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1. Introduction

B. G. Casler constructed a standard spine for a 3-manifold with boundary from the poly-
hedral structure, in [1]. He stated there that two 3-manifolds are homeomorphic if and only if
they have a standard spine in common. Standard spines form a good subclass of the spines of
3-manifolds. Later, in [7], Ishii found a better class of spines for closed 3-manifolds. He con-
structed a spine by making use of a flow on the manifold and called such a spine a flow-spine.
Spines of a closed manifold are understood to be the usual ones of the manifold from which
a small ball is removed. It is known that the flow-spine form a good subclass of the standard
spines. In this paper, we exhibit an algorithm to deform a standard spine to a flow-spine in
the given closed manifold by a combinatorial topological method. It is, however, hard to see
directly whether a standard spine is a flow-spine or not. By DS-diagrams (see Definition 1.1),
we get rid of the difficulty. It is known in [5] that any closed 3-manifold has a DS-diagram
constructed from a standard spine. The flow-spines correspond to the DS-diagrams with E-
cycle, see [4] and [8]. Thus the problem above can be translated into the remodeling problem
of a DS-diagram into one with E-cycle (see Definition 2.2).

The main theorem of this paper can be stated as follows (see Definition 1.2 for the notion
of DS-isomorphism).

THEOREM 1.1. Any DS-diagram is DS-isomorphic to a DS-diagram with E-cycle.

We prove this theorem by finding a DS-isomorphism to get a DS-diagram with E-cycle
algorithmically.

Including the concept of DS-isomorphism, let us review briefly some of the definitions
made in [4] through [8] to understand the theorem.

Consider a 2-sphere $S^{2}$ and a connected 3-regular graph $G$ embedded in $S^{2}$ . Let $V_{G}$ be
the set of vertices of $G$ . Then $G$ induces a natural structure of cell complex $K(G)$ on $S^{2}$ ;
O-cells are elements of $V_{G}$ , l-cells are the connected components of $G-V_{G}$ and 2-cells are
the connected components of $S^{2}-G$ . For a definition of cell complexes, see for example, [9].

DEFINITION 1.1. A triple $\Delta=(S^{2}, G, f)$ is called a DS-diagram if
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(1) $G$ is a connected 3-regular graph embedded in $S^{2}$ .
(2) For a polyhedron $P$ with cell structure $K(P),$ $f$ is a continuous map from $S^{2}ont($

P. $f$ is called an identification map of $\Delta$ ,
(3) $f$ : $K(G)\rightarrow K(P)$ is a cellular map, that is, for each $\sigma\in K(G),$ $f|_{\sigma}$ is $i$

homeomorphism from $\sigma$ onto a cell $\lambda=f(\sigma)$ of $K(P)$ ,

(4) for each k-cell $\lambda^{k}\in K(P)$ , tt $f^{-1}(\lambda^{2})=2$ , tt $f^{-1}(\lambda^{1})=3$ and $\# f^{-1}(\lambda^{0})=4$

where $\# f^{-1}(\lambda^{k})$ means the number of the connected components of $f^{-1}(\lambda^{k})$ .
We understand that the cells of $K(G)$ and $K(P)$ are oriented so that $f$ is orientation preserv
ing. For each cell $\sigma\in K(G)$ , we call the oriented cell $f(\sigma)\in K(P)$ a label of $\sigma$ . We often
say that $f(\sigma)$ is a k-label of $\sigma$ if dim $\sigma=k$ . Usually we say $\sigma\in K(G)$ a cell in $\Delta an($

$f(\sigma)\in K(P)$ a label in $\Delta$ .
Let $\Delta=(S^{2}, G, f)$ be a DS-diagram with an identification map $f$ : $S^{2}\rightarrow P$ . The iden

tification space $S^{2}/f=P$ is necessarily a closed fake surface (for the definition of a close $($

fake surface, see [2]). Let $B^{3}$ be a 3-ball with boundary $\partial B^{3}=S^{2}$ . Then the identification
space $B^{3}/f$ is automatically a closed 3-manifold. We will denote $B^{3}/f$ by $M(\Delta)$ and call $i$

the manifold associated with the DS-diagram $\Delta$ .
We explain here the terminology “DS-isomorphism” briefly, see [6] for detail. It shoul $($

be remarked that if $\Delta^{\prime}$ is DS-isomorphic to $\Delta$ , then a manifold $M(\Delta^{\prime})$ associated with $\Delta^{\prime}i\{$

homeomorphic to $M(\Delta)$ . It is not hard to see that the replacements stated below correspon $($

to well-known deformations of a spine keeping the manifold fixed.

DEFINITION 1.2. Let $v$ be a O-label of a DS-diagram $\Delta_{1}$ and

$\Sigma_{1}(v)=\{AB, CD, AC, BD, AD, BC\}$

the surroundings around $v$ in $\Delta_{1}$ ; $A^{+}$ means the head part of an arrow indicating a l-label $A$

We can consider three pairs $\{A^{+}B^{+}, C^{+}D^{+}\},$ $\{A^{+}C^{+}, B^{+}D^{+}\},$ $\{A^{+}D^{+}, B^{+}C^{+}\}$ . $Choos($

one of them, say $\{A^{+}B^{+}, C^{+}D^{+}\}$ . Replacing $\Sigma_{1}(v)$ by
$\Sigma_{2}(EF^{-1}, GH^{-1})=\{EF^{-1},$ $GH^{-1}$ ; $A^{+}B^{+},$ $C^{+}D^{+}$

$A^{+}GEC^{+},$ $B^{+}GFC^{+},$ $A^{+}HED^{+},$ $B^{+}HFD^{+}$ },

we obtain another DS-diagram $\Delta_{2}$ from $\Delta_{1}$ . Then $\Delta_{1}\Leftrightarrow\Delta_{2}$ is called an elementary de
fomation of Type $I$ (or briefly, I-defomation, see Figure l-a). We use the notation $\Phi=$

$\Phi(A^{+}B^{+}, C^{+}D^{+})$ : $\Delta_{1}\Rightarrow\Delta_{2}$ and $\Phi^{-1}=\Phi^{-1}(EF^{-1}, GH^{-1})$ : $\Delta_{2}\Rightarrow\Delta_{1}$ . We say $\Phi i^{t}\downarrow$

of type $I^{+}$ and $\Phi^{-1}$ is of type $I^{-}$

Let $A$ be a l-label of a DS-diagram $\Delta_{3}$ with surroundings
$\Sigma_{3}(A)=\{P^{+}AS^{-}, Q^{+}AT^{-}, R^{+}AU^{-}, Q^{+}R^{+}, R^{+}P^{+}, P^{+}Q^{+}, T^{-}U^{-}, U^{-}S^{-}, S^{-}T^{-}\}$ ;

$p+$ (or $S^{-}$ ) means the head part (or the tail part) of an arrow indicating a l-label $P$ (or $S$

respectively), and so on.
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$\int_{-}-\lambda$

FIGURE l-a. Elementary deformation of type I.

FIGURE l-b. Elementary deformation of type II.
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FIGURE 2. Piping.

Suppose $\Delta_{4}$ be obtained from $\Delta_{3}$ by only replacing only $\Sigma_{3}(A)$ by

$\Sigma_{4}(XYZ)=\{XYZ;P^{+}S^{-},$ $Q^{+}T^{-},$ $R^{+}U^{-},$ $Q^{+}XR^{+},$ $R^{+}YP^{+}$ ,

$P^{+}ZQ^{+},$ $T^{-}XU^{-},$ $U^{-}YS^{-},$ $S^{-}ZT^{-}$ }.

Then $\Delta_{3}\Leftrightarrow\Delta_{4}$ is called an elementary deformation oftype $\Pi$ (or briefly, II-deformation
see Figure l-b). We use the notation $\Psi=\Psi(A)$ : $\Delta_{3}\Rightarrow\Delta_{4}$ and $\Psi^{-1}=\Psi^{-1}(XYZ)$ : $\Delta_{4}\Rightarrow$

$\Delta_{3}$ . We say $\Psi$ is of type $II^{+}$ and $\Psi^{-1}$ is of type $II^{-}$

A l-label said to be of loop-type if the closure is a loop, and of arc-type otherwise. $W\epsilon$

note that II-deformation is available if $A,$ $X,$ $Y,$ $Z$ are all l-labels of arc-type.
A finite application of elementary deformations is called a DS-defomation. Suppose $\Delta$

and $\Delta^{\prime}$ are DS-diagrams. We say $\Delta^{\prime}$ is DS-isomorphic to $\Delta$ if $\Delta^{\prime}$ is obtained from $\Delta$ by a
DS-deformation.

The DS-isomorphism, called a piping, on a DS-diagram plays an important role in this
paper. We explain here this deformation.

DEFINITION 1.3. Let $\Delta=(S^{2}, G, f)$ be a DS-diagram. Let $\alpha^{+}td\alpha^{-}$ be 2-cells in
$\Delta$ with the same 2-1abel $\alpha$ . Choosing l-cells $P,$ $Q$ (possibly $P=Q$ ) on the boundary $\partial\alpha^{+}$

of $\alpha^{+}$ , we can denote $\partial\alpha^{+}$ as
$\partial\alpha^{+}=P\tau_{1}\tau_{2}\cdots\tau_{n}Q\tau_{1}^{*}\tau_{2}^{*}\cdots\tau_{m}^{*}$
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where $\tau_{i},$ $\tau_{j}^{*}$ are l-cells on $\partial\alpha^{+}$ . Choose two points $p\in P$ and $q\in Q$ so that $f(p)\neq f(q)$ .
Let $\ell^{+}(p, q)$ be a proper arc in a 2-cell $\alpha^{+}$ joining $p$ with $q$ . Put $x=f(p),$ $y=f(q)$ and
$l(x, y)=f(\ell^{+}(p, q))$ . Let $A,$ $B,$ $J_{i},$

$J_{j}^{*}$ be l-labels of $P,$ $Q,$ $\tau_{i},$ $\tau_{j}^{*}$ respectively; that is,
$A=f(P),$ $B=f(Q),$ $J_{i}=f(\tau_{i}),$ $J_{j}^{*}=f(\tau_{j}^{*})$ . Then we can write

$\partial\alpha=AJ_{1}J_{2}\cdots J_{n}BJ_{1}^{*}J_{2}^{*}\cdots J_{m}^{*}=$ AwBw*

where $w=J_{1}J_{2}\cdots J_{n}$ and $w^{*}=J_{1}^{*}J_{2}^{*}\cdots J_{m}^{*}$ . Then, the surroundings around $A\cup B$ are
$\Sigma(A\cup B)=\{AwBw^{*};$ $\cdots A\cdots$ , $\cdot$ . . $ B\cdots$ , $\cdot$ . . $ A\cdots$ , $\cdot$ . . $B\cdots\}$ .

Consider a DS-diagram $\Delta^{\prime}$ obtained from $\Delta$ by replacing $\Sigma(A\cup B)$ by
$\Sigma^{\prime}=\{CD^{-1},$ $A_{2}wB_{1},$ $B_{2}w^{*}A_{1}$ ; $ A_{1}CA_{2}\cdots$ $ B_{1}C^{-1}B_{2}\cdots$

. . . $ A_{1}DA_{2}\cdots$ , $\cdot$ . . $ B_{1}D^{-1}B_{2}\cdots$ }.

We call $L=L(A, B)$ : $\Delta\Rightarrow\Delta^{\prime}$ a piping along $\ell(x, y)$ , see Figure 2. We showed in [6]

the fact that a manifold $M(\Delta^{\prime})$ associated with $\Delta^{\prime}$ is homemorphic to $M(\Delta)$ . Suppose that
there exists a 2-gon on a DS-diagram just like $CD^{-1}$ in $\Sigma^{\prime}$ . Then we can consider the inverse
$L^{-1}$ : $\Delta^{\prime}\Rightarrow\Delta$ . We often use the notation $\delta(CD^{-1})$ instead of $L^{-1}$ , and call it a 2-gon
collapsing. For detail, see [6].

2. Remodeling a DS-diagram into a splittable one.

The main purpose of this section is to show the following.

THEOREM 2. 1. For any DS-diagram $\Delta$ , there exists a splittable DS-diagram (see Def-
inition 2.1 for “splittable”) which is DS-isomorphic to $\Delta$ .

Let $\Delta=(S^{2}, G, f)$ be a DS-diagram. Consider a pair of 2-cells in $\Delta$ with the same label
$\alpha$ . We denote one of them $\alpha^{+}$ and the other $\alpha^{-}$ . In this way, we can separate whole 2-cells in
$\Delta$ into two classes $\{\alpha_{1}^{+}, \alpha_{2}^{+}, \cdots , \alpha_{n+1}^{+}\}$ and $\{\alpha_{1}^{-}, \alpha_{2}^{-}, \cdots , \alpha_{n+1}^{-}\}$ .

DEFINITION 2.1. The closure $Z^{+}$ of $\alpha_{1}^{+}\cup\alpha_{2}^{+}\cup\cdots\cup\alpha_{n+1}^{+}$ (or $Z^{-}$ of $\alpha_{1}^{-}\cup\alpha_{2}^{-}\cup\cdots\cup$

$\alpha_{n+1}^{-})$ is called the positive zone (or the negative zone, respectively). We will call $(Z^{+}, Z^{-})$ a
bicoloring of the DS-diagram $\Delta$ . We will call $(Z^{+}, Z^{-})$ a split bicoloring of $\Delta$ if both of $Z^{+}$

and $Z^{-}$ are connected. A DS-diagram $\Delta$ is splittable if $\Delta$ has a split bicoloring.

DEFINITION 2.2. Let $\Delta$ be a splittable DS-diagram with a split bicoloring $(Z^{+}, Z^{-})$ .
Let $a_{1},$ $a_{2},$ $\cdots$ $a_{m}$ be a sequence of l-cells on a simple loop $Z^{+}\cap Z^{-}$ such that $ cl(a_{1}\cup$

$a_{2}\cup\cdots\cup a_{m})=Z^{+}\cap Z^{-}$ , where $cl(X)$ means the closure of $X$ . Let $A_{i}$ be the label of $a_{i}$ ,

$1\leq i\leq m$ . Then we say that $\Lambda=A_{1}A_{2}\cdots A_{m}$ is a splitting cycle of $\Delta$ associated with
$(Z^{+}, Z^{-})$ . We will call a splitting cycle $\Lambda=A_{1}A_{2}\cdots A_{m}$ an E-cycle if $A_{i}\neq A_{j}$ for each
$i\neq j$ .

DEFINITION 2.3. Let $\sigma$ be a cell in $\Delta$ . We say that $\sigma$ is positive if $\sigma\subset$ Int $Z^{+}$ ,

negative if $\sigma\subset$ Int $Z^{-}$ , and neutral if $\sigma\subset Z^{+}\cap Z^{-}$ . We will use the notation $v(\alpha)$ for the
number of neutral cells with label $\alpha$ .
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It is easy to see the following.

PROPOSITION 2.1. $ If\alpha$ is a 2-label, then $v(\alpha)=0$ . If $A$ is a l-label, then $v(A)i$

either 1 or 3. If $v$ is $a$ O-label, then $2\leq v(v)\leq 4$ .
DEFINITION 2.4. A l-label $A$ appearing in $\Delta$ is said to be bordered with respect $t($

$(Z^{+}, Z^{-})$ if each of three l-cells with the label $A$ is neutral. Otherwise, $A$ is said to be
disnibuted with respect to $(Z^{+}, Z^{-})$ . Note that for a distributed l-label $A$ , there are thre $($

l-cells with the l-label $A$ such that one of them is positive, another is negative and the othe
is neutral.

We will introduce a new DS-deformation, named digging.

DEFINITION 2.5. Consider a DS-diagram $\Delta$ with a bicoloring $(Z^{+}, Z^{-})$ . Let $\sigma an($

$\tau$ be l-cells in a connected component $R$ to $Z^{+}$ . Suppose $A=f(\sigma)$ and $B=f(\tau)$ , where
$f$ is the identification map associated with a DS-diagram $\Delta$ . Let $ p\in\sigma$ and $ q\in\tau$ be $tw($

points chosen so that $f(p)\neq f(q)$ . Then there is a simple arc $\ell^{+}=p_{0}+\cup\ell_{1}^{+}\cup\ell_{2}^{+}\cup\cdots\cup p_{n}\dashv$

transverse to l-cells in $R$ such that
(1) each $\ell_{r}^{+}$ is a directed arc with the initial point $p_{r-1}$ and the terminal point $p_{r}$ , where

$p_{0}=p$ and $p_{m}=q$ ,
(2) $\ell^{+}\cap p+rr+1=p_{r}$ ,

(3) the interior Int $p_{\gamma}+ofp_{\gamma}+is$ in a positive 2-cell for each $r$ , and $p_{r}$ is in a positiv$($

l-cell if $r\neq 0,$ $m$ ,

(4) $f(p_{r})\neq f(p)$ and $f(q)$ if $r\neq 0,$ $m$ .
We will call such a simple arc $\ell+=\ell_{0}^{+}\cup\ell_{1}^{+}\cup\ell_{2}^{+}\cup\cdots\cup\ell_{m}^{+}$ a mark-line joining $\sigma$ with $\tau$

Note that, for each simple arc $\ell_{r}^{+}$ , there is the spouse $P_{r}^{-}$ of $\ell_{r}^{+}$ so that $f(p_{r}+)=f(l_{r}^{-})an($

$ l_{r}^{-}\cap(p_{0}^{++}\cup p_{1}\cup\ell_{2}^{+}\cup\cdots\cup\ell_{m}^{+})=\emptyset$ .
See Figure 3. Figure 3-c is obtained from Figure 3-a via Figure 3-b. We will say $d(P^{+})$

Figure $3- a\Rightarrow Figure$ 3-c is a digging along a mark-line $\ell+$ or simply a digging if there is $n\langle$

confusion.

THEOREM 2.2. A digging is a DS-deformation.
PROOF. Suppose $d(P^{+})$ is a digging along a mark-line $p+=\ell_{0}^{+}\cup p_{1}+\cup p_{2}+\cup\cdots\cup\ell_{m}^{+}$

If $m=0,$ $d(\ell^{+})=d(p_{0}+)$ is nothing but a piping, and hence $d(P^{+})$ is a DS-deformation. I
$m=1,$ $d(P^{+})$ is established by applying pipings twice. In general, $d(\ell^{+})$ is a consequence $0$

$m+1$ times of applications of piping. $\square $

Suppose $\{R_{1}, R_{2}, \cdots , R_{p}\}$ and $\{S_{1}, S_{2}, \cdots Sq\}$ are the set of connected components $0$

$Z^{+}$ and $Z^{-}$ . We will call $R_{i}$ a positive region and $S_{j}$ a negative region. In this situation, $Wt$

will denote $\rho(Z^{+}, Z^{-})=p+q$ . Note that regions $R_{i}$ and $S_{j}$ are 2-disks with or without hole
since a DS-diagram $\Delta$ is a diagram on a 2-sphere $S^{2}$ associated with a 3-regular connecte $($

graph. Hence at least one element of $\{R_{i}\}\cup\{S_{j}\}$ is a 2-disk. Without loss of generality $Wt$

may assume $S_{q}$ is a 2-disk. Suppose $R_{p}$ is the positive region adjacent to $S_{q}$ . If $p+q\geq 3$

there is another negtive region, say $S_{q-1}$ , adjacent to $R_{p}$ .
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FIGURE 3-b. Mark line $\ell+$ .

FIGURE 3-c. After applying a digging $d(\ell^{+})$ .
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LEMMA 2.1. Suppose $p+q\geq 3$ . $Let\sigma\subset R_{p}\cap S_{q}$ and $\tau\subset R_{p}\cap S_{q-1}$ be neutral
l-cells. Suppose the label of $\sigma$ is distributed and the label of $\tau$ is bordered. Then there
is a DS-diagram $\Delta^{\prime}$ with a bicoloring $(Z^{\prime+}, Z^{\prime-})$ such that $\Delta^{\prime}$ is DS-isomorphic to $\Delta$ and
$\rho(Z^{\prime+}, Z^{\prime-})=p+q-1$ .

PROOF. Applying a digging along a proper arc in $R_{p}$ joining l-cells $\sigma$ and $\tau$ , we will
be able to obtain a required DS-diagram $\Delta^{\prime}$ as follows. Let $A$ and $B$ be l-labels of $\sigma$ and $\tau$ .
Suppose $\alpha_{1}^{\pm}$ , $\alpha_{2}^{\pm},$ $\beta_{1}^{\pm},$ $\beta_{2}^{\pm},$ $\gamma_{r}^{\pm}(0\leq r\leq m)$ are 2-cells in $\Delta$ as shown in Figure 3-a where
$\alpha_{1}^{-}\subset S_{q},$ $\gamma_{0}^{+}\cup\gamma_{1}^{+}\cup\cdots\cup\gamma_{m}^{+}\subset R_{p},$

$\beta_{1}^{-}\subset S_{q-1}$ . Let $\ell^{+}$ be the closure of $p_{0}+\cup\ell_{1}^{+}\cup\ell_{2}^{+}\ldots\cup\ell_{m}^{+}$

which is a proper arc in the closure of $\gamma_{0}^{+}\cup\gamma_{1}^{+}\cup\cdots\cup\gamma_{m}^{+}$ joining a point $ p\in\sigma$ to a point
$ q\in\tau$ (see Figure 3-b). By a digging $d(P^{+})$ along $p+,$

$\alpha_{i}$ and $\beta_{i}(i=1,2)$ are replaced by
$\alpha_{i}^{*}$ and $\beta_{i}^{*}$ , and $\gamma_{i}$ is replaced by two 2-1abels $\gamma_{i\#}$ and $\gamma_{i\triangleright}$ and further, a new 2-1abel $\delta$ with
$\partial\delta=BE^{-1}$ is bom. Note that $\gamma_{0\#}^{+}\cup\gamma_{1Q}^{+}\cup\cdots\cup\gamma_{mQ}^{+}$ and $\gamma_{0\triangleright}^{+}\cup\gamma_{1\triangleright}^{+}\cup\cdots\cup\gamma_{m\triangleright}^{+}$ are in the same
region, say $R_{p}^{\prime}$ , since $S_{q}$ is a 2-cell. We can see the resulting DS-diagram $\Delta^{\prime}$ (Figure 3-c) has
anatural bicoloring $(Z^{\prime+}, Z^{\prime-})$ such that $\rho(Z^{\prime+}, Z^{\prime-})=p+q-1$ . $\square $

THEOREM 2.3. See Figure 4. Suppose $\Delta_{1}$ is a DS-diagram with a symbolic represen-
tation, see [6],

$\{\cdots B\cdots$ , $\cdot$ . . $ B\cdots$ , $\cdot$ . . $ B\cdots$ $\}$ ,

where $B$ is a distributed l-label. Suppose $\Delta_{2}$ is a DS-diagram with a symbolic representation
$\{\partial\zeta, \partial\eta, \partial\lambda, \partial\mu, \partial v, \partial\gamma_{m}, \partial\beta_{1}, \partial\beta_{2}, \cdots\cdots\}$ ,

where

$\partial\zeta=B_{*}P_{1}P_{2}B_{*}UV$ , $\partial\eta=B_{*}Q_{1}Q_{2}$ ,

$\partial\lambda=T^{-1}S^{-1}$ $\partial\mu=P_{2}^{-1}TQ_{2}$ , $\partial v=Q_{1}SP_{1}^{-1}$

$\partial\gamma_{m}=\cdots B_{1}VQ_{2}^{-1}SP_{2}V^{-1}B_{2}\cdots$ ,

$\partial\beta_{1}=\cdots B_{1}U^{-1}P_{1}TQ_{1}^{-1}UB_{2}\cdots$

$\partial\beta_{2}=\cdots B_{2}^{-1}B_{1}^{-1}\cdots$

Then $\Delta_{1}$ and $\Delta_{2}$ are DS-isomorphic to each other.

PROOF. Applying $II^{-}$ -deformation $\Psi^{-1}(\eta)$ to $\Delta_{2}$ , we obtain a DS-diagram $\Delta_{3}$ with a
symbolic representation:

{ $P_{1}P_{2}UV,$ $T^{-1}S^{-1}W_{*}^{-1},$ $TP_{2}^{-1},$ $SP_{1}^{-1}$ ; $\cdots B_{1}VSP_{2}W_{*}V^{-1}B_{2}\cdots$

. . . $ B_{1}U^{-1}W_{*}P_{1}TUB_{2}\cdots$ , $\cdot$ . . $ B_{2}^{-1}B_{1}^{-1}\cdots$ }.

Then applying 2-gon collapsing $\delta(SP_{1}^{-1})$ to $\Delta_{3}$ , we obtain a DS-diagram $\Delta_{4}$ with a
symbolic representation:

$\{W_{**}^{-1}, UV_{*}; \cdots B_{1}V_{*}W_{**}V_{*}^{-1}B_{2}\cdots , \cdot. . B_{1}U^{-1}W_{**}UB_{2}\cdot’. , \cdot. . B_{2}^{-1}B_{1}^{-1}\cdots\}$ . $\square $

Again applying 2-gon collapsing $\delta(UV_{*})$ to $\Delta_{4}$ , we obtain $\Delta_{1}$ . Hence $\Delta_{1}$ and $\Delta_{2}$ are
DS-isomorphic to each other.
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$\Delta_{t}$ :

FIGURE 4. Deformation to replacing a distributed l-label by a bordered one.

PROOF OF THEOREM 2.1. We will establish our proof by the induction on $n=$
$\rho(Z^{+}, Z^{-})$ . If $n=2$ , then $\Delta$ is already a splittable DS-diagram. Hence we assume $n\geq 3$

And we show that there is a DS-diagram $\Delta^{\prime}$ with a bicoloring $(Z^{\prime+}, Z^{\prime-})$ such that $\Delta^{\prime}$ is
DS-siomorphic to $\Delta$ and $\rho(Z^{;+}, Z^{\prime-})=n-1$ . It is enough to consider the situation that

(1) $\{R_{1}, R_{2}, \cdots R_{p}\}$ and $\{S_{1}, S_{2}, \cdots S_{q}\}$ are connected components of $Z^{+}$ and $Z^{-}$

and $p+q=n$ ,
(2) $S_{q}$ is a 2-disk, and $R_{p}$ is the positive region which is adjacent to both of $S_{q}$ and

$S_{q-1}$ .
We will attempt to replace $S_{q}$ and $S_{q-1}$ by a new negative region $S_{q-1}^{\prime}$ through DS-deformatio]

on $\Delta$ .
Step 1. In this step, we show that we can assume there is a neutral l-cell in $S_{q}\cap R_{p}$

with a distributed l-label $A$ . If there is no such l-cell in $S_{q}\cap R_{p}$ , we claim that we can
change $\Delta$ to $\Delta_{*}$ with a bicoloring $(Z_{*}^{+}, Z_{*}^{-})$ having the regions $\{R_{*1}, R_{*2}, \cdot, . , R_{*p}\}$ anc
$\{S_{*1}, S_{*2}, \cdots , S_{*q}\}$ such that

(1) $S_{*q}isa2- disktdR_{*p}isadjacenttoS_{*q}$ ,
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FIGURE 5. Deformation replacing a bordered l-label by a distributed one.

(2) $S_{*q}\cap R_{*p}$ contains a neutral l-cell with a distributed l-label, say $A_{*}$ .
We can construct $\Delta_{*}$ as follows. Choose one of the l-cells, say $\sigma$ , in $S_{q}\cap R_{p}$ and

suppose the l-label $A=f(\sigma)$ of $\sigma$ is bordered. Let $\alpha_{1},$ $\alpha_{2},$ $\gamma_{0}$ be 2-1abels of $\Delta$ such that $ A\subset$

$\partial\alpha_{1},$ $\partial\alpha_{2},$ $\partial\gamma_{0}$ . Some of $\alpha_{1},$ $\alpha_{2},$ $\gamma_{0}$ may possibly be coincide together. Since $A$ is bordered,
we obtain the left of Figure 5, especially we may assume $\alpha_{1}^{-}\subset S_{q}$ .

Suppose $p$ is a proper arc in $\alpha_{2}$ joining two points on $A$ . Carrying out the piping $L_{0}(A)$ :
$\Delta\rightarrow\Delta_{*}$ along $f$ , we obtain

$\Delta_{*}=\{A_{*}, PQ^{-1} ; A^{+}{}_{1}PA_{*}P^{-1}A_{2}^{-}, A_{1}^{+}QA_{*}Q^{-1}A_{2}^{-}, A_{1}^{+}A_{2}^{-}\}$

which is DS-isomorphic to $\Delta$ . This DS-diagram $\Delta_{*}$ has a natural bicoloring $(Z_{*}^{+}, Z_{*}^{-})$ such
that $\rho(Z_{*}^{+}, Z_{*}^{-})=p+q$ and $\alpha_{1}^{-}\cup\delta^{-}\subset S_{q}$ , where $\delta^{-}$ is a 2-cell with 2-1abel $\delta$ so that
$\partial\delta=PQ^{-1}$ . A l-label $A_{*}$ is a distributed one on a new $S_{*q}\cap R_{*p}$ with respect to $(Z_{*}^{+}, Z_{*}^{-})$ .

Step 2. Suppose $\Delta$ is a DS-diagram with a bicoloring $(Z^{+}, Z^{-})$ having the regions
$\{R_{1}, R2, , R_{p}\}$ and $\{S_{1}, S_{2}, \cdots , S_{q}\},$ $p+q=n$ , such that

(1) $S_{q}isa2- diskandR_{p}isadjacenttoS_{q}$ ,
(2) $S_{q}\cap R_{p}$ contains a neutral l-cell with a distributed l-label, and
(3) $S_{q-1}$ is adjacent to $R_{p}$ .

We want to find a neutral l-cell in $R_{p}\cap S_{q-1}$ with bordered l-label. Suppose there is no
such l-cell in $R_{p}\cap S_{q-1}$ . Choose an arbitrary l-cell, say $\tau$ , in $R_{p}\cap S_{q-1}$ . Then the 1-
label $B=f(\tau)$ of $\tau$ does not appear in $S_{q}\cap R_{p}$ since $B$ is distributed and $\tau\subset R_{p}\cap S_{q-1}$ is
neutral. Applying the DS-deformation in Theorem 2.3 to the l-label $B$ , we obtain the required
DS-diagram $\Delta_{*}$ and a new l-label $B_{*}$ .

Step 3. From the argument of Step 1 and Step 2, if necessary, we can seek for a
DS-diagram $\Delta_{*}$ with a bicoloring $(Z_{*}^{+}, Z_{*}^{-})$ having the regions $\{R_{*1}, R_{*2}, \cdots , R_{*p}\}$ and
$\{S_{*1}, S_{*2}, -- , S_{*q}\},$ $p+q=n$ , such that

(1) $S_{*q}isa2- diskandR_{*p}isadjacenttoS_{*q}$ ,

(2) $S_{*q}\cap R_{*p}$ contains a neutral l-cell $\sigma_{*}$ with a distributed l-label,
(3) $S_{*,q-1}$ is adjacent to $R_{p}$ ,
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(4) $R_{*p}\cap S_{*,q-1}$ contains a neutral l-cell $\tau_{*}$ with a bordered l-label,
(5) $\Delta_{*}$ is DS-isomorphic to $\Delta$ .

To $\Delta_{*}$ applying the digging along a proper arc in $R_{*p}$ joining $\sigma_{*}td\tau_{*}$ , we will obtain ’

DS-diagram $\Delta^{\prime}$ with a bicoloring $(Z^{\prime+}, Z^{\prime-})$ such that $\rho(Z^{\prime+}, Z^{\prime-})=n-1$ . This complete.
the proof. $\square $

3. Remodeling a splittable DS-diagram.

In this section, let $\Delta$ be a splittable DS-diagram with $(Z^{+}, Z^{-})$ , and $\Lambda$ a splitting cycle
of $\Delta$ associated with $(Z^{+}, Z^{-})$ .

PROPOSITION 3.1. Suppose $A$ is an arbitrary l-label of $\Delta$ . Then $A$ appears on $\Lambda$

exactly once $\iota fA$ is distributed, and exactly three $ifA$ is bordered.

PROOF. It is an obvious since a l-cell $\sigma$ with l-label $A$ is contained in $Z^{+}\cap Z^{-}$ if $t($

only if $\sigma$ is neutral. $\square $

PROPOSITION 3.2. If $\Lambda=\cdots AA\cdots$ , then we have $\Lambda=\cdots AAA\cdots$ .
PROOF. It is easy to see that a DS-diagram contains a path AAA if it contains a path

$AA$ . And further, $A$ is bordered since $A$ appears on $\Lambda$ at least twice as $AA$ . Therefore the
third edge with l-label $A$ is also contained in A. $\square $

DEFINITION 3.1. A splitting cycle $\Lambda=A_{1}A_{2}\cdots A_{m}$ is called a good cycle if $ A_{i}\neq$

$A_{i+1}$ for each $i(mod m)$ .
LEMMA 3.1. There is a splittable DS-diagram $\Delta_{*}with$ a good cycle such that $\Delta_{*}i_{\iota}^{t}$

DS-isomorphic to $\Delta$ .
PROOF. If a splitting cycle $\Lambda$ does not contain any adjacent l-cells with the same

l-label, $\Lambda$ is already a good cycle. Suppose not. Then there is a l-label $A$ so that $\Lambda=$

$w_{1}AAAw_{2}$ . In this case, there aIe two kind of surroundings of $A$ (Figure 6-a):

$\Sigma_{1}(A)=\{X^{+}AAY^{-}, Y^{-}AX^{+}, Y^{-}X^{+}\}$ , and
$\Sigma_{2}(A)=\{Y^{-}AAX^{+}, X^{+}AY^{-}, Y^{-}X^{+}\}$ .

Note that $x^{\pm}\neq A$ and $Y^{\pm}\neq A$ , but possibly $Y=x^{\pm}$ . For each case, we claim that we car
obtain a DS-diagram $\Delta_{*}$ with a splitting cycle $\Lambda_{*}=w_{1}$ XAPRAQSAY $w_{2}$ . For $\Sigma_{1}(A)$ , if
we apply an elementary deformation $\Phi=\Phi(X^{+}A^{-}, A^{+}Y^{-})$ of type $I^{+}$ , we obtain

$\Phi(\Sigma_{1}(A))=\{PQ^{-1}, RS^{-1}, X^{+}AQRAY^{-}, Y^{-}QSAPRX^{+}, Y^{-}PSX^{+}\}$ ,

(see Figure 6-b). It is similar to $\Sigma_{2}(A)$ . By repeating this operation, we can obtain a splittable
DS-diagram $\Delta_{*}$ with a good cycle. $\square $

As we saw in \S 2, any DS-diagram is DS-isomorphic to a splittable one with a $splittin\xi$

cycle $\Lambda$ . Furthermore, by the previous lemma, we may assume $\Lambda$ is a good cycle, that is
$\Lambda$ does not contain $AA$ , where $A$ is a l-label. We will start with this situation. Note that $\Lambda$

consists of distributed l-labels (each of them appears exactly once on $\Lambda$ ) and arc-type
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FIGURE 6-a. Surroundings of a l-label $A$ with $AA$ on $\Lambda$ .

FIGURE 6-b. $\Phi(\Sigma_{1}(A))$ .

bordered l-labels (each of them appears just three times on A), see [6]. We will eliminate
these bordered l-labels from $\Lambda$ step by step. Then, a resulting splitting cycle $\Lambda_{*}$ will not
contain any bordered l-label, and hence $\Lambda_{*}$ will be automatically an E-cycle of a DS-diagram
which is DS-isomorphic to the original DS-diagram.

PROPOSITION 3.3. Suppose $\tau$ is a neutral O-cell in $\Delta$ and $\sigma_{1},$ $\sigma_{2},$ $\sigma_{3}$ are l-cells in-
cident to $\tau$ . Then $either\sigma_{1},$ $\sigma_{2},$

$\sigma_{3}\in Z^{+}$ or $\sigma_{1},$ $\sigma_{2},$ $\sigma_{3}\in Z^{-}$ holds; $\tau$ is said to be positive
handed $\iota f\sigma 1,$

$\sigma 2,$
$\sigma_{3}\in Z^{+}$ , and negative handed otherwise.

PROOF. Since $\tau$ is neutral, $\tau\subset Z^{+}\cap Z^{-}$ , and two of $\sigma_{1},$ $\sigma_{2},$ $\sigma_{3}$ are also on $Z^{+}\cap Z^{-}$

Hence either $\sigma_{1},$ $\sigma_{2},$
$\sigma_{3}\in Z^{+}$ or $\sigma_{1},$ $\sigma_{2},$ $\sigma_{3}\in Z^{-}$ holds. $\square $

Remember $v(\alpha)$ means the number of the neutral cells with the label $\alpha$ .
PROPOSITION 3.4. Let $v$ be $a$ O-label of $\Delta$ . Then $2\leq v(v)\leq 4$ .
(1) Suppose $v(v)=2$ . Then one of the neutral O-cells with label $v$ is positive handed

and the other is negative handed.
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(2) Suppose $v(v)=3$ . Then three neutral O-cells with label $v$ are either positiv‘

handed all or negative handed all. If these neutral O-cells are positive (negative) handed, $th_{l}$

non-neutral O-cells with label $v$ is negative (positive).
(3) Suppose $v(v)=4$ . Then two of the O-cells with label $v$ are positive handed and $th_{l}$

other two are negative handed.

PROOF. For an arbitrary O-label $v$ in $\Delta$ , there are four O-cells with the same O-label $v$

Each O-cell has three l-cells as hands, and has three comers, see [6]. Hence there are twelv $($

angles corresponding to six comers for a O-label $v$ . Six of these angles are in $Z^{+}$ and th$($

others are in $Z^{-}$ . This fact leads us to the proof. $\square $

Let $\Lambda$ be a good cycle. Let $A$ be a bordered l-label with the initial O-label $x$ and $th_{t}$

terminal O-label $y$ . $x\neq y$ and that three l-cells with label $A$ are all on the good cycle $\Lambda$

Let $\sigma$ be a l-cell with label $A$ and $p,$ $q$ be the initial and the terminal O-cell of $\sigma$ ; that is
$f(\sigma)=A,$ $f(p)=x$ and $f(q)=y$ . Then there are four types of $\sigma$ on $\Lambda$ (Figure 7). If $p$ ant

$q$ are both positive handed (negative handed), then we say $\sigma$ is of type $U^{+}$ (type $U^{-}$ ). If $pi$

negative handed (positive handed) and $q$ is positive handed (negative handed), then we say $c$

is of type $N^{+}$ (type $N^{-}$ , respectively).
We will consider pattems of the intersection of good cycle $\Lambda$ and surroundings around $A$

Note that $3\leq v(x),$ $v(y)\leq 4$ . Hence $(v(x), v(y))$ is one of $(3, 3)$ , $(3, 4)$ , $(4, 3)$ , $(4, 4)$ . Not$($

that $(3, 4)$ and $(4, 3)$ are essentially of the same type. Hence we get typical eight pattems (se $($

Figure 8). They are denoted by $(v(x), v(y)$ : $N(A),$ $U(A))$ ; where $N(A)$ is the number $0$

l-cells, with label $A$ , of type $N^{+}$ and $N^{-}$ , and $U(A)$ the number of l-cells with type $U^{+}an($

$U^{-}$ . The list is: $(3, 3 : 0,3),$ $(3,3 : 3, 0),$ $(4,3 : 1, 2)$ , (4, 3 : 2, 1), $(4, 4: 0,3),$ $(4,4 : 1, 2)$

(4, 4 : 2, 1), $($4, 4 : 3, $0)$ .
DEFINITION 3.2. A good cycle $\Lambda$ is called a better cycle if $(v(x), v(y):N(A),$ $U(A)$

$=$ $(3, 3 : 0,3)$ for each bordered l-label $A$ .
$b(\Delta)$ means the number of bordered l-labels of $\Delta$ .
THEOREM 3.1. Let $\Lambda$ be a good cycle and $b(\Delta)=k$ . If there is a bordered l-labe

whose pattem in not $(3, 3 : 0,3)$ , we can refom $\Delta$ to a DS-diagram $\Delta_{*}with$ a good cycl
and $b(\Delta_{*})=k-1$ .

$\sigma$

$\sigma$

Type $U^{\cdot}$ Type $U^{-}$ Type $N$

FIGURE 7. Type of l-cell on $\Lambda$ .
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$C^{\cdot}$
$G^{-}$ $D^{\cdot}$ $H^{-}$ $B^{\cdot}$ $F^{-}$

$D^{\cdot}$ $\Lambda$ $H^{-}$ $B^{\cdot}$ $\Lambda$
$F^{-}$ $C^{\cdot}$ A $G^{-}$

Pattem $0$ : $(3, 3 : 0,3)$ .

$B^{\cdot}$

A:

Pattem 1: $($3, 3 : 3, $0)$ .

Pattem 2: (4, 3 : 1, 2).
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Pattem 3: (4, 3 : 2, 1).

Pattem 4: $(4, 4 : 0,3)$ .

$\Lambda$ :

Pattem 5: (4, 4 : 1, 2).

Pattem 6: (4, 4 : 2, 1).

Pattem 7: $($4, 4 : 3, $0)$ .
FIGURE 8. Eight pattems of bordered l-labels on a good cycle $\Lambda$ .
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PROOF. Suppose $A$ is a bordered l-label whose pattem is not $(3, 3 : 0,3)$ . For each
pattem, we can show the above statement by applying elementary deforamtion of type $II^{+}$

once or twice. Suppose $\Sigma(A)$ is the surroundings of $A$ . We may describe it as
$\Sigma(A)=\{B^{+}AF^{-}, C^{+}AG^{-}, D^{+}AH^{-}, B^{+}C^{+}, C^{+}D^{+}, D^{+}B^{+}, F^{-}G^{-}, G^{-}H^{-}, H^{-}F^{-}\}$ .
Suppose $x$ and $y$ are an initial and a terminal O-label of $A$ . Since $x\neq y$ , we can apply an
elementary deformation IP $(A)$ of type $II^{+}$ to our l-label $A$ . Then we obtain

$\Sigma_{*}=\{PQR;B^{+}F^{-},$ $C^{+}G^{-},$ $D^{+}H^{-},$ $B^{+}RC^{+},$ $C^{+}PD^{+},$ $D^{+}QB^{+}$ ,

$F^{-}RG^{-},$ $G^{-}PH^{-},$ $H^{-}QF^{-}$ }.

Let $\Delta_{*}$ be the DS-diagram associated with $\Sigma_{*}$ .
Pattem 1. Suppose $A$ is of $($3, 3 : 3, $0)$ . We may assume a good cycle $\Lambda$ of $\Delta$ is

$\Lambda$ :. . . $ C^{+}AH^{-}\cdots D^{+}AF^{-}\cdots B^{+}AG^{-}\cdots$

Then
$\Lambda_{*}$ : $\cdots C^{+}PH^{-}\cdots D^{+}QF^{-}\cdots B^{+}RG^{-}\cdots$

is obviously a good cycle of $\Delta_{*}$ , where $b(\Delta_{*})=k-1$ (Figure 9).
Pattem 2. Suppose $A$ is of (4, 3 : 1, 2). By $\Psi(A)$ , a good cycle

$\Lambda$ :. . . $ D^{+}AG^{-}\cdots D^{+}AH^{-}\cdots B^{-}AF^{-}\cdots D^{+}C^{+}\cdots$

of $\Delta$ is changes to

$\Lambda_{*}$ : $\cdots D^{+}P^{-1}G^{-}\cdots D^{+}H^{-}\cdots B^{+}F^{-}\cdots D^{+}QRC^{+}\cdots$

which is a good cycle of $\Delta_{*}$ with $b(\Delta_{*})=k-1$ (Figure 10).
By the similar arguments, we can deal with pattems (4, 3 : 2, 1), $(4, 4 : 0,3),$ ($4,4$ :

1, 2). For these pattems, we list here only the good cycles $\Lambda$ and $\Lambda_{*}$ of $\Delta$ and $\Delta_{*}$ , where
$b(\Delta)=k$ and $b(\Delta_{*})=k-1$ .

Pattem 3. (4, 3 : 2, 1).

$\Lambda$ :. . . $ D^{+}AG^{-}\cdots B^{+}AH^{-}\cdots B^{+}AF^{-}\cdots B^{+}C^{+}\cdots$ ,

$\Lambda_{*}$ : $\cdots D^{+}PG^{-}\cdots B^{+}QH^{-}\cdots B^{+}F^{-}\cdots B^{+}Q^{-1}C^{+}\cdots$ .

A:

FIGURE 9. The case of pattem $($3, 3: 3, $0)$ .
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A:

FIGURE 10. The case of pattem (4, 3: 1, 2).

Pattem 4. $(4, 4: 0,3)$ .
$\Lambda$ :. . . $ D^{+}AH^{-}\cdots D^{+}AH^{-}\cdots B^{+}AF^{-}\cdots D^{+}C^{+}\cdots G^{-}H^{-}\cdots$

$\Lambda_{*}$ : $\cdots D^{+}H^{-}\cdots D^{+}H^{-}\cdots B^{+}F^{-}\cdots D^{+}P^{-1}C^{+}\cdots G^{-}R^{-1}Q^{-1}H^{-}\cdots$ .
Pattem 5. (4, 4: 1, 2).

$\Lambda$ :. . . $ C^{+}AH^{-}\cdots B^{+}AF^{-}\cdots B^{+}AF^{-}\cdots B^{+}D^{+}\cdots G^{-}F^{-}\cdots$ ,

$\Lambda_{*}$ : $\cdots C^{+}PH^{-}\cdots B^{+}F^{-}\cdots B^{+}F^{-}\cdots B^{+}QD^{+}\cdots G^{-}RF^{-}\cdots$ .
Now we will deal with the remaining two pattems (4, 4 : 2, 1) and $($4, 4 : 3, $0)$ .

Pattem 6. Suppose $A$ is of (4, 4: 2, 1). $\Lambda$ is written
$\Lambda$ :. . . $ C^{+}AH^{-}\cdots B^{+}AH^{-}\cdots B^{+}AF^{-}\cdots B^{+}D^{+}\cdots G^{-}H^{-}\cdots$ .

Applying $\Psi(A)$ , we obtain a good cycle
$\Lambda^{\prime}$ :. . . $ C^{+}PH^{-}\cdots B^{+}Q^{-1}H^{-}\cdots B^{+}F^{-}\cdots B^{+}RPD^{+}\cdots G^{-}PH^{-}\cdots$

of $\Delta^{\prime}$ (Figure ll-a); still $b(\Delta^{\prime})=k$ . But we can find a new bordered l-label $P$ of patten
(3, 4: 2, 1) in $\Lambda^{\prime}$ . Hence we can apply $\Psi(P)$ to $\Delta^{\prime}$ again, and obtain $\Delta_{*}$ with $b(\Delta_{*})=k-$ ]

(Figure 10-b) which has a good cycle $\Lambda_{*}$ .
Pattem 7. Suppose $A$ is of $($4, 4: 3, $0)$ . $\Lambda$ is written

$\Lambda$ :. . . $ C^{+}AH^{-}\cdots D^{+}AF^{-}\cdots C^{+}AF^{-}\cdots C^{+}B^{+}\cdots G^{-}F^{-}\cdots$ .
Applying $\Psi(A)$ to $\Lambda$ , we obtain a good cycle

$\Lambda^{\prime}$ :. . . $ C^{+}PH^{-}\cdots D^{+}QF^{-}\cdots C^{+}R^{-1}F^{-}\cdots C^{+}R^{-1}B^{+}\cdots G^{-}R^{-1}F^{-}\cdots$

of another DS-diagram $\Delta^{\prime}$ such that $b(\Delta^{\prime})=k$ . $R$ is a new bordered l-label of a pattem $0$

(4, 4 : 1, 2). Again we apply $\Psi(R)$ to $\Delta^{\prime}$ . Then we obtain $\Delta_{*}$ with a good cycle $\Lambda_{*}$ so tha
$b(\Delta_{*})=k-1$ . $\square $

By the induction on the number of the bordered l-labels of seven pattems, we obtain th$($

following corollary.
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FIGURE ll-a. The case of pattem (4, 4: 2, 1); first step.

FIGURE ll-b. The case of pattem (4, 4: 2, 1); second step.

COROLLARY 3.1. For any DS-diagram $\Delta$ , there is a splittable DS-diagram $\Delta^{\prime}$ with a
better cycle such that $\Delta^{\prime}$ is DS-isomorphic to $\Delta$ .

4. Remodeling into a DS-diagram with E-cycle.

In the previous section, we saw that any DS-diagram can be remodeled into a splittable
DS-diagram with a better cycle. In this section we will consider exclusively a splittable DS-
diagram $\Delta$ with a better cycle $\Lambda$ .

Remember that $b(\Delta)$ is the number of the bordered l-labels of $\Delta$ . The following theorem
was found by Prof. Dr. Ippei Ishii.

THEOREM 4.1. The number $b(\Delta)$ is even, and the number of the bordered l-labels of
type $(U^{+}, U^{+}, U^{+})$ is equal to that of type $(U^{-}, U^{-}, U^{-})$ .

PROOF. Let $(Z^{+}, Z^{-})$ be the bicoloring of $\Delta$ . We will denote the number of positive
(or negative) i-cell of $\Delta$ by $v^{+}(i)$ (or $v^{-}(i)$ ). By $v^{o}(i)$ we mean the number of the neutral
i-cells. Then obviously $v^{+}(2)=v^{-}(2),$ $v^{o}(2)=0$ . And it holds that $v^{+}(1)=v^{-}(1)$

since l-cells with a bordered l-label are all neutral and three l-cells with a distributed l-label
consists of one positive, one negative and one neutral l-cell. Since both $Z^{+}$ and $Z^{-}$ are
2-disks, X $(Z^{+})=\chi(Z^{-})=1$ , where $\chi(Z^{\pm})$ is the Euler number of $z^{\pm}$ . That is,

$\chi(Z^{\pm})=\{v^{o}(0)+v^{\pm}(O)\}-\{v^{o}(1)+v^{\pm}(1)\}+v^{\pm}(2)$ .
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Hence $v^{+}(0)=v^{-}(0)$ follows from

$0=\chi(Z^{+})-\chi(Z^{-})$

$=\{v^{+}(0)-v^{-}(0)\}-\{v^{+}(1)-v^{-}(1)\}+\{v^{+}(2)-v^{-}(2)\}$

$=v^{+}(0)-v^{-}(0)$ .

Suppose $m$ and $n$ are the number of the bordered l-labels of type $(U^{+}, U^{+}, U^{+})$ and $0$

type $(U^{-}, U^{-}, U^{-})$ respectively. Suppose $x$ is a O-label. Let $v^{+}(x),$ $v^{-}(x)$ and $v^{o}(x)b$

the number of positive, negative, and neutral O-cells with the O-label $x$ , respectively. If eacl
l-label incident with $x$ is distributed, $v^{+}(x)=v^{-}(x)=1$ and $v^{o}(x)=2$ . If there is
bordered l-label, say $A$ , incident with $x$ , then there are no other bordered l-labels inciden
with $x$ . If $A$ is of type $(U^{+}, U^{+}, U^{+})$ , then $v^{o}(x)=3,$ $v^{+}(x)=0$ and $v^{-}(x)=1$ holds. 1
$A$ is of type $(U^{-}, U^{-}, U^{-})$ , then $v^{o}(x)=3,$ $v^{+}(x)=1$ and $v^{-}(x)=0$ holds. Therefor
$v^{+}(0)-v^{-}(0)=n-m$ . Hence $m=n$ . $\square $

Showing the following theorem, we complete the proof of our main Theorem 1.1.

THEOREM 4.2. There is a DS-diagram $\Delta_{*}with$ E-cycle such that $\Delta_{*}is$ DS-isomorphi
to $\Delta$ .

PROOF. Suppose $b(\Delta)=2k$ . By the previous theorem, there is a pair of bordere $($

l-labels $X$ and $Y$ such that $X$ is of type $(U^{+}, U^{+}, U^{+})$ and $Y$ is of type $(U^{-}, U^{-}, U^{-})$ . $W|$

can assume

$\Delta=\{C_{X}^{+}XG_{X}^{-},$ $D_{X}^{+}XH_{X}^{-},$ $B_{X}^{+}XF_{X}^{-}$ ,

$c_{x^{D_{X},D_{X}B_{X},B_{X}C_{X}^{+},G_{X}^{-}H_{X}^{-},H_{X}^{-}F_{X}^{-},F_{X}^{-}G_{X’}^{-}}}^{+++++}$

$C_{Y}^{+}YG_{Y}^{-},$ $D_{Y}^{+}YH_{Y}^{-},$ $B_{Y}^{+}YF_{Y}^{-}$ ,

$C_{Y}D_{Y},$ $D_{Y}B_{Y},$ $B_{Y}C_{Y}^{+},$ $G_{Y}^{-}H_{Y}^{-},$ $H_{Y}^{-}F_{Y}^{-},$ $F_{Y}^{-}G_{Y}^{-},$ $\cdots\cdots$ },

(see Figure 12-a), and

$\Lambda=\cdots D_{X}^{+}XH_{X}^{-}\cdots B_{X}^{+}XF_{X}^{-}\cdots C_{X}^{+}XG_{X}^{-}\cdots$

. . . $ C_{Y}^{+}YG_{Y}^{-}\cdots D_{Y}^{+}YH_{Y}^{-}\cdots B_{Y}^{+}YF_{Y}^{-}\cdots$ .

Applying an elementary deformation $\Psi(Y)$ of type $II^{+}$ on $\Delta$ , we can obtain a DS-diagram $\Delta$

(see Figure 12-b) such that

$\Delta_{1}=\{PQR;C_{X}^{+}XG_{X}^{-},$ $D_{X}^{+}XH_{X}^{-},$ $B_{X}^{+}XF_{X}^{-}$ ,

$c_{x^{D_{X},D_{X}B_{X},B_{X}C_{X}^{+},G_{X}^{-}H_{X}^{-},H_{X}^{-}F_{X}^{-},F_{X}^{-}G_{X’}^{-}}}^{+++++}$

$C_{Y}PD_{Y},$ $D_{Y}QB_{Y},$ $B_{Y}RC_{Y}^{+},$ $G_{Y}^{-}PH_{Y}^{-},$ $H_{Y}^{-}QF_{Y}^{-},$ $F_{Y}^{-}RG_{Y}^{-}$ ,

$C_{Y}^{+}G_{Y}^{-},$ $D_{Y}^{+}H_{Y}^{-},$ $B_{Y}^{+}F_{Y}^{-},$ $\cdots$ }.
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FIGURE 12-a. Pair of l-labels $X$ and $Y;X$ is of type $(U^{+}, U^{+}, U^{+})$ and $Y$ is of type $(U^{-}, U^{-}, U^{-})$ .

mark-l ine $P^{\cdot}$

FIGURE 12-b. After applying an elementary deformation $\Psi(Y)$ .

Note that

$\Lambda_{1}=\cdots D_{X}^{+}XH_{X}^{-}\cdots B_{X}^{+}XF_{X}^{-}\cdots C_{X}^{+}XG_{X}^{-}\cdots$

. . . $ C_{Y}^{+}G_{Y}^{-}\cdots D_{Y}^{+}H_{Y}^{-}\cdots B_{Y}^{+}F_{Y}^{-}\cdots$

is no longer a splitting cycle of $\Delta_{1}$ . But $Z^{+}$ is still connected, a new l-label $P\subset Z^{+}$ is
distributed and a l-label $X\subset Z^{+}$ is still bordered. We can find a path $\ell+fromP$ to $X$ as
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FIGURE 12-c. After applying a digging $d(\ell^{+})$ .

a mark line. $\ell^{+}$ may cut across some l-cells with l-labels, say $W_{1},$ $W_{2},$ $\cdots$ $W_{p}$ . Applyin
digging $d(\ell^{+})$ along $\ell+$ we can obtain a splittable DS-diagram $\Delta_{2}$ (see Figure 12-c) with
good cycle

$\Lambda_{2}=\cdots D_{X}^{+}X_{1}T_{p}\cdots T_{2}T_{1}P_{2}QRP_{1}S_{1}S_{2}\cdots S_{p}X_{2}H_{X}^{-}\cdots$

. . . $ B_{X}^{+}X_{1}X_{*}X_{2}F_{X}^{-}\cdots C_{X}^{+}X_{1}ZX_{2}G_{X}^{-}\cdots$

. . . $ W_{pb}W_{p*}W_{p\#}\cdots W_{2\triangleright}W_{2*}W_{2Q}W_{1\triangleright}W_{1*}W_{1\#}\cdots$

. . . $ C_{Y}^{+}YG_{Y}^{-}\cdots D_{Y}^{+}YH_{Y}^{-}\cdots B_{Y}^{+}YF_{Y}^{-}\cdots$ .

Note that both of $X_{1}$ and $X_{2}$ on $\Lambda_{2}$ are of pattem 2: $($3, 3 : 3, $0)$ . Hence by applying $\Psi(X$

and $\Psi(X_{2})$ , we can obtain a splittable DS-diagram $\Delta_{3}$ with a better cycle

$\Lambda_{3}=\cdots D_{X}^{+}\Gamma_{1}^{1}T_{p}\cdots T_{2}T_{1}P_{2}QRP_{1}S_{1}S_{2}\cdots S_{p}J_{2}H_{X}^{-}\cdots$

. . . $ B_{X}^{+}K_{1}^{-1}X_{*}K_{2}F_{X}^{-}\cdots C_{X}^{+}L_{1}^{-1}ZL_{2}G_{X}^{-}\cdots$

. . . $ W_{p\triangleright}W_{p*}W_{p\#}\cdots W_{2\triangleright}W_{2*}W_{2\#}W_{1\triangleright}W_{1*}W_{1\#}\cdots$

. . . $ C_{Y}^{+}YG_{Y}^{-}\cdots D_{Y}^{+}YH_{Y}^{-}\cdots B_{Y}^{+}YF_{Y}^{-}\cdots$ .
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It is an easy observation that $b(\Delta_{3})=2k-2$ . This argument shows that there is an algorithm
to obtain a DS-diagram with E-cycle which is DS-isomorphic to the original $\Delta$ . $\square $
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