}'_3 = K'_{3,1} \cup K'_{3,2}$ are obtained from L and L' respectively by C_3 -moves and SC_2 -moves. As stated above, C_3 -moves and SC_2 -moves do not change the values of any Vassiliev invariants of order less than or equal to 2. Hence we can see that $K_{3,i}$ and $K'_{3,i}$ are V_2 -equivalent for i=1,2. Since $K_{3,i}-N_i$ and $K'_{3,i}-N_i$ are trivial arc in the 3-ball $\overline{S^3-N_i}$, $K_{3,i}$ and $K'_{3,i}$ are related by C_3 -moves (i=1,2) by Theorem 1.1. Therefore we can conclude that L and L' can be related by a finite sequence of C_3 -moves and SC_2 -moves.

4. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The idea of the proof is similar to that of Theorem 1.4.

Since we can see that the C_4 -equivalence for links implies the V_3 -equivalence, we assume that two 2-component links L and L' can be transformed into each other by an SC_3 -move. Then we can see that they are V_2 -equivalent by Theorem 1.3 and v(L) = v(L') for any Vassiliev invariant v of order 3 from Proposition 2.1. Therefore we obtain that they are V_3 -equivalent.

Next we show the 'if' part of Theorem 1.5. Assume that two 2-component links $L = K_1 \cup K_2$ and $L' = K'_1 \cup K'_2$ are V_3 -equivalent, i.e. the following hold: lk(L) = lk(L'), $a_2(K_i) = a_2(K'_i)$ for any i with i = 1, 2, $a_3(L) = a_3(L')$ and $V^{(3)}(K_i) = V^{(3)}(K'_i)$ for any i with i = 1, 2. Then we have $\delta_1(L) = \delta_1(L')$ and $\delta_2(L) = \delta_2(L')$. By Theorem 2.2,

we can conclude that L and L' are self Δ -equivalent, that is, they belong to the same self Δ -equivalence class. Let S be the standard fusion for the equivalence class which contains L and L', that is, S is the result of fusion for the (2, 2l)-torus link T_l (where l = lk(L) = lk(L')) with some links. Then both of L and L' can be realized by the results of fusion for S with some Borromean rings, where all of the Borromean rings are type I defined in §3. These results of fusion are denoted by L_1 and L'_1 respectively.

We take subarcs A_1 and A_2 of T_l and neighborhoods N_1 and N_2 of A_1 and A_2 respectively as same as in the proof of Theorem 1.4 (Figure 3.3). C_i denotes the component of T_l which contains A_i for i (= 1, 2). Let $\mathcal{L}_0 = \{\beta_1, \ldots, \beta_k\}$ be the set of Borromean rings and C_3 -links connected with T_l in S and \mathcal{L}_1 the set of Borromean rings connected with S in S_1 in S_2 in S_2 denotes the subset of S_2 which consists of elements each of which is connected with S_2 in S_3 be the set of fusion-bands attached to an element of S_3 for S_4 for S_4 in S_4 denotes the 3-ball S_4 which satisfies the following: Let S_4 be the fusion-bands which attached to S_4 where if S_4 is Borromean rings, then we set S_4 denotes the fusion-bands which attached to S_4 where if S_4 is Borromean rings, then we set S_4 denotes the fusion-bands which attached to S_4 where S_4 is a small part of S_4 which is connected and contains the intersection S_4 for S_4 for S_4 in S_4 denotes the following: Let S_4 be the fusion-bands which attached to S_4 where S_4 is a small part of S_4 which is connected and contains the intersection S_4 for S_4 for S_4 in S_4 where S_4 is a small part of S_4 which is connected and contains the intersection S_4 for S_4 for S_4 in S_4 where S_4 is a small looks like Figure 4.1).

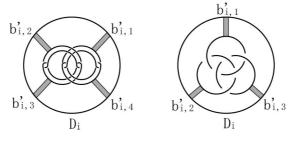


FIGURE 4.1

First we slide all of the roots of fusion-bands in \mathcal{B}_1 to A_1 or A_2 along \tilde{S} as doing in the proof of Theorem 1.4. After that, we can remove the intersection between any fusion-band in \mathcal{B}_1 and any 3-ball D_i in the following way: Suppose that a fusion-band b in \mathcal{B}_1 and D_i intersect. Then $\tilde{S} \cap D_i$ is a trivial tangle. Hence we can sweep out b from D_i . As a result, if b and another band attached to β_i intersect, we can remove the intersection as in Figure 4.2. The result is denoted by L_2 .

Here we prove the following lemmas to continue the deformation. By the result of Taniyama and Yasuhara [20], we have the following lemmas.

LEMMA 4.1. A fusion-band attached to Borromean rings can pass through a fusion-band attached to another set of Borromean rings or a C_3 -link by a finite sequence of C_4 -moves.

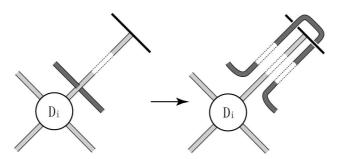


FIGURE 4.2

LEMMA 4.2. A fusion-band in $\mathcal{B}_{1,1}$ (resp. $\mathcal{B}_{1,2}$) can leap over a subarc of the component C_2 (resp. C_1) of T_l by an SC_3 -move.

PROOF OF LEMMA 4.1. In [5, 20], it is proved that the local moves in Lemma 4.1 are realized by C_5 -moves or C_6 -moves respectively. Since a C_k -move is realized by twice C_{k-1} -moves for any k, the moves in Lemma 4.1 are realized by a finite sequence of C_4 -moves.

PROOF OF LEMMA 4.2. A fusion-band of Borromean rings can leap over a subarc of the link by a C_3 -move. If the band has a root in A_1 , then the other two bands of the Borromean rings also have roots in A_1 . Hence the C_3 -move is an SC_3 -move.

Using Lemmas 4.1 and 4.2, we can move any element of \mathcal{L}_1 and all fusion-bands in \mathcal{B}_1 into the neighborhood N_1 or N_2 by applying C_4 -moves and SC_3 -moves in the following way: We begin with moving each element of $\mathcal{L}_{1,i}$ into N_i by an isotopy. Next we collect fusion-bands in $\mathcal{B}_{1,i}$ into N_i . We consider the following cases (Figure 4.3):

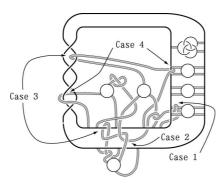


FIGURE 4.3

Case 1. Suppose that a fusion-band b in \mathcal{B}_1 is linked to another fusion-band b' in \mathcal{B}_0 . Then b and b' are attached to the different Borromean rings or C_3 -link. Hence b can pass through b' by a finite sequence of C_4 -moves from Lemma 4.1.

- Case 2. Suppose that a fusion-band b in $\mathcal{B}_{1,1}$ is linked to another fusion-band b' in $\mathcal{B}_{1,2}$. Then b can pass through b' by a finite sequence of C_4 -moves by the same reason as in Case 1.
- Case 3. Suppose that a fusion-band b in $\mathcal{B}_{1,1}$ (resp. $\mathcal{B}_{1,2}$) is linked to a subarc of the component C_2 (resp. C_1). From Lemma 4.2 the band b can leap over the subarc by an SC_3 -move.
- Case 4. Suppose that a fusion-band b in $\mathcal{B}_{1,i}$ is linked to a subarc of the component C_i . Then we slide the part of b which is linked to the subarc along C_i into N_i . They can be done by a finite sequence of C_4 -moves and SC_3 -moves because the band b can pass through another band in \mathcal{B}_0 and subarcs of the component C_{i+1} (where C_3 means C_1) by the moves (cf. Cases 1 and 2). See Figure 4.4.

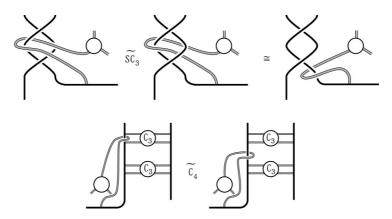


FIGURE 4.4

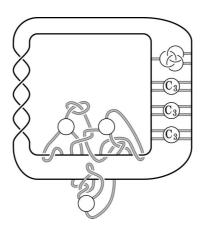


FIGURE 4.5

As a result, we obtain a fusion as in Figure 4.5, for example. This is denoted by L_3 .

We deform L_1' as doing for L_1 and obtain L_3' . We remark that $\tilde{L_3}$ and $\tilde{L_3'}$ can be obtained from L and L' respectively by a finite sequence of C_4 -moves and SC_3 -moves. Therefore each component of $\tilde{L_3}$ and $\tilde{L_3'}$ are V_3 -equivalent respectively. Hence they can be transformed into each other by C_4 -moves by Theorem 1.1 and this completes the proof.

5. Example

The Whitehead link $W = W_1 \cup W_2$ and the 2-component trivial link $U = U_1 \cup U_2$ are V_2 -equivalent because of lk(W) = lk(U) = 0 and $a_2(W_i) = a_2(U_i) = 0$ for i = 1, 2. On the other hand, we can see that they cannot be transformed into each other by a finite sequence of C_3 -moves using the following theorem proved by Taniyama and Yasuhara:

THEOREM 5.1 ([19]). Let $L = K_1 \cup K_2$ and $L' = K'_1 \cup K'_2$ be 2-component links. Then L and L' can be transformed into each other by a finite sequence of C_3 -moves if and only if lk(L) = lk(L'), $a_2(K_i) = a_2(K'_i)$ for i = 1, 2 and $a_3(L) \equiv a_3(L') \pmod{2}$.

In fact $a_3(W)$ is not congruent to $a_3(U)$ modulo 2. However Figure 5.1 shows that W can be transformed into U by an SC_2 -move.

FIGURE 5.1

References

- [1] BAR-NATAN, D., On the Vassiliev knot invariants, Topology 34 (1995), 423–472.
- [2] BIRMAN, J. S., LIN, X, -S., Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225–270.
- [3] GOUSSAROV, M. N., On *n*-equivalence of knots and invariants of finite degree, in *Topology of Manifold and Varieties* (VIRO, O. ed.), Amer. Math. Soc., Province (1994), 173–192.
- [4] GOUSSAROV, M. N., Knotted graphs and a geometrical tequnique of *n*-equivalence, POMI Sankt Petersburg preprint, circa (1995), in Russian.
- [5] HABIRO, K., MASTER Thesis, University of Tokyo (1994).
- [6] HABIRO, K., Clasp-pass moves on knots, preprint.
- [7] HABIRO, K., Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
- [8] KANENOBU, T., MIYAZAWA, Y., TANI, A., Vassiliev link invariants of order three, J. Knot Theory Ramifications 7 (1998), 433–462.
- [9] MATVEEV, S. V., Generalized surgeries of three-dimensional manifolds and representations of homology sphere, Mat. Zametki 42 (1987), 268–278, 345, in Russian; English translation: Math. Notes 42 (1987), 651–656.

- [10] MEILHAN, J.-B., YASUHARA, A., On C_n -moves for links, preprint (2006).
- [11] MURAKAMI, H., Vassiliev type invariant of order two for a link, Proc. Amer. Math. Soc. **124** (1996), 3889–3896
- [12] MURAKAMI, H., NAKANISHI, Y., On a certain move generating link-homology, Math. Ann. 284 (1989), 75–89
- [13] NAKANISHI, Y., OHYAMA, Y., Delta link homotopy for two component links, III, J. Math. Soc. Japan 55 (2003), 641–654.
- [14] NG, K. Y., STANFORD, T., On Gusarov's groups of knots, Math. Proc. Camb. Phil. Soc. 126 (1999), 63–76.
- [15] OHYAMA, Y., Vassiliev invariants and similarity of knots, Proc. Amer. Math. Soc. 123 (1995), 287-291.
- [16] OHYAMA, Y., Remarks on C_n -moves for links and Vassiliev invariants of order n, J. Knot Theory Ramifications 11 (2002), 507–514.
- [17] OHYAMA, Y., TSUKAMOTO, T., On Habiro's C_n-moves and Vassiliev invariants, J. Knot Theory Ramifications 8 (1999), 15–26.
- [18] STANFORD, T., Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996), 269–276.
- [19] TANIYAMA, K., YASUHARA, A., Clasp-pass moves on knots, links and spatial graphs, Topology Appl. 122 (2002), 501–529.
- [20] TANIYAMA, K., YASUHARA, A., Band description of knots and Vassiliev invariants, Math. Proc. Camb. Phil. Soc. 133 (2002), 325–343.
- [21] TANIYAMA, K., YASUHARA, A., Local moves on spatial graphs and finite type invariants, Pacific J. Math. 211 (2003), 183–200.
- [22] VASSILIEV, V. A., Cohomology of knot space, in *Theory of Singularities and its Applications* (ed. ARNOLD, V. I.), Adv. Soviet Math., Vol.1, Amer. Math. Soc. (1990).

Present Address:

RESEARCH INSTITUTE FOR MATHEMATICS AND COMPUTER SCIENCE,

TSUDA COLLEGE,

Kodaira, Tokyo, 187–8577 Japan.

e-mail: aida@tsuda.ac.jp