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0. Introduction.

Let f : (C", 0) — (C, 0) be an arbitrary function germ, with an isolated critical point at
zero. Let Ay, Ay, - -+, A, be a distinguished basis of vanishing cycles in the homology group
H,_1(Ve; Z) = Z# of the non-singular level manifold. With respect to such a basis the vari-
ation operator Var (resp. Var~1) of the singularity f is represented by an upper triangular
matrix. In [5], Gusein-Zade gave the following converse result for simple singularities.

GUSEIN-ZADE THEOREM 1. Let f : (C",0) — (C,0) be one of the simple singu-

larities Ay, Dy, E¢, E7 and Eg and Ay, Ay, -+ , A, be an integral basis in the homology
group H,_(Vg; Z) = Z*, in which the matrix of the operator Var (resp. Var~ 1) is upper
triangular. Then Ay, Ay, - -, A, is a distinguished basis of vanishing cycles.

For the proof of this, the following result for simple singularities is used which is of
-interest in its own right.

GUSEIN-ZADE THEOREM 2. Let f : (C",0) — (C, 0) be one of the simple singu-
larities Ak, D, E¢, E7 and Eg in an odd number of variables n. For any vanishing cycle

A and any distinguished basis Ay, Ay, --- , Ay for f, there exists a sequence of elemen-
tary substitutions, turning it into a distinguished basis A, A}, - - -, A, with the first element
Al = %A,

In [3] page 103, V. 1. Arnol’d et als propose as an open problem to study whether an anal-
ogous theorem to Gusein-Zade Theorem 2 is true for non-simple singularities. The purpose
of the present paper is to give a negative answer to this problem. Two distinguished bases
of vanishing cycles in the homology group H,_1(V,; Z) are said to be elementary equivalent
if one of the two bases can be transfered into the other by a (finite) sequence of elementary
substitutions and changing of the orientation of some of the elements of the basis. Then the
main theorem in this paper can be stated as follows.
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MAIN THEOREM. For any function f in an odd number of variables with non-simple

singularity, there exists a distinguished basis {A1, A3, --- , Ay} and a vanishing cycle A
such that there does not exist any distinguished basis {AY, A, - - -, A} which is elementary
equivalent to {Ay, Az, - - -, Ay} with A = £ A.

In §1, we explain elementary substitution described in the Main Theorem. In §2 we
prove our theorem for the singularity Eg. In §3 and §4, we show the same content for the sin-
gularities £7 and Eg. Finally, in §5 we prove the theorem for arbitrary non-simple singularity.

1. Elementary substitutions.

We describe two elementary operations of distinguished bases [3]. Let f : (C",0) —
(C, 0) be an arbitrary function germ, with an isolated critical point at zero. By Milnor’s
theorem there exists a number p > O such that the sphere S, C C” of radius r < p with
center at zero intersects the level set f -1(0) transversally. For sufficiently small g > O the
level manifold f —I(¢) is also transversal to the sphere S, for |¢|] < g9. Weset B, = {x €
C" | x|l < p}and Dg, = {x € C| ||lx|l < &o}. For a sufficiently small perturbation f of f, we
see that f‘l(s)ﬂB,, is diffeomorphic to V, = ! (e)NB, for 0 < |e| < g9. We may suppose
that f has in B, only non-degenerate critical points with distinct critical values {z;} in Dy,.
Let {Ay, A2, ---, A,} be a distinguished basis of vanishing cycles in H,_1(V,; Z) = Z*.
Let {u;} be a system of paths defining the distinguished basis. This means that the following
conditions hold:

(i) the u;(#) is non-self-intersecting path in Dy, joining the critical values z; of the
perturbation f of the function f to the non-critical value zo(u(0) = z;, u(1) = zp)
and not passing through any critical values of f for ¢  0;

(i1) the path u; and u ; intersect each other only at the point »; (1) = u (1) = 20(|z0| =
£0);

(iii) the paths u, uz, - - - , u, are numbered in the order such that they enter the point
Z0, counting clockwise, begining at the boundary 9 D,, of D, (see Figure 1).
Let t; be a simple loop corresponding to the path u;. The simple loop corresponding to u; is
a loop going from zg to z; by the path u;, going round z; in positive direction (unticlockwise)
and returning to zg by the path u;.

DEFINITION of the operation «,, (1 <m < p). We define a new system of paths {i;}
in the following manner: '

uj=u; for i#mm+1;
Um+1 = Um;
Um =Um+1Tm »

where u,, 11, means first go along u,, then along z,,.
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FIGURE 1. The paths {u;} and the loop 7;.
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FIGURE 2. i1 and iim.

This system of paths defines a distinguished basis {A;}, related to the basis {A;} by the for-
mulae: ’

Ai=A4; for i#£mm+1;
A~m+1 = Am;
Am = hm(Amt1) = Amt1 + (D" @TD2(AL 4, An) A

where (Am+1, Am) is the intersection index of the vanishing cycles Ap+1 and A,,. The op-
eration of transferring the distinguished basis {4;} to the distinguished basis {4;}, described
by these formulae, is denoted by ;.
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DEFINITION of the operation B,,+1 (1 < m < u). We define a new system of paths
{@}} in the following manner:

/ .
;=u;i for i#mm+1;

u
~f _ .
Uy = Um+1;

~/ — -1
Upty1 = umrm+1 ’

where u,,,t“l

m41 Means first go along u,, then along t’;_}_l.
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FIGURE 3. i andi,, .

This system of paths defines a distinguished basis {Z;}, related to the basis {A;} by the for-
mulae:

Al=4; for i#m,m+1;
A:n = Am+1;
Ay = A ((Am) = Am + (D" D2(A 41, An) Ama

The operation of transferring the distinguished basis {4;} to the distinguished basis {A~§},
described by these formulae, is denoted by B,,+1.
In [6] Gusein-Zade has proved the following important assersion.

THEOREM ([6], page 44). Any two distinguished bases can be obtained from each other
by iteration of the operations ay and B,,, with subsequent change of orientation of some of
the elements of the basis.

2. A distinguished basis of the singularity Eg.

In this section we prove our theorem for the singularity Eg : x> + y? 4+ z3: We construct
a vanishing cycle A and a distinguished basis {A}, A3, --- , Ag} which can never be turned
into a distinguished basis {A], 45, - - -, Ag} with A] = £A by a sequence of elementary
substitutions.
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2.1. Construction of a distinguished basis {A;}. There exists a distinguished basis
81, - - - , 8g of the singularity Eg : x> + y> + z3 with the following Dynkin diagram (see [4]).

FIGURE 4. The Dynkin diagram of the basis {5;}.

Consider the sequence of elementary substitutions
o2, a1, a3, 04, &3, A6, A5, 047, A6, Po, A4, (82 > —82), (87 —> —é7),

where first operate a5, then oy and a3 and so on, and where (82 = —&2) and (87 — —&7) are
operations which change the orientation of 8, and &7 respectively. Then it sends the basis {4;}
to a distinguished basis {A;} with the Dynkin diagram:

FIGURE 5. The Dynkin diagram of the basis {4;}.

Therefore, the matrix L of the inverse variation operator
Var~!: Ho(Ve; Z) = Ha(Ve, 3Ve; Z)

in the basis {A;} and its dual basis {V;}, which is determined by the relation (V;, 4;) = §;;,
is
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1 -1 -1 0 -1 0 1 1
1 O 0 0 0o -1 O

1 0 0 0 o0 -1

1 1 0 -1 -1

L= 1 -1 -1 -1
O 1 0 0
1 0

h— 1 —
2.2. Construction of a vanishing cycle A. There exists a system of paths uy, - - - , ug

by which the distinguished basis { A; } of vanishing cycles is defined. This means that the cycle
A; vanishes along the path u; joining some critical value z; with the non-critical value zg. Let
{7:} be the simple loops corresponding to the paths {«;}. Consider the path & represented in
terms of the path u5 and the loops {t;} in the following manner:

-1 -1 -1 -1

ﬁ=u5't6 't7 'rs 'tl ’t4__1

-1
ts L)

1

where us - tg " ... means first go along us then along 1 and so on.

FIGURE 6. The path ii defining A.

Let A be the vanishing cycle defined by the path i. Then the vanishing cycle A is represented
in terms of the basis {A;} and the transformations

hi = (vi)x : H2(Ve; Z) > Hy(Ve; Z)

as follows:

A=h3"oh'ohT ohgt ohT oS (As) = —Ay + A4+ A + A7 + As.
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By the matrix L of the inverse variation operator Var~! defined in 2.1, we have
Var~1(A) = Var 1 (=A; + As + A¢ + A7+ Ag)
=V -V, —-V3—-V4—3Vs5+ Vg+ V7+ Vg,
where {V;} is the dual basis of {A;}.

2.3. Elements satisfing (Var—15,8) = 1 and (Var—'A,8) = 0. For the vanish-
ing cycle A and the distinguished basis {4}, Ay, -+, Ag}, if there exists a sequence of
elementary substitutions which turns the basis {A;, Az, - - - , Ag} into a distinguished basis
{4}, 4}, -+, Ag} with A] = A, then the matrix L of the inverse variation operater Var™]
with respect to the distinguished basis {A}} is an upper triangular matrix with diagonal entries
equal (—1)*®*+D/2 = |, since n = 3. Therefore we have the following two equalities;

(Var~'Al,A) =1, (Var™'4,A)=0 (i=2,---,8).

2.2)

We shall determine conditions in terms of A, Ay, --- , Ag for a cycle § to be an element of
such a distinguished basis {A}}. If § # A is any element of the distinguished basis {A}},
similarly the following equalities hold;

(2.3.1) (Var™18,8) =1,

(2.3.2) (Var~1A,8) =0.

Let us represent such a § as a linear combination of the distinguished basis {A;}:

é = a,-A,-(a,- EZ).

8
i=1
Then, by the matrix L, we have
Var™'(8) =(a1 — @y — a3 — as + a7 + ag) V1 + (a2 — a7) V2

+ (a3 —ag)V3 + (a4 +as — a7 —ag)Va

+ (a5 — as — a7 —ag)Vs +acVe +a7V7 +agVsg,
where {V;} is the dual basis of {A;}. Therefore we have

(Var~™'8,8) =ai(a1 — a2 — a3 — as + a7 + ag) + az(az — a7) + as(a3 — ag)
+a4(as + as — a7 — ag) + as(as — as — a7 — ag) + ag + a3 + a3

1 2
= {a1 —s(a2+az+as—ay —as)]
(2.33) 2
3

(a3 +as + V2 e-le rap)
+Z az—g(as as +aj —ag 3198~ 7(as—ar+as

1 2 3
+ {a4 + E(as —az —as)} + Z(as —2a6)* + -g(a7 — ag)?.
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From (2.3.1) and (2.3.3), we have
6{2a1 — (a2 + a3 + as — a7 — ag)}?
+2{3az — (a3 + a5 + a7 — ag)}* + {4a3 — (a5 — a7 + ag)}’
+ 6{2a4 + (as — a7 — ap)}’ + 6(as — 2a5)’
+ 9(a7 — 03)2 =24.
On the other hand, from (2.2) and (2.3.2) we have

234

8
(Var~'4,8) = (vl — V)~ V3~ V4~ 3Vs+ Ve + V7 + Vs, Zaiﬂi)

i=1

(2.3.5)
=ay—ay—a3 —a4—3as+ag+a7+ag=0.

LEMMA 2.3. The common integral solutions of (2.3.4) and (2.3.5) are exhausted by
the following seven types;

(1) (a1,az,a3,a4,as,ae,a7,ag) =*+(1 —-1,0,0,¢1 —1,1,1,1, 1) (the2)
) (a1,a2,a3,a4,as5,a¢,a7,a3) =+(1 —16,0,1,1,0,0, 1, 1) (he2
3) (a1, az,as,as,as,as,a1,ag) =+(1-1,1,0,13,0,0, 13, 13) (tzs € Z)
@) (a1,az,a3,as,as,ae,a7,ag) = (1 —4,0,0,14,0,0,44,t4 — 1) (ta € )
5 (ai1,az,as,as,as,as, ar,ag) = +(—15,0,0,25+1,0,0,¢5,¢5 + 1) (15 € Z)
(6) (a1, a2,as3,as,as,as,ar,as) = +£(—1,0,1,%,0,0,, tc + 1) (tc € Z)

(7) (a1,a2,a3,a4,as,a¢,a7,a8) =+(1 —17,1,0,t7 —1,0,0,¢7,t — 1) (87 € Z)

OUTLINES OF PROOF. Sincea; € Z(i = 1, ---, 8), we have (as — 2ag)? < 4 from
(2.3.4). There are three cases to be considered: Case 1, as—2ag = +2; Case 2,a5—2a¢ = *1;
Case 3, as — 2a¢ = 0.

Case 1. as — 2ag = F2. In this case, there are no common solutions to (2.3.4) and
(2.3.5). ‘

Case 2. as — 2a¢ = *x1. From (2.3.4), it follows that
an 6(2a1 — (a2 + a3 + as — a7 — a)}* +2{3a2 — (@3 + as + a7 — ap))’
+ {4a3 — (2as — a7 + ag)}* + 6{2as — (—as + a7 + ag)}*
+9(a7 — ag)* = 18.

Sincea; € Z(i = 1,---,8), we have (a7 — ag)? < 1. Therefore there are two cases to be
considered: Case 2.1, a7 — ag = 0; Case 2.2, a7 — ag = *1.

Case 2.1. a7 — ag = 0. From (II), it follows that
3{2a; — (a2 + a3 + as — 2a7)}* + {3a2 — (a3 + as)}?
+2(2a3 — as)? + 3{2a4 — (—as + 2a7)}? = 9.

In case (az + a3) = 0 (mod 2), we obtain the integral solutions of the type (1) in Lemma 2.3.
In the other cases, there are no common solutions to (2.3.4) and (2.3.5).



NON-SIMPLE SINGULARITIES 27
Case 2.2. a7 — ag = =£1. In this case, there are no common solutions to (2.3.4) and
(2.3.5).
Case 3. as — 2a¢ = 0. From (2.3.4), it follows that
) 6{2a1 — (a2 + a3 +as — a7 — ag))’ +2{3a2 — (a3 +as + a7 — ag))’
+ {4a3 — 2as — a7 + a3)}* + 6{2a4 + (as — a7 — ag)}?
+ 9a7 — ag)2 =24.

Sincea; e Z(i=1,---, 8),' we have (a7 — ag)? < 1. Therefore there are two cases to be
considered: Case 3.1, a7 — ag = 0; Case 3.2, a7 — ag = *1.

Case 3.1. a7 — ag = 0. From (II), it follows that
3{2a1 — (a2 + a3 + a5 — 2a7))’ + (3a2 — (a3 + as)}?
+2(2a3 — as)* + 3{2a4 + (as — 2a7)}* = 12.
In case (a; + a3) = 1 (mod 2), we obtain the integral solutions of the type (2), (3) in Lemma
2.3. In the other cases, there are no common solutions to (2.3.4) and (2.3.5).
Case 3.2. a7 —ag = =1, that is ag = a7 + &1 (61 = %£1). From (IIl), it follows that
6{2a1 — (a2 + a3 + a5 — 2a7 — e1)}* +2{3az — (a3 + a5 — 1)}
+ {4a3 — (2as + £1))* + 6{2as — (2a7 —as + en)}* = 15.

In case (a2 + a3) = 0 (mod 2), we obtain the integral solutions of the type (4), (5) in Lemma
2.3.

In case (a2 + a3) = 1 (mod 2), we obtain the integral solutions of the type (6), (7) in Lemma
2.3. This completes the proof of Lemma 2.3.

The above seven solutions are not Z-linear independent, for

(tB3—ts —t)(=2)+ @D+ (6) — (2 — ta — 16)(—(3) + (5) + (7)) = 0.

So there are only six Z-linear independent solutions. Therefore together with A, one has at
most seven Z-linear independent elements satisfying the requirements (2.3.1) and (2.3.2). So
they can not form a basis for H,(V;; Z). Thus we have

THEOREM 2.3. Let {A1, Ay, --- , Ag} be the distinguished basis constructed in §2.1
and let A be the vanishing cycle constructed in §2.2. Then the distinguished basis
{A1, Aa, -+, Ag} can never be turned into a distinguished basis {A;}; i=1,---,8) with
A = xA by a sequence of elementary substitutions.

3. A distinguished basis of the singularity £7.

In this section we prove our theorem for the singularity E7: x* + y* + z2: We construct
a vanishing cycle A and a distinguished basis {A;, A3, - - - , Ag} which can never be turned
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into a distinguished basis {A], A%, -+, Ag} with A} = £A by a sequence of elementary
substitutions.

3.1. Selection of distinguished basis {A;}. There exists a distinguished basis

A1, -+, Ag of the singularity E7 : x* 4+ y* 4 z? with the following Dynkin diagram (see
[2], [8D).
4 5 9 6
Q...’.‘..’ J
1 7
2Jh

FIGURE 7. The Dynkin diagram of the basis {4;}.

Therefore, the matrix L of the inverse variation operator
Var™!: Hy(Ve; Z) > H(Ve, 3Ve; Z)
in the basis {A;} and its dual basis {V;} is

1 -1 -1 0 -1 0 -1 1 1
1 0o 0o 0 0 0 o0 o
1 0 0 0 0 ~-1 O
1 0 0 0 -1 O
L= 1 0 0 -1 -1
O 1 0 0 -1
1 0o -1
1 0
=3 1 -

3.2. Construction of a vanishing cycle A. There exists a system of paths
uy,us,--- ,ug by which the distinguished basis {A;} of vanishing cycles is defined. This
means that the cycle A; vanishes along the path u; joining some critical value z; with the
non-critical value zg. Let {7;} be the simple loops corresponding to the paths {u;}. Consider

the path i represented in terms of the path u; and the loops {;} in the following manner:
ﬁ=u1-‘t2—1-‘t3_1~t4_1-‘55_1-‘L’6_1-‘L'7_1~1.'8_1
-1 -1 _-1_ _-1 _-1_ _-1 —1
‘rg '1:4 'ts 't6 ‘Ts 'tg 't5'tg’ts"t6't5’t4‘tl N

where u; - 7, ! .. means first go along u; then along T, ! and so on.
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FIGURE 8. The path & defining A.

Let A be the vanishing cycle defined by the path #. Then the vanishing cycle A is represented
by the basis {A;} and the transformations

hi = (ti)x : H2(Ve; Z) > Hy(Ve; Z)

as follows:

A=hT'ohsohsohgohgohgohsohy  ohg' ohg! oh3! o hy!

ohylohglohslohgl ohst oy o ng o hy (AY)
=Ay + Az + Ay + 245 + Ag + A7 + 245 + 2A9.
By the matrix L of the inverse variation operater Var~! defined in 3.1, we have
Var=1(A) = Var=1(Az + Az 4+ As + 245 + Ag + A7 + 245 + 2A0)
= -V + V2 - V3 —-V4—-2Vs5 — Vg — V7 +2Vg +2Vy,

3.2)

where {V;} is the dual basis of {A;}.

3.3. Elements satisfing (Var—15,8) = 1 and (Var~14,8) = 0. For the vanishing
cycle A and the distinguished basis {A1, 43, - - - , Ao}, if there exists a sequence of elemen-
tary substitutions which turns {A;, A, - - - , Ao} into a distinguished basis {A], A}, - -, Ag}
with A} = ZA, then the matrix L of the inverse variation operater Var~! with respect
to the distinguished basis {A}} is an upper triangular matrix with diagonal entries equal
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(=D +1D/2 = 1 since n = 3. Therefore we have the following two equalities;
(Var~'al, Ay =1, (Var~'a,A)=0 (=2,---,9).
We shall determine conditions in terms of A;, A3, - -+, Ag for a cycle § to be an element of

such a distinguished basis {A}}. If § # A is any element of the distinguished basis {A}},
similarly the following equalities hold;

(3.3.1) (Var™18,8) =1,
(3.3.2) (Var™'4,8) =0.
Let us represent such a § as a linear combination of the distinguished basis {A;}:
9
é= a,-A,-(a,- EZ).

i=1
Then, by the matrix L, we have

Var™'(8) =(a1 — a2 — a3 —as — a7 +ag + a9) Vi + &2V
+ (a3 —ag)V3 + (a4 — ag) Vs
+ (as — ag — a9)Vs + (ag — a9)Ve + (a7 — a9)V7 + ag Vg + a9 Vg,
where {V;} is the dual basis of {A;}. Therefore we have
(Var~'s,8) =ai(a1 — az — a3 — as — a7 + ag + a9) + a3 + az(a3 — ag)
+ a4(as — ag) + as(as — ag — ag) + as(as — a9)

+ aj(a7 — a9) +a§ +a§
1 \? 1 2
= (az - Eal) + [a3 - E(al +ag)]

1 \? 1
+ (a4 - 508) + [as —5(a1+as +a9)}

2

3.3.3)

+ LY 4 L +an) + L %
ae 2619 a 2(11 a9 4a3 ag

1 1 1
= (a - a))? + 7{2a3 — (@ + ag)}? + 7 2as — ag)?
1 2, 1 2
+ Z{2a5 — (a1 + ag + a9)}” + Z(2a6 — ag)

+ %{207 — (a1 +a9)¥* + ;::(as — ag)?.
From (3.3.1) and (3.3.3), we have
a2 — a1)* + {2a3 — (a1 + as)}?
(3.3.4) + (2a4 — ag)* + (2as — (a1 + ag + a9)}>
+ (2as — a9)* + {2a7 — (a1 + a9)}* + (ag — a9)* = 4.
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On the other hand, from (3.2) and (3.3.2) we have

9
(Var™1A, 8) = (—V1 + V) — V3 — V4 —2Vs — Vg — V7 + 2Vs + 2V, ZaiA,-)
(3.3.5) i

i=1
=—a)+ay—a3—aq4 —2as —ag — a7 +2ag +2a9=0.

LEMMA 3.3. The integral common solutions of (3.3.4) and (3.3.5) are exhausted by

the following ten types;
(1) (a1, a2, a3, a4, as, as, a7, ag, as)

==x(,1, 1, 1,24, t1, t1, 2t1, 2t1) (t € Z)
(2) (a1, a2, a3, a4, as, ag, a7, ag, ag)

=x(1,1,n,—-1,260—-1,6p—1,6,2tp — 1,2t — 1) (r €Z)
(3) (a1, a2, a3, aq4,as, as, ay, ag, ag)

==(0,0,13,13,2t3,t3 — 1,13 — 1, 2t3,2t3 — 1) (tz € Z)
4) (a1, a2, a3, a4, as, ag, a7, ag, ag)

=4(0,0,t4,24,2t4 + 1,24, 14,284,214 + 1) (ta € Z)
(5) (a1, a2, as, as,as, as, ay, ag, ag)

==3(0,0,¢s5,15,2t5 —2,t5 — 1,t5 — 1,2t5 — 1,2t5 — 2) (ts € Z)
(6) (ai1,a2,as,aas,as,as, ay, as, as)

= +(0,0, 16, 6, 216 — 1, t6, t6, 2t6 — 1, 21¢) (ts € Z)
(7 (a1, a2,a3, a4, as, ag, a7, ag, a9)

==x0,0,t7,t,2t7 —1,t7—1,t — 1,2t — 1,2t7 — 1) (t7 €Z)
(8) (a1, a2,as3, aq4,as, as, az, ag, ag)

=4(00,0,18,t3 — 1,2t — 1,t3,28 — 1,2t — 1,215 — 1) (tg e Z)
(9) (a1,a2,a3,a4,as, as, ay, ag, ag)

=3(00,0,19,00 — 1,200 — 1,89 — 1,129,280 — 1,289 — 1) (to € Z)

(10) (a1, a2, a3, aa, as, as, a7, ag, ag)
= +(0, 0, t10, t10, 2t10 — 1, t10 — 1, t10 — 1, 2t10, 210 — 2) (twed2

The proof of Lemma 3.3 is similar to that of Lemma 2.3. The above ten solutions are not
Z-linear independent, for
t—t1—19)O0)=n—t—10)E)+ @) -GN+ @ —t5 —ta+13)((2) — (1) — 9)),
B—t—-10)N)=@E@—t—0)E)+ @)+ —1t5s —1)(2) — 1) = 9),
(2—11—1)A0) = (22— 11 —1)(3) — D) + (o + 14 — 13)((D) — (1) — 9)) .
So there are only seven Z-linear independent solutions. Therefore together with A, one has at

most eight Z-linear independent elements satisfying the requirements (3.3.1) and (3.3.2). So
they can not form a basis for H>(V,; Z). Thus we have

THEOREM 3.3. Let{Ay, A3, -, Ao} be the distinguished basis constructed in §3.1
and let A be the vanishing cycle constructed in §3.2. Then the distinguished basis
{A1, Ay, - - -, A9} can never be turned into a distinguished basis {A;}; G=1,---,9) with
A’l = A by a sequence of elementary substitutions.
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4. A distinguished basis of the singularity Es.

In this section we prove our theorem for the singularity Eg : x3 + y% + z%: We construct

a vanishing cycle A and a distinguished basis {A, A3, - - - , A10} which can never be turned
into a distinguished basis {A}, A}, - - -, A]} with A] = £A by a sequence of elementary
substitutions.

4.1. Construction of a distinguished basis {A;}. There exists a distinguished basis
{Ay, -+, Ao} of the singularity Eg : x3 + y® + z? with the following Dynkin diagram (see
(1], [8D.

p L
x A
A9,

10 7

4 1
FIGURE 9. The Dynkin diagram of the basis {A;}.
Therefore, the matrix L of the inverse variation operator
Var™' : Hy(Ve; Z) - Hy(Ve, 3Ve; Z)
in the basis {A;} and its dual basis {V;} which is determined by the relation (V;, A4;) = §;j, is

1 0 0 -1 -1 -1 0 0 1 1 7
1 0 0 0 -1 -1 -1 0 1
1 0 0 0 O 0 -1 0
O 1 0 0 O 0 -1 o0
1 0 0 0 -1 -1
L= 1 0 0 0 -1
1 0 0 -1
1 0 O
1 0
L 1_.

4.2. Construction of a vanishing cycle A. There exists a system of paths
ui, uy, - ,ujo by which the distinguished basis {A;} of vanishing cycles is defined. This
means that the cycle A; vanishes along the path u; joining the critical value z; with the non-
critical value zo. Let {t;} be the simple loops corresponding to the paths {u;}. Consider the
path & represented by the path u, and the loops {;} in the following manner:

- 1 -1 -1 -1 =1 _—=1 _—1_ _—1 _=1__  _ -1 _—1_ _-I

-1 -1 -1
-t9 -‘L’S -‘rlo-tg'ts-t4-t3-‘r2 .

where u3 - T3 ! ... means first go along u> then along T3 ! and so on.
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FIGURE 10. The path ii defining A.

Let A be the vanishing cycle defined by the path ii. Then the vanishing cycle A is represented
in terms of the basis {A;} and the transformations

hi = (ti)s : H2(Ve; Z) - Ha(Ve; Z)
as follow:
A=h3"ohsohgohsohgohigohs ohylohs oh ohy  ohsohgohy!
ohjdohylohglohs ohgt ohs!l o h;l.o h3l(4A2)
=A3+ A4+ 245+ Ag + A7+ Ag + 249 +2A10.
By the matrix L of the inverse variation operator Var~! defined in 4.1, we have
Var~1(A) =Var (A3 + A4 + 245 + Ag + A7 + Ag + 249 +2410)
=—Vy—V3—-V4—2Vs — Vg — V7 + Vg +2Vg +2Vyo,

4.2)

where {V;} is the dual basis of {A;}.

4.3. Elements satisfying (Var~15,8) = 1 and (Var—'A,8) = 0. For the van-
ishing cycle A and the distinguished basis {A1, Az, - -+, Ao}, if there exists a sequence of
elementary substitutions which turn the basis {A;, Az, --- , A1o} into a distinguished basis
{A], 45, -+, A} with A] = %A, then the matrix L of the inverse variation operator Var™!
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with respect to the distinguished basis {A}} must be an upper triangular matrix with diagonal
entries equal (—1)"**+1/2 = 1, since n = 3. Therefore we have the following two equalities;

(Var™'a, ) =1, (Var™'4,4)=0 (=2,---,10).

We shall now determine conditions in terms of A, A3, ---, Ao for a cycle 8 to be an
element of such a distinguished basis {A]}. If § # A is any element of the distinguished basis
{A}}, similarly the following equalities must hold;

4.3.1) (Var™18,8) =1,

4.3.2) (Var~'4,8) =0.

Let us represent such a § as a linear combination of the distinguished basis {A;}:

0
aiAi(a; € ).
i=1

1
S =
Then by the matrix L, we have

Var~1(8) =(a1 — a4 — as — ag + ag + a10)Vi + (a2 — ag — a7 — ag + a10) V2
+ (a3 — a9) V3 + (a4 — a9)Va + (as — ag — a10) Vs
+ (as — a10) Ve + (a7 — a10)V7 + agVg +agVy 4+ a19Vio,

where {V;} is the dual basis of {A;}. Therefore we have

(Var~18,8) =ai(a; — as — as — ag + as + ayp) + ax(az — as — a7 — ag + aio)
+ a3(a3z — ag) + as(as — a9) + as(as — ag — ayo) + as(ag — aio)
+ a7(a7 — ayg) + ag + ag + a120

1( ¥ +(a LY
=—(a2—a — —a
4 2 1 3 29

1 2 1 2
+ {a4 — 5(01 +¢19)] + {as - z(al + ag +a10)}

1 2 1 2

(4.3.3) + [as - E(al +az +alo)] + la7 - -Z'(az +alo)}

+ LY + 3¢ )?

asg 2‘12 a ag — ajo
1 2, 1 2, 1 2
=—(az —a1)* + —(2az — a9)” + —{2a4 — (a1 + a9)}
4 4 4
1 ‘ 1
+ 2{205 ~ (a1 + a9 + ajp)}? + 2{206 — (a1 + a2 + a10))?

1 1 1
+ 2{207 — (a2 +a10))® + 2(208 —a)? + Z(a9 —a)?.
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From (4.3.1) and (4.3.3), we have

(a2 — a1)? + (az — ag)? + {2a4 — (a1 + a9)}?
(4.3.4) + {2as — (a1 + a9 + a10)}? + {2as — (a1 + a2 + a10)}°
+ {2a7 — (a2 + @10))? + (ag — @2)* + (a9 — a10)* = 4.
On the other hand, from (4.2) and (4.3.2) we have

10
(Var™'4,8) = (—Vz — V3 — V4 —2Vs5 — Vg — V7 + Vg +2Vg + 2V, Zaiai)
i=1

4.3.5)
= —a); —az — a4 — 2as — ag — a7 +ag + 2a9 + 2a10 =0.

LEMMA 4.3. The common integral solutions of (4.3.4) and (4.3.5) are exhausted by
the following fourteen types;
(1) (a1,a2, a3, as, as, as, a7, ag, a9, a10)

==(0,1, 1, t1, 211, t1, t1, 1, 211, 2t1) (1 € Z),
(2) (a1, a2,as,aas,as, as, az, ag, as, o)

=4(00,1,0,6,2tp —1,12,12,1,2t5,2t — 1) (tr € Z),
3) (a1, a2, a3, aa, as, ag, ay, ag, ag, aip)

=40,1,1,13,2t3,t3+ 1,13 + 1,1, 213, 2t3 + 1) (tz € Z),
4) (a1, a2,a3,aa,as, ag, ay, as, ag, a10)

=4(0,1,44,14,2t4 + 1,84+ 1,24+ 1,1,2t4 +1,2t4 + 1) (t4 € Z2),
(5) (a1, a2, a3, as, as, as, a7, as, a9, A10)

==(0,0,¢ts,15,2t5 — 1,25 — 1,5 — 1, 0, 2t5, 25 — 2) (ts € Z2),
(6) (ai1,a2,as,aas,as,as,ay, as, ag, a1o)

= (0,0, 16, te, 2t6, t6 — 1,t6 — 1, 0, 2t, 2t6 — 1) (ts € Z2)),
(7 (a1, a2, a3, aa, as, ag, a7, as, ag, a10)

==+(0,0,¢t7,t7,2t7 + 1,17,17,0,2t7,2t7 + 1) (t7 € 2),
(8) (a1, a2, a3, a4, as, ag, ay, as, a9, a1o)

==(0,0,15,13,2tg — 2,3 — 1,13 — 1,0,213 — 1, 2tg — 2) (tg € Z),
(9) (a1, a2,as, aa, as, ag, az, as, ay, a10)

= £(0,0, 19, t9, 2t9 — 1, 19, 9, 0, 229 — 1, 219) (t9 € Z),

(10) (a1, a2, a3, a4, as, as, a7, as, ag, a10)

= +(0, 0, t10, t10, 2t10 — 1, t10 — 1, t10 — 1,0, 2t10 — 1,2t10 — 1) (10 € 7)),
(11) (a1, a2, a3, aa, as, ae, a7, as, ag, a10)

=4(0,0,t1;+ 1,611,211 + L, t11, t1 + 1,0, 2011 + 1, 211 + 1) (411 € 2),
(12) (a1, a2, a3, aa, as, as, a7, ag, ay, a10)

=4(0,0,t12+ 1,812, 2t12+ 1, ti2 + 1,412, 0, 2t12 + 1, 2t12 + 1) (112 € Z),
(13) (a1, a2, a3, a4, as, ag, a7, ag, a9, A10)

= +(-1, 0, 13, t13, 2113, 13, 113, 0, 2113, 2¢13) (13 € Z),
(14) (a1, a2, a3, aa, as, ag, a7, as, a9, a10)

=4(,0,t14 —1,t14,2t14 — 1, t14, 14 — 1,0,2t14a — 1,2t14 — 1) (t14 € Z).
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The proof of Lemma 4.3 is similar to that of Lemma 2.3. The above fourteen solutions
are not Z-linear independent, for

+u-t)Q)=WB+t5+1 -1+ D -A)N)+ @+ —t)((D =G - D),
(+t7—1)@) =W +ts+t7+19—11)((2)+ (7)) — (1)
+@+t7 -t -G -7 —-0)),
(2+t7—11)(6) =6 —ts —t7)((2) + (7) — (1)) + (L2 + t7 — t1)((5) + (7)),
(+t7-1)@) =@ —t5—19)((2)+ (1) — (1)) + (2 +t7 — 11)((5) + (9)),
R+ -t =Co—t—t7—)(D+ N - W)+ @+t —t1)(S)+ (D + ),
(2417 —1)(14) = (s + 113 + 11)(2) + (7) — (1)) — (12 + 7 — 11)((13) + (11)).
So there are only eight Z-linear independent solutions. Therefore together with A, one has at

most nine Z-linear independent elements satisfying the requirements (4.3.1) and (4.3.2). So
they can not form a basis for H3(V,; Z). Thus we have

THEOREM 4.4. Let{A}, Ay, -, Ay} be the distinguished basis constructed in §4.1
and let A be the vanishing cycle constructed in §4.2. Then the distinguished basis
{A1, Ay, --- , Ajo} can never be turned into a distinguished basis {A:.}; Gi=1,---,10
with A| = A by a sequence of elementary substitutions.

5. A distinguished basis of non-simple singularities.

In this section we prove our Main Theorem for arbitrary non-simple singularities.

DEFINITION 5.1 [7]. A germ gis adjacent to f if in any neighborhood of f there are
germs of the orbit of g. We denote this situation by g < f.

PROPOSITION 5.2 [7]. Ifg < f , then there exists an injection iy : H,—1(Vg) —
Hy_1(Vy) which preserves the intersection form and maps a distinguished basis of H,—1(Vy)
into a distinguished basis of vanishing cycles of H,_1(V¢) such that the intersection matrix
of g can be identified with a diagonal submatrix of the intersection matrix of f .

PROOF OF THE MAIN THEOREM. If f is not simple, then at least one of the following
three families is adjacent of f. (see [7])
Es: Z+n+B+tnnn+2+--+722
E;: z‘f+z§+z§+tz%z%+zi+---+z3
Eg: z?+z§+z§+tzfzz+z§+---+zﬁ

Since these families of germs have constant Milnor numbers, their intersection forms are also
constant and can be computed from those of

P+ +2, 4yt +2, S+ 4722,
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There are three cases to be considered: Eﬁ < f, 12"7 <f, Eg < f. Let us first consider the
case Eg < f. For stably equivalent singularities, their desitnguished bases are in one-to-one
correspondence and the matrices of the operators Var~! differ by the facter +1. Therefore,
without loss of generality, we will assume that the number of variables n = 3mod4. The
singularity Eg (x3 4+ y3 + z3) has the distinguished basis {4}, A3, A3, - - - , Ag} with Dynkin
diagram shown in Figure 5 and the vanishing cycle A constructed in §2.2. By Proposition 5.2,
it can be shown that the image of this dlstmgmshed bas1s in H,—1(Vy) can be extended to the
distinguished basis {Al = z*(Al) A2 = i,(A7), Ag = i,(Ag), A9, A#} with the
following relation: (4;, 4;) = (A,, A; j) for1 <i < j < 8. Therefore the matrix L of the
inverse variation operator in the basis {A } and its dual basis {V }is:

[ * T
L
~ *
L= 1 * ?
| Olo 1]

where L is the matrix defined in §2.1.
Consider the vanishing cycle A= ix(AQ):

A = —i (A1) + ix(As) + ix(A6) + ix(A7) + ix(Ag)
= —A1 + Ay + Ag + A7 + Ag.

We are gomg to prove that the vanishing cycle A and the distinguished basis
{Al, Az, Ag, A9, .-+, Ay} thus constructed are the ones whose existence is claimed in
Main theorem: {Al , o Z;} can never be elementary equivalent to any distinguished basis
{A } with A’ = +A.

Suppose that there exists a sequence of elementary substitutions which turn
{A1, Az, -+, Ag, Ao, - - A,,L} mto a distinguished basis {A’ } with the first element A’
+A. Then the d1st1ngu1shed basis {A’ } must satlsfy the conditions that (Var~! A, A/ )=0
i=2--, u,) and by I we have (Var—'A,A) = 0@ = 9,---, ). Therefore the
cycles z’lvg, Ao, - A,L belong to the lattice {x : x € Hp_1(Vy), (Var‘lA x) = 0} that
is spanned by the vectors A’ , o A’ Thus, let {#;} (1 < i < u — 7) be a system of
paths defining an ordered set of vamshmg cycles {A, Z;, SR Z;}. The system of paths {i; }
(1 < i < u —17) satisfy the conditions (i), (ii) defined in §1 and are numbered as (iii) in
§1. Therefore the system of paths {i;} (1 < i < - - 7} can be extended to a system {i;}

(1 < i < p) defining a dlstmgulshed basis {A A9, .- Au, A,L_6, .. AM} We change
the distinguished basis {A, Ao, - , A, ws A6 p—6s"", 4 ,L} by the sequence of elementaly sub-
stitutions o7, Cp—8, ", 02, Ap—6, "+, &3, - “u 1, Qp—2, ", 0. So we obtain a dis-
tlngulshed basis {A } of the form {A1 = A, Az, Ag, A9 = Zg, e ,ZTL = Z;}. Since

{A } is a distinguished basis, it follows that (Var™ 1A,-, Z;) =01 <i < j < w). Therefore
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{Z\i}, (i =2,---,8) can be described as a linear combination of the distinguished basis {Z,-}
as follows: 4; = Y 5_ a;jA; (i = 2,---,8). Set A} = 35_,ai;Aj(aij € Z). Then
{4}, -, Ag) is a distinguished basis for Eg with A} = A. This contradicts to Theorem 2.3.
In the other cases we obtain the same result. This completes the proof of Main Theorem.
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