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Abstract. We show a global representation formula for a certain kind of Weingarten surface in hyperbolic
three-space, which is based on the formula due to Gálvez, Martínez and Milán.

As an application of the representation formula, we also investigate surfaces with harmonic-mean curvature one
(HMC-1 surfaces). We allow them to have certain kinds of singularities, and discuss some global properties.

1. Introduction

In the differential geometry of surfaces in hyperbolic three-space H3, surfaces with con-
stant mean curvature one (CMC-1 surfaces, for short) are one of the central subjects [1],

[10], [2], etc. The theory of flat surfaces in H3 is also developing, thanks to the appearance
of a representation formula due to Gálvez, Martínez and Milán [4]. From the viewpoint of
global theory for flat surfaces, one should generalize the category of surfaces to that of fronts.
(Roughly speaking, a front is a surface with certain kinds of singularities.) Any complete flat

surface in H3 must be a horosphere or a hyperbolic cylinder, however, many complete flat

fronts exist in H3. (See [8].)
On the other hand, Gálvez, Martínez and Milán [5] also studied a wider class of surfaces

in H3, including both CMC-1 surfaces and flat surfaces. It is the class of Weingarten surfaces
satisfying α(H − 1) = βK for some constants α and β. Here, H denotes the mean curvature,
and K is the Gaussian curvature. A representation formula for such surfaces is shown in [5].
As a refinement of their formula, we shall prove the following theorem (Theorem 3.8):

THEOREM. Let G be a meromorphic function on a Riemann surface M . Let |η|2 be a
Hermitian pseudometric on M of constant curvature ε, and h the developing map. Suppose
that the quadratic differential form

(1 + ε|h|2)2

4
|{G; h}dh|2 − (1 − ε)2|dh|2

(1 + ε|h|2)2
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is definite on M . Then f := GHG∗ : M → H3 = SL(2, C)/ SU(2), determined by

G := (−Gh)
−3/2

[−GGh GGhh/2 − G2
h

−Gh Ghh/2

]
and H :=

[
1+ε2|h|2
1+ε|h|2 h̄

h 1 + ε|h|2
]

,

is a Weingarten immersion from M to H3 with 2ε(H − 1) = (ε − 1)K .
Conversely, any Weingarten surface of α(H − 1) = βK (α �= 2β), except a horosphere,

has this representation in terms of (G, h).

Here {G; h} denotes the Schwarzian derivative of G with respect to h, and Gh = dG/dh,

Ghh = d2G/dh2.
The theorem above is a global formula in contrast to the formula due to Gálvez, Martínez

and Milán.
For the ratio [α : β] in RP 1, let W[α:β] be the set of Weingarten surfaces satisfying

α(H − 1) = βK , and set

W :=
⋃

[α:β]∈RP 1

W[α:β] .

It is remarkable that W is closed under parallel transforms, that is, any parallel surface of any
surface in W is always in W . More precisely, dividing W into four subclasses

W0 := W[0:1] , W1 :=
⋃

λ<1/2

W[1:λ] , W2 := W[1:1/2] , W3 :=
⋃

λ>1/2

W[1:λ] ,

we can prove that each Wj is closed under parallel transforms. (See Theorem 2.3 and The-
orem 2.5.) Hence, roughly speaking, we can say that CMC-1 surface theory represents the

theory of surfaces in W1. For instance, one can construct a Weingarten surface satisfying
H − 1 = λK (λ < 1/2), though it may have singularities, by constructing any CMC-1 sur-
face first and by parallel transforming it appropriately. By the same reasoning, the theory of

surfaces in W3 can be represented by one special type of surface. We will take W[1:1] as

such a representative for W3, because surfaces in W[1:1], i.e., Weingarten surfaces satisfying
H −1 = K , have another special geometric meaning: the sum of the reciprocals of the princi-
pal curvatures is 2. In other words, the harmonic mean of the principal curvature functions is
1. We also call them surfaces with constant harmonic-mean curvature one (HMC-1 surfaces,
for short).

For the reason mentioned above, we will study HMC-1 surfaces in this paper. Although
much work has been done on CMC-1 surfaces, HMC-1 surfaces have received less atten-
tion. For example, there is Epstein’s work [3], however, it seems lesser-known. (In classical
Euclidean surface theory, the radii of principal curvature were considered as the fundamen-
tal entities. There is some work on the mean radius of principal curvatures, or equivalently,
about the harmonic mean of principal curvatures; e.g., Christoffel’s theorem about rigidity of
surfaces (cf. [9, pp. 299–302]).)
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In Section 2, we discuss background material for the sake of precisely understanding the
topics mentioned in this introduction. Section 3 is devoted to deriving the formula due to
Gálvez, Martínez and Milán, and its global version. HMC-1 surfaces are treated in Section
4. As for the case of flat surfaces, it is more natural to consider HMC-1 fronts rather than
HMC-1 surfaces. HMC-1 fronts are defined in Section 5.

The author would like to thank Professors Wayne Rossman, Masaaki Umehara and Ko-
taro Yamada for their valuable comments.

2. Background

2.1. Basics. Let L4 denote the Minkowski 4-space with the Lorentzian inner product
〈 , 〉L of signature (−,+,+,+). Let F be the set of positively oriented and positively time-

oriented frames (e0, e1, e2, e3) in L4 satisfying

(2.1) 〈eα, eβ〉L =




−1 if α = β = 0 ,

0 if α �= β ,

1 if α = β > 0 .

The indices α and β run over 0, 1, 2, 3, while the indices i, j and k run over 1, 2, 3. We
shall use Einstein’s convention, that is, the symbol

∑
may be omitted for sums over repeated

indices.
Regarding eα : (e0, e1, e2, e3) � F �→ eα ∈ L4 (α = 0, 1, 2, 3) as L4-valued functions,

deα (α = 0, 1, 2, 3) are L4-valued one-forms on F . The connection forms ω
β
α are defined by

deα = eβ ⊗ ω
β
α . We write ωi for ωi

0. Differentiating (2.1), we have

ωα
α = 0 , −ω0

i + ωi
0 = 0 , ω

j
i + ωi

j = 0 ,(2.2)

de0 = ei ⊗ ωi , dei = e0 ⊗ ωi + ej ⊗ ω
j
i .(2.3)

Again, differentiating (2.3), we have the structure equations:

(2.4) dωi = −ωi
j ∧ ωj , dωi

j = −ωi
k ∧ ωk

j − ωi ∧ ωj .

The hyperbolic 3-space H3 is the upper half component of the two-sheeted hyperboloid

in L4, i.e.,

H3 = {x = (x0, x1, x2, x3) ∈ L4 ; 〈x, x〉L = −1, x0 > 0}
with the metric induced by 〈 , 〉L. H3 is a space form of constant negative curvature −1. As

usual, we regard e0 : F → H3 ⊂ L4 as the oriented orthonormal frame bundle of H3.

Let M be a connected, oriented surface, and f : M → H3 an immersion. Let {ε1, ε2} be
a local orthonormal frame on U ⊂ M , and let ν denote a unit normal field. Regarding them
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as L4-valued functions, we consider a map

(e0, e1, e2, e3) := (f, ε1, ε2, ν) : U → F .

We shall use the same notation for differential forms on F and forms on U pulled back by
this map. Since 〈ν, df 〉L = 0,

(2.5) 0 = 〈ν, df 〉L = 〈e3, de0〉L = ω3 .

From now on, we shall use the following convention on the ranges of indices: 1 ≤ i, j, k ≤ 2.
It follows from (2.2), (2.3) and (2.5) that

ωα
α = 0 , −ω0

i + ωi
0 = 0 , −ω0

3 + ω3
0 = 0 , ω

j
i + ωi

j = 0 , ω
j

3 + ω3
j = 0 ,

de0 = ei ⊗ ωi , dei = e0 ⊗ ωi + ej ⊗ ω
j
i + e3 ⊗ ω3

i , de3 = ej ⊗ ω
j

3 .
(2.6)

The structure equations (2.4) become

dωi = −ωi
j ∧ ωj , 0 = dω3 = −ω3

j ∧ ωj ,(2.7)

dω1
2 = −ω1

3 ∧ ω3
2 − ω1 ∧ ω2 , dω3

j = −ω3
k ∧ ωk

j .(2.8)

Following Bryant’s notation ([1]), we introduce two complex-valued one-forms ω := ω1 +√−1ω2, π := ω3
1 − √−1ω3

2, and a complex vector e := (e1 − √−1e2)/2. Then (2.7) and
(2.8) are rewritten as

dω = √−1ω1
2 ∧ ω , ω ∧ π + ω̄ ∧ π̄ = 0 ,(2.9)

dω1
2 = −

√−1

2
(π ∧ π̄ + ω ∧ ω̄) , dπ = −√−1ω1

2 ∧ π .(2.10)

The first fundamental form I = 〈de0, de0〉L is given by

I = 〈ei ⊗ ωi, ei ⊗ ωi〉L = (ω1)2 + (ω2)2 = ωω̄ = |ω|2 .

The Gaussian curvature K is determined by dω1
2 = K (

√−1/2) ω ∧ ω̄. Hence, it follows
from (2.10) that

(2.11) (K + 1)ω ∧ ω̄ + π ∧ π̄ = 0 .

The second fundamental form II = −〈de0, de3〉L is given by

II = −〈ei ⊗ ωi, ei ⊗ ωi
3〉L = ω1ω3

1 + ω2ω3
2 = 1

2
(ωπ + ω̄π̄) = Re(ωπ) .

If we set ω3
i = hijω

j , then h12 = h21 and II = h11(ω
1)2 + 2h12ω

1ω2 + h22(ω
2)2. Moreover,

π = 1

2
{(h11 − h22) − 2

√−1h12}ω + 1

2
(h11 + h22)ω̄ .

Setting q = {(h11 − h22) − 2ih12}/2 and H = (h11 + h22)/2, we can write

(2.12) π = qω + Hω̄ .
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Here, H is the mean curvature. The second fundamental form II is written as

(2.13) II = q

2
ωω + Hωω̄ + q̄

2
ω̄ω̄ .

It follows from (2.11) and (2.12) that

(2.14) K = −1 + H 2 − |q|2(= −1 + det(hij )) .

As a corollary,

(2.15) H 2 − K − 1 ≥ 0

holds at every point p ∈ M , with equality if and only if p is an umbilic point.
The third fundamental form III = 〈de3, de3〉L is given by

III = 〈ei ⊗ ωi
3, ei ⊗ ωi

3〉L = (ω1
3)

2 + (ω2
3)

2 = ππ̄ = |π |2 .

The ideal boundary ∂H3 is considered as the quotient space N3/∼, where

N3 = {x = (x0, x1, x2, x3) ∈ L4 ; 〈x, x〉L = 0, x0 > 0}
and x ∼ y if x = λy for some positive constant λ. In other words, ∂H3 consists of positive

null half-lines in L4. N3/∼ is diffeomorphic to the 2-sphere, and a natural conformal structure

on N3/∼ is given by the induced metric on N3. Hence, ∂H3(= N3/∼) is identified with the
conformal 2-sphere. By definition, the hyperbolic Gauss maps are G± = [e0 ± e3] : M →
∂H3, where [v] denotes the line spanned by v ∈ L4. Because we mainly treat G+ = [e0 +e3],
we simply write G for G+.

The conformal structure on M induced by G is the conformal class determined by 〈d(e0+
e3), d(e0 + e3)〉L. Indeed, it is computed as follows:

LEMMA 2.1.

〈d(e0 + e3), d(e0 + e3)〉L = |ω − π̄ |2 = 2(H − 1) II − K I .

PROOF. Since de0 +de3 = e⊗(ω− π̄ )+ ē⊗(ω̄−π) holds by (2.6), the first equality is
obvious. The second equality follows from a straightforward computation using (2.12), (2.13)
and (2.14). �

Similarly, the third fundamental form III = 〈de3, de3〉L is computed as

(2.16) III = 〈de3, de3〉L = 2H II − (K + 1) I .

PROPOSITION 2.2. The Gaussian curvature K̃ of the pseudometric 〈d(e0+e3), d(e0+
e3)〉L is

K̃ = K

K − 2(H − 1)
.
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PROOF. Setting α = ω − π̄ , we have

dα = dω − dπ̄ = √−1ω1
2 ∧ ω − (

√−1ω1
2 ∧ π̄) = √−1ω1

2 ∧ α .

Hence, we can consider ω1
2 as the connection form of the metric |α|2. On the other hand, by

(2.12) and (2.14) ,

α ∧ ᾱ = (ω − π̄ ) ∧ (ω̄ − π) = {(1 − H)ω − q̄ω̄)} ∧ {(1 − H)ω̄ − qω)}
= {(1 − H)2 − |q|2}ω ∧ ω̄ = (K − 2H + 2)ω ∧ ω̄ .

Therefore

dω1
2 = K ·

√−1

2
ω ∧ ω̄ = K

K − 2H + 2
·
√−1

2
α ∧ ᾱ ,

which proves the assertion. �

2.2. Parallel surfaces. The map ft := cosh t f +sinh t ν is called the parallel surface

of f at distance t . It is easily verified that ft : M → H3 and that ft (p) is joined to f (p) by a
hyperbolic line segment of length t . In general, ft may fail to be an immersion. In fact, ft is

an immersion if and only if cosh t ωi + sinh t ωi
3 �= 0 for every p ∈ M , because

dft = cosh t df + sinh t dν = cosh t de0 + sinh t de3

= cosh t ei ⊗ ωi + sinh t ei ⊗ ωi
3 = ei ⊗ (cosh t ωi + sinh t ωi

3) .

In this section, we assume that ft is an immersion, unless otherwise stated.
The first fundamental form It = 〈dft , dft 〉L is

It = (cosh t ω1 + sinh t ω1
3)

2 + (cosh t ω2 + sinh t ω2
3)

2 ,

hence, the θ i := cosh t ωi + sinh t ωi
3 (i = 1, 2) form an orthonormal frame of ft . It follows

from the structure equations (2.7) and (2.8) that

dθi = −ωi
j ∧ θj .

Thus ω1
2 is also a connection form of It = (θ1)2 + (θ2)2. Denoting the Gaussian curvature of

It by Kt , we have

dω1
2 = Ktθ

1 ∧ θ2 (= Kω1 ∧ ω2) .

Using K = −1 + det(hij ) and 2H = h11 + h22, we have

θ1 ∧ θ2 = {cosh2 t − 2H cosh t sinh t + (K + 1) sinh2 t} ω1 ∧ ω2 .

Therefore

dω1
2 = K

K sinh2 t − 2H cosh t sinh t + cosh2 t + sinh2 t
θ1 ∧ θ2 .
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This implies that

Kt = K

K sinh2 t − 2H cosh t sinh t + cosh2 t + sinh2 t
.(2.17)

Thus, since (Kt)−t = K , we have

Kt

Kt sinh2 t + 2Ht cosh t sinh t + cosh2 t + sinh2 t
= K .

This formula together with (2.17) implies that

Ht = H(cosh2 t + sinh2 t) − (2 + K) cosh t sinh t

K sinh2 t − 2H cosh t sinh t + cosh2 t + sinh2 t
.(2.18)

The formulas (2.17) and (2.18) yield the following well-known theorem:

THEOREM 2.3. (1) All parallel surfaces of a flat surface are also flat.
(2) A family of parallel surfaces of a surface with constant mean curvature (|H | > 1)

contains a surface with constant Gaussian curvature (K > 0), and vice versa.

We can rewrite (2.18) as

Ht − 1 = (cosh t + sinh t){(cosh t + sinh t)(H − 1) − K sinh t}
K sinh2 t − 2(H − 1) cosh t sinh t + (cosh t − sinh t)2

.

Multiplying by K on both sides, we have

K(Ht − 1) = Kt et {et(H − 1) − K sinh t} .

For example, if we assume that the original surface f has constant mean curvature one (CMC-
1), then

Ht − 1 = (−et sinh t)Kt ,

thus, ft is a Weingarten surface. The family of Weingarten surfaces satisfying H − 1 = λK

for some constant λ includes the following interesting surfaces:

If λ = 0, then f is a CMC-1 surface.
If λ = 1/2, then at least one of the principal curvatures equals 1.
If λ = 1, then the sum of the reciprocals of the principal curvatures is 2, that
is, f is a surface with constant harmonic-mean curvature one (HMC-1).

These follow from K = −1 + κ1κ2, 2H = κ1 + κ2 and the fact that the harmonic-mean

curvature is 2/(κ−1
1 + κ−1

2 ), where κi (i = 1, 2) denote the principal curvatures.
Conversely, let us assume that the original surface f satisfies H − 1 = λK for some

constant λ. Then the parallel surface ft satisfies

Ht − 1 = (2λ − 1)e2t + 1

2
Kt ,

and hence is the same kind of Weingarten surface. Since λt := {(2λ − 1)e2t + 1}/2 satisfies

(2λt − 1) = (2λ − 1)e2t , the following lemma is clear:
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LEMMA 2.4. (1) If λ = 1/2, then λt = 1/2 for all t .
(2) If λ < 1/2, then λt < 1/2 for all t , and λt = 0 for some unique t .
(3) If λ > 1/2, then λt > 1/2 for all t , and λt = 1 for some unique t .

Therefore, we have the following theorem:

THEOREM 2.5. (1) Let f be a Weingarten surface such that at least one of the prin-
cipal curvatures equals 1, i.e., a Weingarten surface with H −1 = K/2. Then, for all parallel
surfaces of f , at least one of the principal curvatures equals 1.

(2) Let f be a Weingarten surface with H −1 = λK for some constant λ(> 1/2). Then
the family of parallel surfaces of f consists of Weingarten surfaces with H − 1 = λK (λ >

1/2). This family includes a single HMC-1 surface.
(3) Let f be a Weingarten surface with H −1 = λK for some constant λ(< 1/2). Then

the family of parallel surfaces of f consists of Weingarten surfaces with H − 1 = λK (λ <

1/2). This family includes a single CMC-1 surface.

Theorem 2.3 is well-known, whereas Theorem 2.5 seems to be lesser-known.

2.3. Weingarten surfaces satisfying α(H − 1) = βK . Throughout this section,

f : M → H3 denotes a Weingarten surface satisfying α(H − 1) = βK for some constants α,
β.

It follows from Lemma 2.1 that

〈de0 + de3, de0 + de3〉L = 2(H − 1) II − K I

=




−K

α
(α I − 2β II) (if α �= 0)

1 − H

β
(α I − 2β II) (if β �= 0)

(2.19)

Hence, if we endow M with the “metric” α I − 2β II, then the hyperbolic Gauss map G is
conformal. However, we need to check that α I − 2β II is indeed a metric:

LEMMA 2.6. If α �= 2β, then α I − 2β II is either positive or negative definite.

PROOF. α I − 2β II is definite if and only if

(2.20) det

(
α − 2βλh11 −2βh12

−2βh12 α − 2βh22

)
> 0 .

This condition (2.20) is equivalent to α2 − 4αβH + 4β2(K + 1) > 0. Moreover, from the

assumption α(H − 1) = βK , this is equivalent to (α − 2β)2 > 0. �

PROPOSITION 2.7. Let f : M → H3 be a Weingarten surface satisfying α(H − 1) =
βK for some constants α, β(α �= 2β). Then α I − 2β II determines a conformal structure on

M , and the hyperbolic Gauss map G : (M, α I − 2β II) → ∂H3 is conformal.

Conversely, if an immersed surface f : M → H3 satisfies
(i) α0 I − 2β0 II is definite, and
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(ii) G : (M, α0 I − 2β0 II) → ∂H3 is conformal
for some constants α0, β0, then f is a totally umbilical surface or a Weingarten surface
satisfying α0(H − 1) = β0K .

The preceding proposition is shown in [1] when β = 0, and in [4] when α = 0. More-
over, the former part is proved in [5]. Hence we have only to prove the latter part. However,
it can be proved by the same argument as in [1]. Thus, the proof is omitted here.

The following proposition follows immediately from Proposition 2.2.

PROPOSITION 2.8. For a Weingarten surface satisfying α(H − 1) = βK (α �= 2β),
the pseudometric 〈d(e0 + e3), d(e0 + e3)〉L has constant curvature α/(α − 2β).

From now on, we will assume α �= 2β. We wish to consider M a Riemann surface
compatible with the conformal structure [α I − 2β II] providing an orientation. Following
Bryant’s notation ([1]), we set

η := (ω1 − ω3
1) − √−1(ω2 − ω3

2) (= ω̄ − π) .

Since 〈de0 +de3, de0 +de3〉L = |η|2, it follows from (2.19) that |η|2 is (weakly) conformally
equivalent to α I − 2β II. Hence, we can give a complex structure on M so that η is a (1, 0)-
form. The following lemma is the key to the Gálvez-Martínez-Milán formula which will be
discussed in the next section.

LEMMA 2.9.

∂̄∂(e0 + e3) = 1

2

1

α − 2β
{βe0 + (α − β)e3} ⊗ η ∧ η̄ ,

that is,

(e0 + e3)zz̄ = 1

2

|η̂|2
2β − α

{βe0 + (α − β)e3} ,

where z is a local complex coordinate and η = η̂ dz.

PROOF. Because d(e0 +e3) = e⊗ η̄+ ē⊗η, we have ∂(e0 +e3) = ē⊗η. Furthermore,
taking ∂̄ , we can calculate as follows:

∂̄∂(e0 + e3) = ∂̄ ē ∧ η + ē ⊗ ∂̄η

= dē ∧ η + ē ⊗ dη (∵ η ∈ A1,0)

= {e0 ⊗ 1

2
ω ∧ η + √−1ē ⊗ ω1

2 ∧ η + e3 ⊗ 1

2
π̄ ∧ η} + ē ⊗ dη

= e0 ⊗ 1

2
ω ∧ η + e3 ⊗ 1

2
π̄ ∧ η .

(2.21)

On the other hand, using (2.12), (2.14), we can compute ω ∧ η, π̄ ∧ η , η ∧ η̄ as follows:

ω ∧ η = ω ∧ ω̄ − ω ∧ π = ω ∧ ω̄ − Hω ∧ ω̄ = (1 − H)ω ∧ ω̄ ,
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π̄ ∧ η = π̄ ∧ ω̄ − π̄ ∧ π = −Hω̄ ∧ ω − (K + 1)ω ∧ ω̄ = (H − K − 1)ω ∧ ω̄ ,

η ∧ η̄ = (−K − 2 + 2H)ω ∧ ω̄ .

Moreover, from the condition α(H − 1) = βK , we have the following:

If α �= 0, ω ∧ η = (1 − H)ω ∧ ω̄ = −(β/α)Kω ∧ ω̄ ,

π̄ ∧ η = {(H − 1) − K}ω ∧ ω̄ = ((β − α)/α) Kω ∧ ω̄ ,

η ∧ η̄ = {−1 + 2(H − 1)}ω ∧ ω̄ = ((2β − α)/α) Kω ∧ ω̄ .

If α = 0, ω ∧ η = (1 − H)ω ∧ ω̄ ,

π̄ ∧ η = (H − 1)ω ∧ ω̄ ,

η ∧ η̄ = (−2 + 2H)ω ∧ ω̄ .

Substituting these into (2.21) completes the proof. �

3. The Gálvez-Martínez-Milán formula and its global version

3.1. An overview on the work by Gálvez, Martínez and Milán. In this section we
give an overview on deriving the Gálvez-Martínez-Milán formula.

First of all, we review the matrix model for H3. We identify L4 with Herm(2), the set of
2 × 2 Hermitian matrices, via

L4 � x = (x0, x1, x2, x3) ↔ X =
[

x0 + x3 x1 + √−1x2

x1 − √−1x2 x0 − x3

]
∈ Herm(2) .

Since 〈x, x〉L = − det X and 2x0 = tr X,

H3 = {X ∈ Herm(2) ; det X = 1, tr X > 0}
= {aa∗ ; a ∈ SL(2, C)} = SL(2, C)/ SU(2) ,

∂H3 = {X ∈ Herm(2) ; det X = 0, tr X > 0}/∼

=
{
aa∗ ; a =

[
a1

a2

]
∈ C2 \ {0}

}
/∼

= (C2 \ {0})/(C \ {0}) = CP 1 ,

where a∗ is the conjugate transpose of a, and CP 1 is the complex projective line.

Hereafter, we will consider H3 to be SL(2, C)/ SU(2), and ∂H3 to be CP 1.

Recall that G = [e0 + e3] : M → CP 1(= ∂H3) is a conformal map. Thus

(3.1) e0 + e3 = Λ

[
A

B

] [
Ā B̄

]
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for some holomorphic functions A, B and a positive function Λ. Note that A, B and Λ have

an ambiguity, but Λ|A|2, Λ|B|2 and ΛAB̄ are well-defined on M .
Let z be a local holomorphic coordinate on M , and let the lower suffix denote the partial

derivative. Differentiating (3.1) twice, we have

(e0 + e3)zz̄ =
[
A Az

B Bz

] [
Λzz̄ Λz

Λz̄ Λ

] [
A B

Az Bz

]
.

Hence, this and Lemma 2.9 imply that

βe0 + (α − β)e3 = 2(2β − α)

|η/dz|2
[
A Az

B Bz

] [
Λzz̄ Λz

Λz̄ Λ

] [
A B

Az Bz

]
.

Here we have assumed (and will continue to assume) that η is not identically zero. This
assumption means that the surface is not a horosphere.

LEMMA 3.1.

e0 = g
{
γ0

[
Λ 0
0 0

]
+ δ

[
Λzz̄ Λz

Λz̄ Λ

]}
g∗ ,(3.2)

e3 = g
{
γ3

[
Λ 0
0 0

]
+ δ

[
Λzz̄ Λz

Λz̄ Λ

]}
g∗ ,(3.3)

where

γ0 = β − α

2β − α
, γ3 = β

2β − α
, δ = 2

|η̂|2 .

LEMMA 3.2.

|η/dz|2 = | det g|2Λ2 = 4
2β − α

α
(log Λ)zz̄

PROOF. By Lemma 3.1,

−1 = 〈e0, e0〉L = − det e0 = −| det g|2{γ0δΛ
2 + δ2(Λzz̄Λ − ΛzΛz̄)}

1 = 〈e3, e3〉L = − det e3 = −| det g|2{−γ3δΛ
2 + δ2(Λzz̄Λ − ΛzΛz̄)} .

Subtracting and adding these, we have

−2 = −| det g|2(γ0 + γ3)δΛ
2 = −| det g|2δΛ2, i.e., |η/dz|2 = | det g|2Λ2

0 = −| det g|2{(γ0 − γ3)δΛ
2 + 2δ2(Λzz̄Λ − ΛzΛz̄)},

i.e.,
α

2β − α
Λ2 = 2δ(Λzz̄Λ − ΛzΛz̄) . �

By Proposition 2.8, the pseudometric |η|2 = 〈d(e0 + e3), d(e0 + e3)〉L has constant
curvature α/(α − 2β)(= ε). We set α/(α − 2β) = ε and note that α : β = 2ε : (ε − 1). It
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follows from the Frobenius theorem that there exists a holomorphic map h from the universal

cover M̃ to the Riemann sphere S2 or the complex plane C or the Poincaré disk D such that

the pull-back of the standard metric via h coincides with |η|2, that is,

1 + ε|h|2 > 0 , |η|2 = 4|dh|2
(1 + ε|h|2)2 .(3.4)

We call this h the developing map.
Exchanging with h, we reexamine (3.2) and (3.3). Since the pair A, B has the ambiguity

of multiplication by non-zero holomorphic functions, we can start with the assumption

(3.5) (det g =)ABz − AzB = hz .

It follows from Lemma 3.2 and (3.4) that

(3.6) Λ = 2

1 + ε|h|2 .

It is straightforward to calculate that

Λz = −2ε
hzh̄

(1 + ε|h|2)2
,(3.7)

Λzz̄ = −2ε|hz|2 (1 − ε|h|2)
(1 + ε|h|2)3 .(3.8)

Substituting (3.4), (3.6), (3.7), (3.8) into (3.2), (3.3), respectively, we have

e0 =
[
A Az

B Bz

]
γ0

[
λ 0
0 0

]
+


−ε

1−ε|h|2
1+ε|h|2 −ε h̄

hz

−ε h
hz

1+ε|h|2
|hz|2






[
A B

Az Bz

]

=
[
A Az/hz

B Bz/hz

]{
γ0

[
λ 0
0 0

]
+

[
−ε

1−ε|h|2
1+ε|h|2 −εh̄

−εh 1 + ε|h|2
]}[

A B

Az/hz Bz/hz

]

=
[
A Az/hz

B Bz/hz

][
1+ε2|h|2
1+ε|h|2 −εh̄

−εh 1 + ε|h|2
][

A B

Az/hz Bz/hz

]
,

and

e3 =
[
A Az/hz

B Bz/hz

]{
γ3

[
λ 0
0 0

]
−

[
−ε

1−ε|h|2
1+ε|h|2 −εh̄

−εh 1 + ε|h|2
]}[

A B

Az/hz Bz/hz

]

=
[
A Az/hz

B Bz/hz

][
1−ε2|h|2
1+ε|h|2 εh̄

εh −(1 + ε|h|2)

][
A B

Az/hz Bz/hz

]
.
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Introducing the three matrices G =
[
A Az/hz

B Bz/hz

]
,

(3.9) H =
[

1+ε2|h|2
1+ε|h|2 −εh̄

−εh 1 + ε|h|2
]

and H̃ =
[

1−ε2|h|2
1+ε|h|2 εh̄

εh −(1 + ε|h|2)

]
,

we have

e0 = GHG∗, e3 = GH̃G∗ .

By straightforward calculation using (3.5), i.e., AzB − ABz = hz, we have

G−1dG =
[

0 θ

dh 0

]
, where θ = BzAzz − AzBzz

(hz)2
dz .

The one-form θ is also written as

(3.10) θ = 1

A
d

(
dA

dh

)
= 1

B
d

(
dB

dh

)
.

Note that θ is a one-form defined on M̃ .
In the following, we describe the fundamental forms in terms of h and θ . It is not difficult

to calculate that

de0 = G
([

� (1 + ε|h|2)θ + 1−ε

1+ε|h|2 dh̄
1−ε

1+ε|h|2 dh + (1 + ε|h|2)θ̄ 0

])
G∗ .

Hence, we have

I = − det(de0) =
∣∣∣∣ 1 − ε

1 + ε|h|2 dh + (1 + ε|h|2)θ̄
∣∣∣∣
2

(3.11)

= (1 − ε)2

(1 + ε|h|2)2
|dh|2 + (1 − ε)θdh + (1 − ε)θ̄dh̄ + (1 + ε|h|2)2|θ |2 .

As a by-product of this formula, we obtain the following lemma:

LEMMA 3.3. θdh and (1 + ε|h|2)2|θ |2 are well-defined on M .

It is not difficult to calculate that

de3 = G
[

� −(1 + ε|h|2)θ + 1+ε

1+ε|h|2 dh̄
1+ε

1+ε|h|2 dh − (1 + ε|h|2)θ̄ 0

]
G∗ .

Hence, we have

III = − det(de3) =
∣∣∣∣ 1 + ε

1 + ε|h|2 dh − (1 + ε|h|2)θ̄
∣∣∣∣
2
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= (
1 + ε

1 + ε|h|2 )2|dh|2 − (1 + ε)θdh − (1 + ε)θ̄dh̄ + (1 + ε|h|2)2|θ |2 .

It follows that

α I − 2β II = α|de0|2L + β{|de0 + de3|2L − |de0|2L − |de3|2L}
= (α − β)|de0|2L + β|de0 + de3|2L − β|de3|2L

= (α − 2β)

{
(1 + ε|h|2)2|θ |2 − (1 − ε)2|dh|2

(1 + ε|h|2)2

}
.

(3.12)

From the argument above, one can understand the following:

THE GÁLVEZ-MARTÍNEZ-MILÁN FORMULA ([5]). Let M be a non-compact,

simply-connected surface and f : M → H3 a Weingarten surface satisfying α(H −1) = βK ,
where α and β are real constants with α �= 2β. Then, there exist a meromorphic curve
G : M → SL(2, C) and a pair (h, θ) consisting of a meromorphic function h and a
holomorphic one-form θ on M , such that the immersion f and its unit normal field ν can be

recovered as f = GHG∗ and ν = GH̃G∗, where

(3.13) H =
[

1+ε2|h|2
1+ε|h|2 −εh̄

−εh 1 + ε|h|2
]

and H̃ =
[

1−ε2|h|2
1+ε|h|2 εh̄

εh −1 − ε|h|2
]

with ε = α/(α − 2β) and 1 + ε|h|2 > 0. Moreover, the curve G satisfies

(3.14) G−1dG =
[

0 θ

dh 0

]
.

The following formulas hold:

I = (1 − ε)θdh +
(

(1 − ε)2|dh|2
(1 + ε|h|2)2 + (1 + ε|h|2)2|θ |2

)
+ (1 − ε)θ̄dh̄,(3.15)

α I − 2β II = (α − 2β)

(
(1 + ε|h|2)2|θ |2 − (1 − ε)2|dh|2

(1 + ε|h|2)2

)
,(3.16)

where I and II denote the first and second fundamental forms.
Conversely, let M be a Riemann surface, G : M → SL(2, C) a meromorphic curve and

(h, θ) a pair as above satisfying (3.14) and such that (3.16) is a positive definite metric. Then

f := GHG∗ : M → H3 (H as in (3.13)), is a Weingarten surface satisfying α(H − 1) = βK

with I and α I − 2β II given by (3.15) and (3.16).

We finish this subsection by providing the following equation.

II = (α − β)β

(α − 2β)2

4|dh|2
(1 + ε|h|2)2

− α

α − 2β
(θdh + θ̄dh̄) + (1 + ε|h|2)2|θ |2 .
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3.2. Global version of the Gálvez-Martínez-Milán formula. We shall give a global
version of the Gálvez-Martínez-Milán formula, and make clear what is a local invariant and
what is a global invariant.

The hyperbolic Gauss map G = A/B is globally-defined on M . We can represent G
using G as follows:

LEMMA 3.4.

(3.17) G = (−Gh)
−3/2

[−GGh GGhh/2 − G2
h

−Gh Ghh/2

]
,

where Gh = dG/dh, Ghh = d2G/dh2.

PROOF. G is computed as

(3.18) G =
[
A dA/dh

B dB/dh

]
=

[
GB d(GB)/dh

B dB/dh

]
= 1

B

[
GB2 Bd(GB)/dh

B2 BdB/dh

]
.

On the other hand, substituting A = BG to AdB − BdA = dh, we have

(3.19) B2 = − dh

dG
= − 1

Gh
.

Eliminating B from (3.18) with this, we have the assertion. �

Thus, we can make a representation formula f = GHG∗ with G as in (3.17) and

(3.20) H =
[

1+ε2|h|2
1+ε|h|2 −εh̄

−εh 1 + ε|h|2
]

from a meromorphic function G on M and a holomorphic map h : M̃ → S2, C or D. However,

it is not defined on M yet (merely on M̃ , in general). We need to find the condition that f is
single-valued on M . Indeed, we prove:

PROPOSITION 3.5. f = GHG∗ with G, H as in (3.17), (3.20) is single-valued on M

if and only if the pseudometric |η|2 = 4|dh|2/(1 + ε|h|2)2 is single-valued on M .

PROOF. Suppose that |η|2 = 4|dh|2/(1 + ε|h|2)2 is single-valued on M .
By (3.6) and Lemma 3.4, we have

Λ|A|2 = 2

1 + ε|h|2 |G|2| − Gh|−1 = 2

1 + ε|h|2 |G|2| dh

dG
| = 2

|dh|
1 + ε|h|2

|G|2
|dG|

Λ|B|2 = 2
|dh|

1 + ε|h|2
1

|dG|
ΛAB̄ = 2

|dh|
1 + ε|h|2

G

|dG| .



192 MASATOSHI KOKUBU

Thus, all Λ|A|2, Λ|B|2, ΛAB̄ are single-valued on M . In other words, e0+e3 is single-valued
on M (because of (3.1)). On the other hand, η ∧ η̄ is also single-valued on M . Therefore,
recalling Lemma 2.9, we can conclude that e0(= f ) is also single-valued on M . �

Moreover, we need some lemmas.

LEMMA 3.6. Let G : U → SL(2, C) be a meromorphic Legendrian map. A point

p ∈ U is a pole of G if and only if p is a pole of G−1dG.

LEMMA 3.7. For a meromorphic Legendrian map G as in (3.17), the one-form θ can
be calculated as

θ = −1

2
{G; h}dh

(
= −1

2

{(
Ghh

Gh

)
h

− 1

2

(Ghh)
2

(Gh)2

}
dh

)
,

where {G; h} denotes the Schwarzian derivative of G with respect to h.

PROOF. Differentiating (3.19) B2 = −1/Gh with respect to h, we have

dB/dh = 1

2

1

B

Ghh

(Gh)2
.

Differentiating this again, we have

d

dh

(
dB

dh

)
= 1

2

{
−1

2

1

B

(Ghh)2

(Gh)3 + 1

B

1

Gh

(
Ghh

Gh

)
h

}
.

Therefore, it follows from (3.10) that

θ = 1

2

{
−1

2

1

B2

(Ghh)
2

(Gh)3
+ 1

B2

1

Gh

(
Ghh

Gh

)
h

}
dh .

Again, using B2 = −1/Gh, we obtain

θ = 1

2

{
1

2

(Ghh)
2

(Gh)2 −
(

Ghh

Gh

)
h

}
dh = −1

2
{G; h}dh .

�

This lemma tells us, for example, that α I − 2β II is conformal to

(3.21)
(1 + ε|h|2)2

4
|{G; h}dh|2 − (1 − ε)2|dh|2

(1 + ε|h|2)2
.

Therefore we have:

THEOREM 3.8. Let G be a meromorphic function on a Riemann surface M . Let |η|2
be a Hermitian pseudometric on M of constant curvature ε, and h the developing map. Sup-
pose that the quadratic differential form (3.21) is definite on M . Then f := GHG∗, deter-

mined by (3.17) and (3.20), is a Weingarten immersion from M to H3 with 2ε(H − 1) =
(ε − 1)K .
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Conversely, any Weingarten surface of α(H − 1) = βK (α �= 2β), except a horosphere,
has this representation in terms of (G, h).

REMARK. (1) It has been already proved in [7] that the solution to the differential
equation (3.14) is described as (3.17).

(2) Under the condition h(z) = z, the formula f := GHG∗ with (3.17) and (3.20), was
already seen in [5, Theorem 4], where the condition h(z) = z is caused by their assumption
that M is simply-connected and complete. In contrast, Theorem 3.8 is devoted to surfaces of

non-trivial topology. The period condition is clarified, indeed, it is that |η|2 is single-valued
on M .

4. Surfaces with constant harmonic-mean curvature one

The following proposition follows easily from (2.15) and Proposition 2.2, respectively.

PROPOSITION 4.1. If f : M → H3 is a Weingarten surface satisfying H − 1 = λK

(λ �= 1/2), then the Gaussian curvature K satisfies the following inequalities:
(i) If λ = 0, then K ≤ 0.

(ii) If λ < 1/2( �= 0), then K ≤ 0 or K ≥ (1 − 2λ)/λ2.

(iii) If λ > 1/2, then K ≤ (1 − 2λ)/λ2 or K ≥ 0.
The mean curvature H satisfies the following:

(i) If 0 < λ < 1/2, then H ≤ 1 or H ≥ (1 − λ)/λ.
(ii) If λ < 0 or λ > 1/2, then H ≤ (1 − λ)/λ or H ≥ 1.

4.1. Basics. In this section, we study the case λ = 1 for Weingarten surfaces satisfy-
ing H −1 = λK , that is, the case H −1 = K . As stated in the previous section, a Weingarten
surface satisfying H − 1 = K has constant harmonic-mean curvature one, and we call it an
HMC-1 surface.

By Lemma 2.1 and (2.16), an HMC-1 surface satisfies

〈de0 + de3, de0 + de3〉L = −K( I − 2 II) ,(4.1)

( III =)〈de3, de3〉L = −H( I − 2 II) .(4.2)

These two quadratic differentials are conformally equivalent. The formulas (4.1) and (4.2)
become

|η|2(= (ω1 − ω3
1)

2 + (ω2 − ω3
2)

2) = −K( I − 2 II) ,(4.3)

|π |2(= (ω3
1)

2 + (ω3
2)

2) = −H( I − 2 II) .(4.4)

Consequently, we obtain the following lemma:

LEMMA 4.2. η(p) = 0 if and only if p is an umbilical point with IIp = Ip, i.e., a
point where K = 0 and H = 1. π(p) = 0 if and only if p is a totally geodesic point, i.e., a
point where K = −1 and H = 0.
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LEMMA 4.3. The Gaussian and mean curvatures K , H are given by

K = |η|2
|π |2 − |η|2 , H = |π |2

|π |2 − |η|2 .

PROOF. It follows from (4.3) and (4.4) that H |η|2 = K|π |2. This formula implies the
assertion, since H − 1 = K . �

Note that

K ≤ −1 (H ≤ 0) or K ≥ 0 (H ≥ 1)

for HMC-1 surfaces, because of Proposition 4.1. It follows from Lemma 4.3 that K ≤ −1 if

and only if |π |2 < |η|2, and that K ≥ 0 if and only if |π |2 > |η|2.

LEMMA 4.4.

(4.5) q̄η = −Kπ̄ .

PROOF. By (2.14), we have |q|2 = H 2 − (K + 1) = H 2 − H = H(H − 1) = HK .
Moreover, using (2.12), we have η = ω̄−π = ω̄−(qω+Hω̄) = −qω+(1−H)ω̄ = −qω−
Kω̄, therefore, q̄η = −|q|2ω − Kq̄ω̄ = −HKω − Kq̄ω̄ = (−K)(Hω + q̄ω̄) = (−K)π̄ . �

LEMMA 4.5. Let I2,0 and II2,0 denote the (2, 0)-parts of the complexification of the
fundamental forms I and II, respectively. Then

(4.6) I2,0 = 2 II2,0 = ηπ̄ ,

and ηπ̄ is a holomorphic quadratic differential on M .

PROOF. (4.6) is obtained by rewriting I and II with η = ω̄ − π . Indeed,

I (= ωω̄) = ηπ̄ + |η|2 + |π |2 + η̄π, II (= Re(ωπ)) = 1

2
(ηπ̄ + 2|π |2 + η̄π) .

It follows from the formulas in (2.9), (2.10) that dπ̄ = √−1ω1
2 ∧ π̄ and dη = −√−1ω1

2 ∧ η.
They imply that ηπ̄ is holomorphic. �

PROPOSITION 4.6. The pseudometric |π |2(= III) has the Gaussian curvature

K/(K + 1) (= |η|2/|π |2).
PROOF. Since dπ̄ = √−1ω1

2 ∧ π̄ , we may regard ω1
2 as the connection form for |π |2.

Moreover, its exterior differential is computed as

dω1
2 = −

√−1

2
(π ∧ π̄ + ω ∧ ω̄) = −

√−1

2
(π ∧ π̄ + 1

K + 1
π̄ ∧ π)

= −
√−1

2
(

−K

K + 1
π̄ ∧ π) = K

K + 1

√−1

2
π̄ ∧ π ,

because of (2.10) and (2.11), which proves the assertion. �
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LEMMA 4.7.

∂̄∂(e0 + e3) = 1

2
e0 ⊗ (η̄ ∧ η) .

PROOF. Because d(e0 +e3) = e η̄+ ē η, we have ∂(e0 +e3) = ē η. Furthermore, taking

∂̄, we can calculate as follows:

∂̄∂(e0 + e3) = ∂̄ ē ∧ η + ē ⊗ ∂̄η

= dē ∧ η + ē ⊗ dη (since η is a (1, 0)-form,)

=
(

e0 ⊗ 1

2
ω + √−1ē ⊗ ω1

2 + e3 ⊗ 1

2
π̄

)
∧ η + ē ⊗

(
−√−1ω1

2 ∧ η
)

= 1

2
e0 ⊗ (ω ∧ η) (since π̄ is a (1, 0)-form,)

= 1

2
e0 ⊗ ((ω − π̄) ∧ η) (since π̄ is a (1, 0)-form,)

= 1

2
e0 ⊗ (η̄ ∧ η) .

�

By (3.11) and (3.12), we have

II = θdh + (1 − |h|2)2|θ |2 + θ̄dh̄ .

In particular,

(4.7) |π |2 = II1,1 = (1 − |h|2)2|θ |2 .

It follows from Lemma 4.3, (3.4) and (4.7) that

K = 4|dh|2
(1 − |h|2)4|θ |2 − 4|dh|2 , H = (1 − |h|2)4|θ |2

(1 − |h|2)4|θ |2 − 4|dh|2 .

5. Fronts with constant harmonic-mean curvature one

5.1. Definition. Let M be a Riemann surface. Given a meromorphic function

G : M → C ∪ {∞} and a pseudometric |η|2 of constant curvature −1 on M , we can de-

fine a map f = GHG∗ : M → H3 using (3.4), (3.17) and (3.20). Since G has poles {pi} in
general, f should be considered a map on M \ {pi}. However, in such a case, we redefine M

to be M \ {pi}.
We call f an HMC-1 map associated with (G, |η|2). By definition, the regular image

of an HMC-1 map forms an immersed surface with constant harmonic-mean curvature one

whose unit normal vector field is ν = G
[

1 −h̄

−h −1+|h|2
]
G∗. Though f may fail to be an im-

mersion, the unit normal ν is defined across the singularities. Hence, the following definition
does make sense.
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An HMC-1 map f is called an HMC-1 front if (f, ν) : M → T1H3(∼= T ∗
1 H3) is an

immersion, where T1H3 (T ∗
1 H3) denotes the unit (co)tangent bundle over H3. (The term front

comes from wave fronts in the theory of singularities.) It is obvious from the definition that
the formulas for HMC-1 surfaces in the previous section can be applied for HMC-1 fronts.

PROPOSITION 5.1. For an HMC-1 map f : M → H3, the following three conditions
are equivalent:

(1) f is an HMC-1 front.
(2) The (1, 1)-part I1,1(= |η|2 + |π |2) of the first fundamental form I = |η + π |2 is a

Riemannian metric on M .
(3) G : M̃ → SL(2, C) is non-singular.

PROOF. We can put (1)–(3) in different words as follows:

(1) |df |2 and |dν|2 never vanish simultaneously, that is,
∣∣2dh/(1−|h|2)+(1−|h|2)θ̄ ∣∣2

and (1 − |h|2)2 |θ |2 never vanish simultaneously.

(2) I1,1 = 4|dh|2/(1 − |h|2)2 + (1 − |h|2)2 |θ |2 never vanishes.
(3) Either θ �= 0, or both θ = 0 and dh �= 0.

Then, it is not difficult to see the equivalency. �

REMARK. T1H3 (∼= T ∗
1 H3) has a canonical Riemannian metric, which is called the

Sasakian metric. We denote by IS the pull-back of the Sasakian metric via the map (f, ν).

IS is a Riemannian metric on M for a front f : M → H3. Indeed, IS = |df |2 + |dν|2 =
|η + π |2 + |π |2. IS is not conformally equivalent to I1,1 in general.

It is clear from Proposition 5.1 that a singularity of an HMC-1 front is a point where

(η + π) ∧ (η̄ + π̄) = 0 ⇐⇒ η ∧ η̄ + π ∧ π̄ = 0 ⇐⇒ |η|2 = |π |2 .

PROPOSITION 5.2. There are no compact HMC-1 fronts.

PROOF. Suppose, by way of contradiction, that there exists a compact HMC-1 front

f : M → H3.
It follows from Lemma 4.7 that

(e0 + e3)zz̄ = |η/dz|2
2

e0 .

Taking the trace of both side, we have

(5.1) (tr(e0 + e3))zz̄ = |η/dz|2
2

tr e0 = |η/dz|2x0 ≥ 0 .

Hence, tr(e0 + e3) is a subharmonic function on M . It must be constant, since M is compact.
Again by (5.1), we have η = 0, a contradiction. �
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5.2. Weak completeness. We say that an HMC-1 front f : M → H3 is weakly com-

plete if I1,1, the (1, 1)-part the first fundamental form I, is a complete Riemannian metric on
M (cf. [6]).

PROPOSITION 5.3. For an HMC-1 front, weak completeness is equivalent to the com-
pleteness of IS , the induced metric of the Sasakian metric.

PROOF. Let γ : [0,∞) → M be an arbitrary divergent path. Recall that IS = |η +
π |2 + |π |2 and I1,1 = |η|2 + |π |2. We wish to prove that, if γ has infinite length with respect
to one of the two metrics, then it also has infinite length with respect to the other metric. When∫
γ |π | = ∞, it is trivial that γ has infinite length with respect to both metrics IS and I1,1.

Hence, we have only to give a proof under the assumption
∫
γ

|π | < ∞.

(a) Suppose that I1,1 is complete. Clearly,
∫
γ

|η| = ∞. If we divide the interval [0,∞)

so that

[0,∞) = J+ ∪ J−, where J+ = {|η| ≥ |π |}, J− = {|η| < |π |} ,

then
∫
J+ |η| = ∞, because

∫
J− |η| <

∫
J− |π | < ∞. Thus,∫

γ

√
|η + π |2 + |π |2 ≥

∫
γ

|η + π | ≥
∫

γ

||η| − |π ||

≥
∫

J+
|η| − |π | =

∫
J+

|η| −
∫

J+
|π | = ∞ − (finite value) = ∞ .

Therefore, IS is complete.
(b) Conversely, we suppose IS is complete. Clearly,

∫
γ

|η + π | = ∞. If we divide the

interval [0,∞) so that

[0,∞) = J ′+ ∪ J ′−, where J ′+ = {|η + π | ≥ |π |}, J ′− = {|η + π | < |π |} ,

then
∫
J ′+ |η + π | = ∞, because

∫
J ′− |η + π | <

∫
J ′− |π | = ∞. Thus∫

γ

√
|η|2 + |π |2 ≥

∫
γ

|η| ≥
∫

γ

||η + π | − | − π ||

≥
∫

J ′+
|η + π | − |π | ≥

∫
J ′+

|η + π | −
∫

J ′+
|π | = ∞ .

Therefore I1,1 is complete. �

Note that an HMC-1 front is weakly complete if it is complete (in the usual sense),
because IS = |df |2 + |dν|2 is complete if I = |df |2 is complete.

5.3. HMC-1 fronts of finite topology. There are two kind of ends for (weakly)
complete HMC-1 fronts of finite topology. One is conformally equivalent to the punc-
tured disk ∆∗ = {z ; 0 < |z| < 1}, and the other is conformally equivalent to the annulus
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Ar = {z ; r < |z| < 1}. We shall call the former a puncture-type end, the latter an annular
end. For a puncture-type end ∆∗, we also call a point z = 0 an end. For an annular end Ar ,
we also call the boundary |z| = r an end.

5.4. Examples. We show some examples of (weakly) complete HMC-1 fronts of fi-
nite topology.

In this section, we denote by ds2
H the Poincaré metric on the unit disk, and in the figures,

the hyperbolic three-space H3 is realized by the Poincaré ball model.

EXAMPLE 1. For a positive number α, consider

G(z) = z, |η|2 = 4|α|2|z|2α−2

(1 − |z|2α)2 |dz|2(= h∗ds2
H where h(z) = zα)

on

M =
{

∆ = {z ; |z| < 1} if α = 1,

∆ \ {0} otherwise.

FIGURE 1
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FIGURE 2

FIGURE 3

Then the HMC-1 front f : M → H3 associated with (G, |η|2) satisfies

θ = 1 − α2

4α
z−α−1dz, dh = αzα−1dz, Q(= ηπ̄) = 1 − α2

2z2 dz2,

|π |2 = |α2 − 1|2
16|α|2

(1 − |z|2α)2

|z|2α+2 |dz|2 .

If α = 1, then f is complete and totally geodesic. If α �= 1, then f is weakly complete and
has a puncture-type end at z = 0 and an annular end at |z| = 1. Its singular locus is the circle

|z| =

−

√
2α2

α2 − 1
+

√
2α2

α2 − 1
+ 1




1/α

.

K ≥ 0 inside this circle, and K ≤ −1 outside the circle.
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EXAMPLE 2. For a non-zero complex number k, consider G(z) = exp(kz), |η|2 =
ds2

H on ∆, then the associated HMC-1 front satisfies

θ = k2

4
dz, dh = dz, Q = k2

2
dz2, |π |2 = |k|4

16
(1 − |z|2)2|dz|2 .

Its singular locus is |z|2 = 1 − 2
√

2/|k|. In particular, it has no singularities if |k| < 2
√

2.

EXAMPLE 3. Consider G(z) = z + 1/z, |η|2 = ds2
H on ∆. Then the associated

HMC-1 front satisfies

θ = 3

(z2 − 1)2
dz, dh = dz, Q = 6

(z2 − 1)2
dz2, |π |2 = 9(1 − |z|2)2

|z2 − 1|4 |dz|2 .

Its singular locus is

C : 2|z2 − 1|2 = 3(1 − |z|2)2 .

f has an annular end at |z| = 1, and the singular locus C accumulates at z = ±1.
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