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Introduction.

Let W be the space of continuous functions w defined in R and vanishing identically on
[0, 00). We denote by P the Wiener measure on W, namely, P is the probability measure
on W such that {w(—x), x > 0, P} is a Brownian motion with time parameter x. Let £2 =
C([0, 00); R) and write X(¢) = X (¢, w) = w(t), where w(?) is the value of w(€ $2) at time
t. Given w € W and xo € R we denote by P;° the probability measure on £2 such that
{(X(@),t >0, P} is a diffusion process with generator

1. ..d d\ -
o = Lowm 4 (w4
w20 dx (e dx

starting from xo. Let P*® be the probability measure on W x §2 defined by
P*(dwdw) = P(dw)P,?(dw) .

The process {X (z), t > 0, P*°} is regarded as defined on the probability space (W x £2, P*0),
which we call a diffusion process with a one-sided Brownian potential. We are interested in
the limiting behavior of {X (¢), t > 0, P%} as t — oc.

Our present model is a variant of the Brox-Schumacher diffusion ([1], [9]) that was
introduced as a diffusion analogue of Sinai’s random walk ([10]). When w(x) does not
vanish identically for x > 0, or more precisely speaking, when {w(x),x > 0, P} and
{w(—x), x = 0, P} are independent Brownian motions, Brox [1] and Schumacher [9] proved
that {(logz)~2X (¢),t > 0, P°} has a nondegenerate limit distribution. This result was ex-
tended to the case of a considerably wider class of (asymptotically) self-similar random envi- -
ronments by Kawazu, Tamura and Tanaka ([6], [7]). See [12] for a survey of results concern-
ing diffusion processes in random environments. In our present model the random environ-

ment is self-similar but does not belong to the class of random environments of [6] because
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of the non-existence of valleys containing 0. The result for the present model is much differ-
ent from those of [1], [6], [7]. In fact, for the diffusion {X (¢),¢ > O, ’PO} with a one-sided
Brownian potential the limit distribution of t~1/2X (¢) as t — oo exists and is given by

1 2 1
5,/-Jt-e—xz/zatx + 580(dx).

the support being [0, 00). This result shows that the long-term behavior of X (¢) is diffusive
(in the sense that a limit distribution exists under the Brownian scaling) with probability 1/2
and subdiffusive with the rest probability 1/2.

Our model may look simpler than those studied previously but the result obtained will
suggest the difficulty of anticipating the due result for the long-term behavior of a diffusion
process with a random potential consisting of two independent strictly stable processes with
different exponents for the right and the left hand sides of the origin.

We state our result in a more precise form. We put

X =2"12x(r), t>0,

for a constant A > 0 and introduce two probability laws Py and Pg on £2 as follows:

Py = the probability law of the process vanishing identically (the probability measure
in §2 concentrated at the null path),
Pr = the probability law of the reflecting Brownian motion on [0, oo) starting from 0.

Denote by M the space of probability laws on £2 and let p be the Prokhorov metric on M.
We also denote by P, (w) the probability law of the process { X, (¢),t > 0, Pg}. Thus Py, Pr
and P, (w) are elements of M. Our main result is then stated as follows.

THEOREM 1. Forany € suchthat0 < ¢ < p(Pn, Pr)/2

(0.1a) lim P{p(P(w), Py) < &} = l s
A—>00 2
(0.1b) Jklim P{p(Py(w), PR) < e} = % .

In particular, the following (0.2) and (0.3) hold:

1 1 2
02) lim PY—e <t V2X@t) <x}==+ —/ Ze 24y, x>0, £>0.
t—>00 2 2 0 T

1 1
0.3) lim P° {o <t 12 max X(s) < x} == + = Pg { max X(s) < xl
t—00 O<s<t 2 2 0<s<1
1 2 & (=) (2n + 1)%x2 ,
= -4 = S LSRR S 0.
2+Jrz2n+lexP{ 8x2 } *=

[=]

n=
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As for the minimum process of X (¢) we have the following result (Theorem 2), which is
quite different from the result (0.3) for the maximum process. For w € W and a € R we put

0.4) o(a) =o0(a,w) =sup{x <0: wx) =a},
0.5) ¢ = ¢(w) = sup [x <0:wlk) — minow(y) = 1} "
x<ys<
. _Jo1/72), if 0(—1/2) <0(1/2),
06) M =Mw) = [;‘(w), if 0(1/2) <o (~1/2).

Here we may take w from a suitable subset of W that has a full P-measure to avoid unpleasant
cases such as 0 (1/2) = —o0, ¢ (w) = —o0, etc.

THEOREM 2. (i) {(log )2 ming<s<¢ X (), PY} converges in law to {M, P} ast —
00. (i) —M is identical in law to the exit time from the interval [0, 2] of a standard 1-
dimensional Brownian motion starting from 1/2, namely,

41 {(2n+1)2 ) } . @n+Drn
—Z exp{ ———m“x  sin ———,
T =02n—+—1 8 4

1, x>0.

<0,

0.7) P{M<x)=

1. Preliminaries.

Let A > O be fixed. For w € W and xo € R let P;2 be the probability measure on £2
such that {X (¢),¢ > O, Pf{l’)} is a diffusion process with generator

_ 1 awx) 4 d —Aw(x) d
Lrw =50 @ dx

starting from xg. Denote by E w the expectatlon with respect to PA Such a diffusion process
can be constructed as follows ([3]) Let (2, P)bea probability space, and let B(t),t > 0, be
a 1-dimensional Brownian motion starting from 0 defined on (£2, P). Put

L, x)= lim—/ 1(x,x+6)(B(s))ds (local time),
. &l € Jp

X
Sk(x)=f *Ody . x eR,
0

Ay = /t e~ (ST (BN gg = / e‘uw(sfl("))L(t, xydx, t=0,
0 R
(1.1 X0, w) =87 (BA; @), =0,

where S, ! and A;l denote the inverse functions. Then the process X(¢; 0, Aw),t > O,
defined on (£2, P) is a diffusion process with generator £,,, starting from 0. Given xo € R
we define w*® € C(R) by w*(-) = w(- + xp), and put X (¢; x9, Aw) = x0 + X (¢; 0, Aw*®).
Then X (¢; xo, Aw), t = 0, is a diffusion process with generator £,,, starting from x.
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REMARK. (i) The notation X (¢; xo, Aw) should not be confused with X () = X (¢, w);

“the former is defined on §2 and the latter on £2 oron W x £2. (ii) If S, (x) - —oo(x = —00),

then the diffusion process X (¢; xo, Aw) is recurrent and hence conservative. From now on we

reduce the whole space W so that it equals the set of w satisfying S, (x) - —oo(x — —00)
for all A > 0, which has still a full P-measure. Thus X (z; xo, Aw) is always recurrent.

For w € W define w) € W by
wy(x) = A_lw(kzx) , x€R.

Then we have
(1.2) {ws, P} £ (w, P},
where = means the equality in distribution. The following lemma is proved in [1].

LEMMA 1.1 ([1]). Forany X >0and w € W,

{(X(t; 0, Awy), t = 0, P} £ (A"2X (A% 0, w), t > 0, B},
or equivalently,
(X0, >0,P% )£ (A 2X(A%), 1 = 0, PY}.

Note that P,?w is an element of M. By (1.2) and Lemma 1.1, for the proof of Theorem 1
it is enough to show the following theorem.

THEOREM 1'. Forany ¢ suchthat0 < ¢ < p(Py, Pr)/2
lim P{o(P_,, Pn) <&} = 1,

A—>00 2

. 0 1
lim P{p(Py,,, PR) <€} ==.

A—00 2
For the proof of Theorem 1’ we first calculate concretely the limit, as A — o0, of the
Laplace transform of the distribution of the hitting time to a > 0 for the process {X (¢),¢ >
0,P® P)?w} in Section 2. As a result we see the limit is half of the corresponding quantity
for the reflecting Brownian motion on [0, oo) starting from 0. By looking into carefully what
this fact means, we shall arrive at Theorem 1’ after all. In Section 3 we explain a coupling
method which is needed for clarifying our argument. In Section 4 we prove Theorem 1’ and
in Section 5 we prove Theorem 2.

2. The Laplace transform of the distribution of a hitting time.

In this section we examine the limit, as A — 00, of the Laplace transform of the distri-
bution of the hitting time to a > O for the process {X(¢),t > 0, P ® wa}, and compare the
limit with the corresponding quantity for the reflecting Brownian motion on [0, co) starting
from 0.

Let 21 = C([0, 00); [0, 00)) and write XT(t) = X (¢, o) = 0t (t), where w™ (¢) is
the value of w* (e £2%) at time ¢. Given x > 0 we denote by Pj the probability measure on
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71 such that {X*(¢),r > 0, Py} is a reflecting Brownian motion on [0, co) starting from x,
and by E} the expectation with respect to P5. For o € 2% we put
(2.1) () =1t (a, 01) =‘inf{t >0:Xt(t)=a}, a>0.
The following lemma is well-known.

LEMMA 2.1. For& >0anda > 0,

Ex {e—§t+(a)} — eﬁgx + e—‘ﬁ‘gx O<x<a.
R ev2%a 4 o—/2%a’ - =
We also put, for w € £2,
2.2) t(a@)=1(@,w)=inf{t >0: X(#) =a}, a€eR.

The main result in this section is the following.

PROPOSITION 2.2. For& > 0anda > 0,
1 1
2.3 li 0 (e757T@y] = ==
(2.3) m ElEte™ N = e = 2
To prove Proposition 2.2, we prepare some lemmas. First we derive Kotani’s formula
(see [5)) in our case. o

EQ{e™57 @),

LEMMA 2.3. For& >0anda > 0,

(2.4) E) {e757@) =exp{— fo ’ Ug(x)dx] , Pas.,

where U} (x) is a positive solution of

(2.5) dU}(x) = 2 — Ut (x)»)dx, x>0,

(2.6) dUE (x) = AU (x)dw(x) + (26 + (\*/2)U (x) — U} (x)*}dx, x <O.

Moreover Ué(x), x < 0, is a unique stationary positive solution of (2.6) and UE)‘ (x) is con-
tinuous at x = Q.

PROOF. We follow the proof of Kotani’s formula in [5]. For b < 0 and ¢ > O put
u(x) = I/Efw{e"gt(x)} , b<ux,
v(x) = E;fw{e‘ef(c)}, b<x<c.
Then we have
Efw{e—ér(c)} = Efw{e”gt(x)}Efw{e"Et(")}
=v(x)/u(x), b<x<c.
Since L, v(x) = Ev(x), b < x < ¢, u(x) also satisfies

2.7 Lopyux) =Eulx), b<x.
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Namely u(x) satisfies

(2.8) uw’(x) =2Eu(x), x>0,
(2.9) dii;{ AW,/ (%)) = 26 MWy (x), b<x <O.

If we put U} (}c) = (log u(x))’ = u'(x)/u(x), then U} (x) > 0. Let us compute the stochastic
differential dU} (x). Using (2.8), we have
dU(x) = 26 — U (x)®dx, x>0.
On the other hand, for b < x < 0 we have, by (2.9),
dU2 (x) = d(e™ P () Pu(x) ™)

= M Pux) " de™ O (x)) + eMOU (x)d (e Pu(x) )

= AU () dw(x) + {26 + A2/2)UL(x) — U} (x)*}dx .
In the above we fixed b < 0. But we see Ué‘ (x) does not depend on b. Therefore (2.6) holds

for all x < 0. Since «’(x) is continuous at x = 0 by (2.7), UE" (x) is also continuous at x = 0.
The last assertion for U EA (x), x < 0, can be proved in the same way as in [5].

LEMMA 2.4. For the solution U} (x) of (2.5) under U}(0) = n,

a 2./2E eV %a
2.10) exp l- / Ug(x)dx] = se :
0 (e2V%a — 1) + 2E(eVEe + 1)
PROOF. The solution of the differential equation
dU}(x)
3 — IRy
x —2§—U§(x) , x>0,
Ué‘ ©=n,

is

N+ V2E + (n — JZE)e WE>

N+ V2E — (n — /2E)e WE>
Calculating the left-hand side of (2.10) by using (2.11), we obtain the lemma.

(2.11) Ul (x) = V2¢
The generator of the diffusion process U2 (x), x < 0, appearing in Lemma 2.3 is £} =
d/m’g(dn) . d/dSé;(n), where

2
(2.12) m}(dn) = Z P~

)
(2.13) sg(n)=fnexp[;'2i+ ]d", A>0, £>0.
1
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It is guaranteed that U? (0) = limy4o Ug‘ (x) is a Borel function of w by Theorem 18 of [4].
The distribution of UZ (0) is

i (dn) = m(dn)/mi([0, 00)) .

LEMMA 2.5. Let& > 0be fixed. If p,é is regarded as a probability measure on [0, 00],

then
A 1 1
M;—>530+5500 weakly as A — 00.
PROOF. For e > 0 we have, as A — 00,
*® 4§ 2n}dn /°° { 2n}dn
2.14 exp{——>———S5¢— "~ expi——5¢ —
@149 fs p{>~2n>~2nep>~2n
© d
- f exp(—n} 2L ~ 21og A,
2e/A2 n
' ¢ 4  2n)dn € 4£ | dn
2.15 fex [—————}—~f ex [—-—— —
@13 o P17 T2y T ) TR T
o0
=/ exp{—n}fi—2 ~2logA,
4£/(\2¢) n

because for any a > 0
o0
f exp{—n}ﬂ'— ~2logA as A — 0.
a/A? n
Moreover, forany0 < &€ < A < 00
A 4  2n) dn A
(2.16) / ex| {—————}———<lo -,
e P AMnp A2)oq g
which remains bounded as A — 0. By (2.14) ~ (2.16), we obtain forany0 < £ < A < 0
lim p2([0, €]) = lim up}([A, oo]) = L
Aooo! S0 A—oo ! ENT 2
Hence the lemma is proved.

PROOF OF PROPOSITION 2.2. By Lemma 2.3, Lemma 2.4 and recalling that the dis-
tribution of UE" (0) is ,u,g‘, we have

1 0 (,—ET@y) — V2Ea f
@17 ELE}, (e PN =2V2%e™" | e A T )

oo 1

pg(dn).

Put
1

o= (e2VTEa — 1)y + /2E(e2VEa + 1)

n € [0, o0].
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Then f is a continuous function on [0, oo]. Therefore, by (2.17) and Lemma 2.5, we obtain

lim E[ED,{e™5" )] = 2v/26eY%4(£(0)/2 + f(00)/2)

1
- ema +e“~/2_§a )

3. A coupling method.

In this section we explain a coupling method which plays an important role for the proof
of Theorem 1’.

First we prepare a lemma. Given x € R, a continuous function B(¢) defined in [0, 00)
with B(0) = 0 and a Lipschitz continuous function b(x) defined in R, we denote by Y (¢, x)
the solution of

t
3.1) Y(t) = x + B(E) + f b(Y(s)ds, t320.
0
Given y > 0 we also consider the solution Y* (¢, y) of the Skorohod problem

t
(3.2) Y*@) =y+.3(t)+/0 b(Y*(s))ds + @), 120,

in which Y *(¢) is to be found under the following conditions:

(3.3) Y*t@) >0.
3.4 @(t) is continuous, nondecreasing and ¢(0) = 0.

(3.5) @(2) is constant on each connected componentof {t > 0:Y @) > 0}.

It is well-known that the Skorohod problem (3.2) has a unique solution (e.g. see [11] or [8]).
The following lemma is essentially the same as Lemma 3 of [8].

LEMMA 3.1. Ifx <y, then

(3.6) Y(t,x) YT, y) forall t >0.

PROOF. Lete > O be an arbitrary constant. Let Y7 (¢, y) be the solution of the Skoro-
hod problem

3.7 YT =y+ 8@+ ‘/ot{b(Y’L(S)) +elds + ¢ (1),
and let us prove
(3.8) Y(t,x) <Yl y) forall t >0,
from which (3.6) follows by letting ¢ | 0. Define
T =inf{t > 0: Y (¢, x) > Y (¢, )}
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with convention inf ¢ = oo and suppose T < oo. We put
) =YT +t,x), @) =T +1)—oT),
EO=Y T +1y), @@O=y¢T+1)-¥@).

Then
(3.9 §1(0) = &(0) =0,
(3.10) there existt, > 0,n = 1,2, ---, such that t,tends to 0 and & (¢,) > &2(¢,) .

Moreover, &1 (¢) is the solution of

t
(3.11) §1(1) = £1(0) + B(T +1) — B(T) +/(-) b(&1(s)ds ,

and &;(z) is the solution of the Skorohod problem

t
(3.12) £2() =50) +B(T +1) — B(T) + fo {b(§2(s5)) + ¢}ds + 2(2) .

From (3.9), (3.11) and (3.12) it follows that &, (¢) < &(¢) for all sufficiently small # > 0. But
this contradicts (3.10). Therefore T = oo and this proves (3.8).

Let A > 0 and w € W be fixed. We consider a sequence {w,,n = 1, 2, - - - } such that
(3.13) w,,n > 1, are C?-functions in R with the bounded second derivatives and satisfying
wp(x) =0forx > 0,.
(3.149) w, converges to w as n — oo uniformly on each finite inerval.
From the way of the construction of the process X (¢; x, Aw), ¢t > 0, described in Section 1, it
follows that
(3.15) for each x, X (¢; x, Aw,) converges to X (¢; x, Aw) as n — oo uniformly on each
finite ¢-interval.
Hence

(3.16) wan converges to Pj, as n — 00.

Now we construct a coupled process of a diffusion process with generator £,,, starting
from x € R and a reflecting Brownian motion on [0, oo) starting from y > 0 on a suitable
probability space (£2, P) by using stochastic differential equations. Let B(z),t > O, be a
1-dimensional Brownian motion starting from O defined on (£2, P). For x € R consider the
stochastic differential equation

t
(3.17) Y,(t) =x+ B@) — % f Aw,' (Yu(s)ds, t=>0.
0

Since w,’ is a Lipschitz continuous function, the equation (3.17) has a unique strong solution.
The solution Y, (¢), t > 0, of (3.17) is a diffusion process with generator L,,,, starting from x
so its probability law is wan. Notice that w,’(x) = 0 for x > 0 and consider, for y > 0O, the
Skorohod problem

(3.18) Yt@)=y+B®) +e@®, t=0.
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The solution Y+ (), t > 0, of (3.18) is a reflecting Brownian motion on [0, 0o) starting from
y. We see that

(3.19) the coupled process (Y, (¢), Y*(t)), t > 0, is a 2-dimensional diffusion process such
that each component process is also a 1-dimensional diffusion.

If x < y, then we get, by Lemma 3.1,
(3.20) Y,(t) <Yt(@) forall +>0.

Let £2 = C([0, 00); R x [0, 00)). An element & of §2 can be expressed as @ = (w, ™),
where w € 2 = C([0, 00); R) and @™ € 2+ = C([0, 00); [0, 00)). We denote by &(¢) =
(w(t), @t (¢)) the value of & at time ¢ and write

X@©)=w@®, X*@0) =070,

X() =o@) = (X@), Xt ).
We introduce a right continuous filtration {23’,} on £ by

S =olX(6):0=s<t+¢}.

>0

LEMMA 3.2. LetA > Oand w € W be fixed, and assume x € R and y > 0 satisfy
x < y. Then there exists a probability measure Qj,, on S2 with the following properties
(3.21), (3.22) and (3.23).
(3.21) The projections (marginal distributions) of Q. on the subspaces 2 and 2% are
P}, and P%, respectively.
(322) X(@) <Xt (@t) forall t >0, Qxyp-a.s.
(3.23) Eachof{X(t),t >0, Qap}and {X+(t),t > 0, Qsy) has the strong Markov property
with respect to the filtration {@,}; more precisely, for any bounded continuous f and g defined
in R and in [0, 00) respectively and for any {@,}-stopping time t

() Egu{f(X(t+5)|&)}=FX(®), QOwm-as on {t <o},

(i) Eg,, {9(Xt(r +5)) |§t} =GX* (1)), Quw-as on {t <oo}, where

F() = Ej,{f(X$)}, G() = Ex{g(XT (s},
and E g, denotes the expectation with respect to Q).

PROOF. Taking a sequence {w,,n = 1,2, - - -} with the properties (3.13) and (3.14),
we consider the probability measure Q),, on £2 such that the process {}? (t),t = 0, Oxw,}
is identical in law to the process {(Y,(z), Y*(2)),t > O, P}. Then (3.16) implies that the
sequence of probability measures Qjy,, n = 1,2, .-, is tight. Therefore there exist n; <
ny < --- such that Q,,, converges to some probability measure Q,,, on R asn — oo via
the sequence {ny}. It is clear that Q,,, satisfies (3.21). Since the property (3.20) is inherited
by the process {X(r), 7 > 0, Qw,}, it is also inherited by the process {X(¢),? > 0, Qw};
namely we have (3.22). By (3.19), we see that each of the processes {X (¢), ¢ > 0, Qjy,} and
{(X*(@),t >0, QO w, } has the Markov property with respect to {§,}. By virtue of (3.16) it is
easy to see that this property is also shared by each of the processes {X (¢),t > 0, Q»,} and
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{Xt(),t > 0, Qsw}. By aroutine argument we can also prove the strong Markov property
with respect to {§;} as stated in (3.23).

4. Proof of Theorem 1’.

First we state a lemma due to Brox ([1]). Let w € W, a < ¢ < 0 and denote by wig, () the
restriction of w on [a, c]. We call wi,, (] a valley if there exists b € (a, ¢) and if the following
conditions (i) and (ii) are satisfied.

(i) w(a) > w(x) > w(b) forany x € (a,b),
w(c) > w(x) > w(() forany x € (b, c).
(ii) w(a) —w) > sup{w(y) —wx) :b<y<x <c},
w(c) — w) > sup{w(y) —wx):a<x<y<b}.
We call D = {w(a) — w(b)} A {w(c) — w(b)} the depth of the valley wig ).

LEMMA 4.1 (Brox [1]: Lemma 3.1). If wiq,c] is a valley with depth D, then, for each
closed interval I C (a, c¢) and for any € > 0,

lim wa{e)‘(D_E) < t(a,c) <Pty =1,
A—>00

uniformly in x € I, where t(a, c) is the exit time of X (t) from (a, c).

If we put
min w(x) <0 < max w(x) for any ¢ > 0, and
—e<x<0 —e<x<0
Wo={weW: 4 can not have the same value of local minimum ’

at distinct points in (—o0, 0)

then P{Wy} = 1. Let w € Wy be fixed. Then for any ¢ > 0 there exist a and ¢ such that
—& <a <c < 0and w(a) = w(c) > w(x) for any x € (a, c¢). From Lemma 4.1 we have

4.1) lim P}, {t(a,c)> P2y =1, xe(a,c0)),
A—00

where D is the depth of the valley wi, ¢}, and from (4.1) we easily obtain the following lemma.

LEMMA 4.2. Suppose w € Wy. Then forany e > 0and T > 0
)‘1_13.10 P, [Orsl}isnTX(t) > -—s} =1, xe€[0,00).
By Lemma 4.2, for w € Wg and n € N, we have
lim P?, { min X (t) > —l} =1.
A—>00 0<t<n n
Define

0<t<n

1 1
A,,(w):inf{A >0: wa(nun X(@) > ——) > 1——foralla > A} :
n.
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with convention inf ¢ = oo, and
N,={weWp: A,(w) <A}.
For each n € N we have '
lim P{l,}=1.
A—>00 ‘
Choose a positive sequence {A,,n = 1,2, - - - } satisfying A, + 00 as n — 00 and
1
P{l,n}>1——.
n
For A > A1 define
nA)=max{n >1:1, <A}, IN= F).,,(A),n(l) .
Since n(A) — oo as A — 00, we have
lim P{I,}=1.
A—>00
We easily obtain the following lemma.

LEMMA 4.3. Suppose vw € I.. Then
1 1
P in X(t)>—-———<t>1——.
2w | o<tench) > n(i) } g
To proceed we introduce two subsets A, and B, of I') by
1
Ay = [w el :UMNO) < 1_@3:} , By={weTl:UMNO) > logA}.
Then the following lemma can be obtained in the same way as in the proof of Lemma 2.5. -

1
LEMMA 4.4. lim P{A;}= lim P{B,}= —.
A—>00 A—>00 2

In the following Qj,, denotes the probability measure on 2 which corresponds to x =
y = 0 in Lemma 3.2. Namely we consider the coupled process of the diffusion process with
generator L, starting from O and the reflecting Brownian motion on [0, co) starting from O.
Fora > 0 and x > 0, we put

f(a _x) — M (a x) — Zﬁeﬁa
T e TN T v x4 JaeVa 1 1)

Then

4.2) f(a,0) = g(a,0).

By Lemma 2.1, Lemma 2.3 and Lemma 2.4, we have fora > 0
4.3) Ej{e" @} = f(a,x), 0<x<a,

4.4) EY (e7*@)} = g(a, UT(0)).
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PROPOSITION 4.5. Foranya > 0and ¢ > O there exists K, ¢ > 0 such that

+ B T Ka,g _1__ - Za}
4.5) Oiw {OgltasxT IXT@) —X@)| > e] <e [__1ogk + ey + 2e

holds provided that w € Ay,n(A) > T and n(A) > 2/e.
PROPOSITION 4.6. Suppose w € By,n(A) > T and n(A) > 1/¢e. Then

1
0 T
4.6) P [O?taéxT | X(@®)| > e] <e’ g(e,logl) + n_(A) .

Combining Lemma 4.4 with Propositions 4.5 and 4.6, we obtain Theorem 1’. For the
proof of Proposition 4.5, we prepare two lemmas. We use the notation t(a) defined in (2.2)
both for {X(¢),t > 0, P{,} and {X(#),t > 0, Q,}. Similarly we use the notation t+(a)

defined in (2.1) both for {X*(¢),t > 0, P{} and {X*(¢), ¢ > 0, Qaw}.

LEMMA 4.7. Foranya > O there exists C; > 0 such that

4.7) Eg, e @y — Ey, (7@} < Ecg"—}\ forall w e A, .

PROOF. By Lemma 3.2 and (4.2)~(4.4), the left-hand side of (4.7) is equal to
(4.8) ERle™™ @} — B, {e7"@) = g(a, 0) — g(a, U}0)) .
Since w € A,, the right-hand side of (4.8) is dominated by
2eV22(e2V2 _ 1)
(€222 + 1){(e2V28 — 1) + V/2(e2 + 1) log A}
- V2eV24(e2V2% 1)
(e2V2a 4 1)21ogA

9(a,0) — g(a, 1/1logd) =

which completes the proof.
For ¢ > 0 we put

4.9) t=inf{t >0: Xt () — X(t) = ¢}.
LEMMA 4.8. Foranyw € Wanda > 0,
(4.10) Eg.,le " {f(a, Xt (@) - fa, X(x) VO T < 17 ()]

< Eg, (e @} — Eg, (e77@).

PROOF. First of all, by (3.22), we notice that for any a > 0
@) <t(@ Qiw-as.
Using (3.23) (i), we have
(4.11) EQ, {e7" @) =Eg,,[e T Ef,{e T}, _y e T < TT@)]
+ Eg,,[e7"@; 1 > 11 (a)].
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By (3.22), the right-hand side of (4.11) is dominated by
(4.12) Eg,[e EXe™ Y, _yve
= Eg,, [e—tE;{e_t+(a)}|x=x+(t); t <tt@]+Eg,, [e™" @; 1 > r¥(a)]
_ EQAw [e—-t{Eﬁ{e—rﬂa)}lx:Xﬂt) _ ,;!{e—r*-(a)}lx:X(r)vo}; T < 1:+(a)] .
Using (3.23) (ii) and (4.3), we see that the right-hand side of (4.12) is equal to
Egule ™ @) — Eg, [e " {f(a, Xt (2)) — fla, X(©) VO)}; T < tH(@)].

Hence we obtain (4.10).

;T < tH(@)]+ Eg,,le @t > 17 (@)

PROOF OF PROPOSITION 4.5. For any a > 0 the left-hand side of (4.5) is dominated
by

(4.13) Ow {OgltaLXT IX*@®) - X0l > ¢, 17 > T} + Ot @ < T}.

Using t defined in (4.9), we can estimate the first term in (4.13) as follows:

4.149) Qiw [Orga;xT IX*T(@) - X@)| > ¢, tH(a) > T]

< Owmlt <T <7 (@)}

r<tta),t <T}

< eTEQAw{e_
<el[Eg,le it <tt@),t < T, X(2) > —¢/2} + Quu(X (1) < —¢/2,7 < T}].
In the case X (t) > —&/2, we have X1 () — (X (z) v 0) > ¢/2 and therefore

4.15) f@a, X (@) — f(a,X(r) v0) > f(a,e/2) — f(a,0).
By (4.15), the expectation in the right-hand side of (4.14) can be estimated as follows:
(4.16) Eg, (e st <t (a),r < T, X(z) > —¢/2}
1
=
fla,e/2) — f(a,0)

< Kae
~ logA
Here K, . is a positive constant. The last inequality follows from Lemma 4.7 and Lemma 4.8
since w € A,. As for the second term of the right-hand side of (4.14) we have

Eg, le " {f@ Xt (™) — f(a, X@) VOt <t (@)]

4.17) Qru(X(x) < —/2,t < T} < PY, lo‘;}is“rx(‘) < —s/z} <6

by Lemma 4.3, since T < n(A),n()) > 2/e and w € I'). The second term in (4.13) can be
estimated as follows:

4.18) Orwltt(@) <T) < eTEg (e @) =T f(a,0) < 2eTe V24,
By (4.13),(4.14) and (4.16)~(4.18), we obtain (4.5).
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PROOF OF PROPOSITION 4.6. We have
0 0
4.19) wa [OIéltasxTX(t) > e] < P,\w{r(s) < T}

< "B}, {e7™®) = e’ g(e, U} (0)) .

Since w € B,, the right-hand side of (4.19) is dominated by el g(e, log ). Combining this
with Lemma 4.3, we obtain (4.6).

5. Proof of Theorem 2.

We begin with the following lemma.

LEMMA 5.1. Letw € W anda < 0. Assume w(a) > w(x) for all x > a. Then for
anye >0

(5.1) lim P2 {9 < 1(a) <V} =1,
A—00

where t(a) is defined by (2.2) and
J = max{Jp, 2w(a)}, Jo= w(a)— min{w(x) :x >a}.
PROOF. Recalling the notation in Section 1, we set
7(a; 0, \w) =inf{t > 0: X(¢;0, Aw) = a},

which is defined on the probability space (£2, P). Since {t(a), P)?w} is identical in law to
{t(a; 0, Aw), P}, (5.1) is equivalent to

(5.2) Jim P < 1(a; 0, aw) < 2O} =1,
We employ the method of [1] to prove (5.2). Let

T(z)=inf{t >0: B(t) =z}, ze€R.
Then the expression (1.1) yields
(5.3) 7(a; 0, Aw) = Ax(T (Sr(a)))

- / e 22w (ST ) (T (S)(a)), x)dx
R

_ f e MO L(T (83(a)), Sx(»))dy .

The self-similarity of the Brownian motion B(¢) implies that for each fixed b € Rand ¢ > 0
the process {L(T (cb), cu)} is identical in law to {cL(T (b), u)}, where u € [b, 00) is con-
sidered as a time parameter. Using this scaling relation with b = —1 and ¢ = |Sy(a)|, we
have

(L(T(Sx(a)), 1Sx(@)u), u > —1, P} £ {|Su(@)|L(T(~1), u), u > —1, B}.
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Introducing a new time y via u = S, (y)/|Sx(a)|, we have

(LT ($:(@)), i), y = a, P} £ (ISU@IL(T(-1), Si(»)/I1Si@)), y = a, P},
and hence (5.3) yields
(5.4) 1(a;0, w)

< I-S'A(a)l_/oo e MO (T(——l), Sr(y) )dy

|Sa(a)l
o _ S1(») ' o y
=S ‘\w(y)L(T —1), = )d S f L(T —1,—)d
|Amy£e D, 22 ) dy+is@i [ (-1 52 ) dy
0 0 ()
=f / SENL (T(—l), I;igil)dxdy+sl(a)2f0 L(T(-1), x)dx
=L +1I,

where w(x, y) = w(x) — w(y). Since S)(y)/|Sr(a)| tends to 0 as A — oo uniformly on any
closed interval contained in (a, 0],

L(T(-1), $s()/ISx(@)]) = L(T(—=1),0) >0 (P-as.)
as A — oo uniformly on any closed interval contained in (a, 0]. Therefore by the classical

Laplace method we have

1 -
1 —_ = = 3 P' eDe
lli)l{.lo A log IA a<x<1{)l,aax<y<0 w(x, y) JO a-s

1 -
lim —logll, =2 max w(x) =2w(a), P-as.
A—00 A a<x<0
Therefore from (5.4) we have
1
lim —logzt(a;0, Aw) = max{Jy, 2w(a)} = J,
A—o00 A
in probability with respect to P. This proves the lemma.
We now recall the definition of M in (0.6) and set
t(M)=inf{t > 0: X(t) = M}.
PROPOSITION 5.2. Foranye >0
(5.5) Jlim P < (M) < 2Dy =1, Poas
— 00
PROOF. First we consider the case o0(—1/2) < o0(1/2). In this case M = o0(1/2),
w(M) = 1/2 and w(M) > w(x) for all x > M. Therefore we can apply Lemma 5.1 with
a = M and J = 1 to obtain (5.5).
Next we consider the case o (—1/2) > 0(1/2). In this case M = ¢. Define o, in (£, 0)

by w(o1) = min{w(x) : { < x < 0} and then 03 in (01, 0) by w(o2) = max{w(x) : 01 < x <
0}. If w(¢) > w(o2), then an application of Lemma 5.1 with a = ¢ and J = 1 immediately
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implies (5.5). Therefore from now on we assume w(¢) < w(o2). We take o3 € (01, 02) and
define w € W by

- w(x), for x > o3,
wx) =
—x 4+ w(o3) +o03, for x <o3.

Next take o4 € (—00, 03) in such a way that

5.6) w(oy) < w(oy) < 1/2,
' J = {ib(04) — ming,<x<o W(x)} V {2W(04)} < 1.

When 03 < o(—1/2), such a o4 exists provided that o3 is close to o2 enough; when o2 >
o(—1/2), such a o4 exists provided that o3 € (o(—1/2), 02). With o4 taken in this way we
now apply Lemma 5.1. Then for any &€ > 0
. 0 A(J+e)y
(5.7 Al_l_)nolo P, {t(04) <e }=1.
Since
PYi{t(04) < U9} < PPy(z(03) < V%)

= P {t(03) < UF9)},

(5.7) implies
(5.8) lim P {r(03) < e’y =1 forsome J <1.
A—>00
On the other hand we see that wy;,4,] is a valley with depth 1. Therefore by Lemma 4.1 we
have
(5.9) Jim P33 (M) < 1(¢,00) < 20T} =1,
—00

But the inequality w(x) < w(o?z) for all x € [£, 02) implies

92 AW(x) gy
P2 {t@¢) <t(0)} = 7%———— —> 1, as A — o0,

[T W dx
so (5.9) yields
(5.10) Jim PR (179 < 7(g) < 29} =1,
—00

Taking account of (5.8) and (5.10), we can obtain (5.5) by a routine use of the strong Markov
property of {X (), P;,,}. The proof of the proposition is finished.

We proceed to the proof of Theorem 2. First we notice that Proposition 5.2 can be
rephrased as

wa[ min X(¢) < M(w) < min X(t)] -1, P-as.,
ISeMH'E) tSel(l—S)
as A — oo. Therefore, by (1.2),

PY, [ min X(t) < M(w,) < min X(t)] -1,

tSeA'(1+E) tSeA-(l"E)
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in probability with respect to P as A — oo. Therefore, by using Lemma 1.1, we obtain for
anye >0

(5.11) lim P°{ min A72X(\*) < M(w)) < min A_zX().4t)} =1.

A—>00 t<erl+e) t<er(l—)
But it is easy to see that the validness of (5.11) for all £ > 0 is equivalent to the validness of
(5.12) lim P° { min A"2X(t) < M(wy) < min A_ZX(t)] =1

A—>00 t5e1(1+£) tSeA(l—E)

foralle > 0. ForA > 0and 0 < ¢ < 1 we put
Ure =A"2min{X(@#):0<t <1}, v, . =22 min{X(r): 0 <t < 179},

Then, by (5.12), we have

(5.13) lim PoUr: < M(wy) < Vie}=1.
A—>00

Next we prove that for any § > 0

(5.14) limlimsup P2V . — U > 8} =0.
£l0 (500

Take ¢ > 1 and then & > 0 so small that c(1 — &) > 1+ ¢. Then, because U, > c2VcA,£ and
Vie < c"2Ux/c,£, we have

PO{VA,E —Upre > 8} =< PO{C—2UA/C,£ - szcl,e > 8}
< P{c 2M(wy/c) — EM(wer) > 8} + P2{Usjc.e > M(wase)} + PUM(wer) > Ver e} -

Since (Wx /e, Wer) = (w1 /e, we), we have
P{cT2M(wise) — PM(we) > 8} = P{c > M(wyyc) — M (w.) > 8} —> 0,
as ¢ | 1. Moreover, by (5.13) we have
PoUUsjce > M(wys0)} > 0, PUM(wer) > Vere) = O
as A — oo. Therefore we have

lim sup limsup P%{Vs o — Us. > 8}

el0 A—00
< P{c"*M(wijc) — M (we) > 8} -0, ascll,
proving (5.14). Now it follows from (5.13) and (5.14) that

A2 min X (r) — M (w»)

t<e

lim P° {

A—00

>8}=0,

which, by virtue of M (w,) 4 M (w), immediately implies the assertion (i) of Theorem 2.
Finally we prove the assertion (ii) of Theorem 2. We define ¢’ by

¢ =sup{x <o (—1/2) : w(x) —minfw(y) : x <y <o(-1/2)} =1}
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and set {” = ¢’ — o (—1/2). Then (0.6) yields

o(1/2), if 0(=1/2) <o(1/2),

(5.15) o(—1/2)+¢”, if 6(1/2) <o(—1/2).

Moreover, ¢” is independent of {w(x), o(—1/2) < x < 0} and —¢” is identical in law to the
exit time from [—1, 1] for a Brownian motion starting from 0. Therefore the expression (5.15)
shows that —M is identical in law to the exit time from [0, 2] for a Brownian motion starting
from 1/2. As for (0.7) see [2, p. 342], for example. The proof of Theorem 2 is finished.
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