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Abstract. In this paper, we complete the lists of Satake diagrams and restricted root systems (including signa-
tures of roots) for all classical semisimple pseudo-Riemannian symmetric spaces, which were classified by M. Berger.
We also complete the list of the cohomogeneities of the linear isotropy representations of the spaces.

1. Introduction

Let (g, h) be a semisimple symmetric pair and o be an involution of g such that the set of
all fixed points of o coincides with . If we put q := {X € g | 0(X) = — X}, we have a direct
decomposition g = b + gq. The pair (g, ) is said to be classical (resp. exceptional) if the
Lie algebra g is classical (resp. exceptional). The main purpose of this paper is to complete
the lists of Satake diagrams and restricted root systems of all classical semisimple symmetric
pairs. According to Berger’s classification [1], there exist 54 classical symmetric pairs and 104
exceptional symmetric pairs. The theory of restricted root systems for semisimple symmetric
spaces is developed by W. Rossmann [6], T. Oshima and J. Sekiguchi [5].

Let 6 be a Cartan involution of g commuting with o and g = € + p be the direct decom-
position of g corresponding to 8. Let a be a maximal split abelian subspace of q, i.e., a is a
maximal abelian subspace of q which consists of only hyperbolic elements or only elliptic el-
ements. Let aq be a maximal abelian subspace of q containing a. It is known that if (g, £) and
(¢/, ¥) are semisimple Riemannian symmetric pairs whose restricted root systems coincide
including the multiplicities of the roots, (g, £) and (g’, ¢') are isomorphic. But the analogous
statement does not hold for a general semisimple symmetric pair. The Satake diagram of
(g, b, a) (resp. (g, b, aq)) is constructed from the Dynkin diagram of the complexification g€
of g by indicating how simple roots of g€ are restricted to a (resp. ag). To characterize (g, b),
it is important to describe the Satake diagrams of (g, b, a) and (g, ), a4) and to calculate the
signatures of restricted roots. In Table 1, we complete the list of the Satake diagrams of all
classical semisimple symmetric pairs. We also complete the list of the restricted root systems
of the pairs in Table 2. The codimension of the principal orbit of s-representation through a
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point of p N q is not necessarily equal to that of the principal orbit through a point of £ N q.
Therefore the representation possesses two kinds of cohomogeneities. In this paper, we call
the codimension of the principal orbit through a point of pNq (resp. £€Nq) the v-cohomogeneity
(resp. t-cohomogeneity). In Table 3, we complete the list of the v-cohomogeneities and the
t-cohomogeneities of s-representations of classical semisimple symmetric spaces. In the case
of a Riemannian symmetric pair, the cohomogeneity of the s-representation is equal to the
rank of the Riemannian symmetric space. But the v-cohomogeneity and the 7-cohomogeneity
are greater than or equal to the rank of a general semisimple symmetric space.

RELATED RESEARCH. We plan to complete the lists of Satake diagrams and restricted
root systems of all exceptional semisimple symmetric pairs. Using the results of this paper,
we will study the geometry of s-representations of semisimple symmetric spaces. We will
investigate the local orbit types of s-representations in a subsequent paper. In the case of
Riemannian symmetric spaces, the local orbit types of s-representations were investigated by
H. Tamaru [7] and K. Kondo [3].

2. Preliminaries

Let (G, H) be a semisimple symmetric pair, (g, ) be its infinitesimal pair and o be an
involution of g such that the set of all fixed points of o coincides with . If we put q :=
{X € g| o(X) = —X}, we have an orthogonal decomposition g = b + q with respect
to the Killing form B of g. We denote by Adg (resp. adg) the adjoint representation of G
(resp. g). Then B restricted to q x q is nondegenerate and Adg (H )-invariant. Since ¢ is
identified with the tangent space of G/H at eH, the bilinear form on ¢q x q determines a
G-invariant nondegenerate metric on G/H, where e is the identity element of G. It follows
from Lemma 10.2 of [1] that there exists a Cartan involution 6 of g commuting with o. Let
g = £+ p be the Cartan decomposition corresponding to 6, where ¢ = {X € g | (X) = X}
and p = {X € g| 6(X) = —X}. Since 0 0§ = 0 o o holds, we have an orthogonal
decompositiong = tNh+pNh+ENg+pNg. Ifweputh? :={X e g|foo(X) = X}and
q* :={X € g |0 oo (X) = —X}, we have an orthogonal decomposition g = h* 4+ g*. Also
we have h* = tNh+pNgandq® = €N g+ pNh. We denote by g€ the complexification
of g. We extend o and 6 to g€ as C-linear involutions, which are also denoted by the same
symbols o and 0, respectively. Then

g i=enh+v/=1(pNh +v=1¢tNg +pnNq

is another real form of g€. We also denote by ¢ and @ the restrictions of o and 6 to g9,
respectively. Then o is a Cartan involution of g?. If we put he =X e gd | 6(X) = X} and
q? := {X € g? | #(X) = —X}, we have an orthogonal decomposition g? = h? + ¢q? with
respect to the Killing form of g?. The pair (g, h%) (resp. (g¢, b)) is called the associated
(resp. dual) symmetric pair of (g, ). For simplicity, we write (g, h)* and (g, )¢ instead of
(g, b%) and (g4, h%), respectively. Then it is clear that (g, §)““ and (g, h)?“ are isomorphic to
(g, h). Moreover, (g, §)%4% = (g, h)4?? holds.
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We recall that an element X € q is said to be semisimple if the complexification ad g (X )€
of the endomorphism adg(X) of g is diagonalizable. A semisimple element X € q is said to
be hyperbolic (resp. elliptic) if any eigenvalue of adg (X )€ is real (resp. pure imaginary). Let
a be a maximal split abelian subspace of g, i.e., a is a maximal abelian subspace of q which
consists of only hyperbolic elements or only elliptic elements. Let aq be a maximal abelian
subspace of q containing a. Then a4 consists of only semisimple elements of g (cf. Lemma 2.2
of [5]). The dimension of a and a are called the split rank and the rank of (g, b), respectively.
We call a vector-type (resp. toroidal-type) if there exists a Cartan involution p of g such that a
is contained in the (—1)-eigenspace (resp. (+1)-eigenspace) of p. Let A be the restricted root
system of (g, ) with respect to a. Then if a is vector-type (resp. toroidal-type), A coincides
with the restricted root system of (g4, h?) (resp. (g%, h*)) with respect to a (cf. Lemma 2.15.1
of [5]). Note that the restricted root system of (g, ) with respect to a toroidal-type maximal
split abelian subspace coincides with that of (g, h)?* with respect to a vector-type maximal
split abelian subspace. From this fact, if (g, h) is anti-Kaehlerian, the restricted root systems
with respect to a vector-type maximal split abelian subspace and a toroidal-type maximal split
abelian subspace coincide. It follows from Theorem 2.11 of [5] that A is a root system. In
Table I and V of [5], T. Oshima and J. Sekiguchi gave the restricted root systems of some
irreducible semisimple symmetric pairs.

In the sequel, we assume that a is contained in p. If we put g, := {X € g | [A, X] =
A(A)X,VA € a} for any A € a*, we have the restricted root space decomposition

9=90+29w

rEA

Forany A, u € AU{O}, we have gy, 9] C gatpu,0(gx) = g—» and 6(gy) = g—». We denote
by 35 (a) (resp. 34(a)) the centralizer of a in f (resp. q). Note that a coincides with 34(a), if
a is a maximal abelian subspace of q (for example, in the case where G/H is a Riemannian
symmetric space). We put by := (gn + g—») N h and gy := (gn + g—») N g. In this paper,
we call the dimension of g, and the pair (dim(p N q,), dim( N g,)) the multiplicity and the
signature of A, which are different from Definition 2.14 of [5], respectively.

LEMMA 2.1. Let A be the positive root system of A with respect to some lexico-
graphic ordering of a*. Then h) and q are orthogonally decomposed as

h=3p(a)+ Z b,

reAL

and

A=3q(@+ Y d.

)\.EA+

respectively.
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PROOF. Since g is invariant under o, we have go = 35(a) + 34(a). Similarly, g, +
g—» = bha + g, holds for any . € A. Hence we obtain the orthogonal decompositions of h
and q as in the statement. O

Let Adq : H — GL(q) be defined by Adq(h) := Adg(h)|q forall h € H. Then we
call the representation Adq the s-representation of G/H. Let A be a regular point of a. It
follows from Lemma 2.1 that the normal space of the Adq (H )-orbit through A coincides with
3q(a). We call the dimension of 34(a) the v-cohomogeneity (resp. t-cohomogeneity) if a is
vector-type (resp. toroidal-type).

Let ap be a maximal abelian subspace of p. Then the Satake diagram of (g, €, ap) is
defined (see p. 531 of [2]). By imitating the definition of the Satake diagram of (g, €, ap),
we shall define the Satake diagram of (g, b, a) as follows. Let ¢ be a Cartan subalgebra of
g€ containing a. Denote by R the root system of g€ with respect to ¢ and by Ay (o € R)
the vector of ¢ defined by Bgc(A, Ay) = a(A) for all A € ¢, where Bgc is the Killing

form of g€. Set cr := Spang{A, | @ € R}. We take compatible orderings in the dual
spaces of a and cR, respectively. Denote by R the positive root system of R with respect
to the ordering of (cr)* and by ¥ (R) the simple root system of R contained in Ry. Set
Y(R)y := {@¢ € Y(R) | «|q = 0}. By imitating the definition of the Satake diagram of
(g, &, ap) the Satake diagram of (g, b, a) is defined by using ¥ (R) and ¥ (R)o. Similarly, we
can define the Satake diagram of (g, b, aq).

3. Determination of Satake diagrams and restricted root systems

In this section, we describe how to determine Satake diagrams and the restricted root
systems of classical semisimple symmetric pairs. Let (g, b)) be a classical semisimple sym-
metric pair. Following to Algorithms 1-6, we can determine the Satake diagrams of (g, b, a)
and (g, b, aq), and the restricted root system of (g, ) with respect to a, where a is a maximal
abelian subspace of p N q and a4 is a maximal abelian subspace of q containing a.

(Algorithm 1) First, we take a maximal abelian subspace a of p N q and a maximal
abelian subspace aq (resp. ap) of q (resp. p) which containing a. In the case where gCisa
simple complex Lie algebra, we take the Cartan subalgebras of simple complex Lie algebras
described in Chapter III, §8 of [2] as a Cartan subalgebra ¢ of g€. Also in the case where
g€ is the direct sum of two simple complex Lie algebras, we take the direct sum of their
Cartan subalgebras as a Cartan subalgebra of g€. We find an element t of Int(g€) such that
7(ap + aq) is contained in ¢, where Int(g©) is the adjoint group of g€.

(Algorithm 2) Let g© = ¢ + Y wer gg be the root space decomposition of g& with
respect to ¢, where R is the root system of g€ with respect to c. We find a basis (A1, ..., A,) of
cg such that (A1, ..., A,) isabasis of T(a) and (A1, . . ., Ap) is abasis of T (v/—1(aqNE)),
where r (resp. n) is the rank of g€ (resp. (g, h)) and m is the split rank of (g, h). Then the
lexicographic orderings of (z(a))*, (t(a + \/—_l(aq N £)))* and (cgr)™* with respect to these
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bases are compatible. Let R be the positive root system of R with respect to the lexicographic
ordering of (cr)* and ¥ (R) be the simple root system of R which is contained in R .

(Algorithm 3) We put ¥ (R)¢ := {o € ¥(R) | @ = 0}, where ~ denotes the restriction
to t(a). Then the Satake diagram of (7(g), 7(h), (a)) is described as follows. In the Dynkin
diagram of g€, every root of ¥ (R)o is denoted by a black circle e and every root of ¥ (R) \
W (R)o by a white circle o. If o, B € W(R) \ ¥ (R) satisfies @ = 8, « and B are joined by a
curved arrow.

(Algorithm 4) We put ¥ (R);, := {« € ¥(R) | @ = 0}, where - denotes the restriction
to t(aq). Then the Satake diagram of (z(g), t(h), T(aq)) is described as follows. In the
Dynkin diagram of g€, every root of W (R), is denoted by a black circle o and every root of
Y (R) \ ¥(R); by a white circle o. If &, B € W(R) \ ¥(R) satisfies & = B, « and B are
joined by a curved arrow.

(Algorithm 5) The set A := {@ | « € R such that @ # 0} is the restricted root system
with respect to 7(a). Then we can determine the positive root system A of A with respect
to the above lexicographic ordering of (t(a))* and the simple root system of A which is
contained in A;. Let m(1) and (m™ (L), m— (L)) be the multiplicity and the signature of
A € A, respectively. We investigate the cardinality of {& € R | @ = A} and the dimension of

Eﬂqﬂrl( Z (gg—i—g(_:a)).

a€R such that =X

As its result, we obtain m(1), m~ (1) and mT (L) (= m(L) — m—(}L)).

(Algorithm 6) We calculate dimq — ), . Ay m()L). As its result, we obtain the v-
cohomogeneity of the s-representation associated with (g, b).

(Algorithm 7) The f-cohomogeneity of the s-representation associated with (g, h) co-
incides with the v-cohomogeneity of the s-representation associated with (g%, ). We ob-
tain the #-cohomogeneity of the s-representation associated with (g, h) by calculating the v-
cohomogeneity of the s-representation associated with (g%, ).

By Algorithms 1-7, we complete the list of the Satake diagrams of (g, b, @) and (g, b, a4)
for all classical semisimple symmetric spaces (g, ) in Table 1. In Table 1, o; (1 < i < m)
and B; (1 < j < n) are elements of ¥ (R) \ ¥ (R)p and ¥ (R) \ lI/(R)6, respectively. Note
that the cardinalities of ¥ (R) \ ¥ (R)o and ¥ (R) \ lI/(R)6 coincide with the split rank and
the rank of (g, ), respectively. Moreover, we complete the list of the Dynkin diagrams of the
restricted root systems of (g, ) with respect to a and the signatures of the roots in Table 2. We
denote by {\1, ..., A;} the simple root system of A such that A; = o; forall 1 <i < m. We
write the signatures of A; and 2}; as in the third column of Table 2. In Table 3, we complete
the list of the v-cohomogeneities, the 7-cohomogeneities, the dimensions of g and the indices
of the Killing form of g restricted to q x q.

REMARK. (1) Let ¢ (resp. 7) be the Cartan subalgebra of gc (resp. the element of
Int(gc)) as in Algorithm 1. Then 7! (¢)(:= ¢) is a Cartan subalgebra of gC containing ap—+ay.
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Denote by R the root system of gC with respect to ¢. Then {(x o 7)|; | @ € ¥ (R)}(:= l1~/(R))
is a simple root system of R and, for each @ € W (R), the restriction of & to a is equal to
zero if and only (& o 7~1)| is an element of ¥ (R)o. Hence the Satake diagram of (g, b, a)
coincides with that of (z(g), t(h), t(a)). Similarly, it is shown that the Satake diagram of
(g, b, aq) coincides with that of (t(g), T(h), T(ag)).

(2) The Satake diagrams of semisimple Riemannian symmetric pairs are well known
(for example, Table 9 of [4]). In [4], O. Loos pointed out that, for classical semisimple Rie-
mannian symmetric pairs (g, £), their Satake diagrams follow in most cases from the structure
of 3¢(ap), where 3¢(ap) denotes the centralizer of a maximal abelian subspace ap of p in €.
In general, for classical semisimple symmetric pairs (g, f), it is difficult to determine the Sa-
take diagrams of (g, by, a) and (g, b, aq) from the structures of 34(a) and 35 (aq), where ais a
maximal split abelian subspace of q and a4 is a maximal abelian subspace of q containing a.
Therefore we shall determine the Satake diagrams by Algorithms 1-4.

4. Example
In this section, we give Satake diagrams and restricted root systems of some semisimple
symmetric pairs by Algorithms 1-7. For convenience, we use the following diagram.

associated dual

(g, h) (g, b%) (g%, p?)

dual associated

(@, b%)
We consider the case of (g, h) = (sl(2n, R), sp(n, R)), i.e.,

dual

associated (Qd, ha) (ga ’ h)

sI(2n, R), sl(n, C) + s0(2))<—24l

associated (
—_—|

(sl(2n, R), sp(n, R)) (su(n, n), s0*(2n))

dual associated
associated dual

(su*(2n), s0™*(2n))<~——(su*(2n), sl(n, C) + s0(2))<~——(su(n, n), sp(n, R))

Let I; denote the unit matrix of order k € N and E;; denote the 2n x 2n matrix with entry
1 where the i-th row and the j-th column meet, all other entries being 0. For simplicity, we
write Ej instead of Ey;. We define a involution ¢ of g by

og(X) = Jn’XJ,,

0 I,
-1, 0
to h. We define a Cartan involution 6 of g by 8(X) := —'X forall X € g. We put £ := {X €
gl8(X)=X}andp:={X € g|6(X) = —X]}. Then ¥ = s0(2n) holds. Sinceo 00 =0 o0
holds, we have an orthogonal decompositiong =t Nh+pNh+EtNg+pNg, where

for all X € g, where J, := < > . Then the set of all fixed points of ¢ is isomorphic
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tnh = X X2 X1 € so(n),
“I\-xx Xy X3 : n x n symmetric |’

N = X1 Xp X1 : n X n symmetric,
P Tl\x =X X5 : n x n symmetric |’

_ X1 X
tNng= {(X2 —Xl) ‘ X1, Xo eso(n)} ,

Aq = X1 X2 X1 :n X n symmetric,
PRa=1{_x, x,)| xyes0(m), Trx,=0 [

(1) (g, h) = (sl(2n, R), sp(n, R)). We take a maximal abelian subspace

LA 0)| A=diagr.... an),
“1\o A)| aseR, TrA=0

of p N q, where diag(ay, ..., a,) denotes
ai
a 0
0 an

Then a is a maximal abelian subspace of ¢ and its dimension is equal to n — 1. We take a
maximal abelian subspace

A 0 .
ap :=a+{<0 _A)‘A:dlag(al,...,an),aieR}

of p containing a. We choose ¢ := » | _;_,, | C(E; — Ei41) as a Cartan subalgebra of g€
Then a and ay, are contained in c. We denote by R :={e; —e; | 1 < i # j < 2n} the root

system of g€ with respect to ¢, where ¢; € ¢* is defined by ei(Ej — Ejy1) = 08ij — 8i(j+1)
forall 1 < j <2n — 1. We choose

(El - E, + En+l —Ey,....,Ey 1 —Ey+Exn1 — Eo, Ey — Egp, ..., B2y — E2n)
as a basis of cg. Then
{ei_€n+i+l | 1 SiSH—Z}U{€n+i—€[|1§i <n-—1}U{e,—1 —en,en — e}

is the simple root system of R for the lexicographic ordering of (cgr)* with respect to the
above basis, which is contained in the positive root system. Since ¢; (A) = ey+;(A) holds for

all A € a, e,4; — ¢; is denoted by a black circle. Therefore the Satake diagram of (g, b, a) is
described as follows.

€] — g2 en—1 —en
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If A; (1 < i < n) is the linear form on a defined by 1;(A) := ¢;(A) forall A € a, A :=

{Ai —Aj |1 <i # j < n}is the restricted root system with respect to a. Then we have
Ay ={d —Ajl1<i<j<n}and¥(A) ={X —Xit1 |1 <i < n— 1}. Therefore we
have the Dynkin diagram of A as follows.

M —ry Ay —i3 A1 —An
Moreover, we obtain (m+(x; — Aj),m~ (A —Aj)) = (2,2)forany 1 <i < j < n, and
v-cohom =n — 1.

2) (g, b)d = (su*(2n), s0™(2n)). We take the same a as a maximal abelian subspace
of p? N q¢. Then a is a maximal abelian subspace of p?. We take a maximal abelian subspace

A
agqd :=a+{(0 _OA> ‘A:v—ldiag(al,...,an),ai ER}

of q¢ containing a. Then a4 is contained in ¢. We choose

q
(El - E, + En+l —Exy,....,En 1 —Ey+ Exp1 — Ep, E1 — En+l’ R E2n)
as a basis of cg. Then
lei —enti |1 <i<nfUlepti —eiy1 |1 <i <n—1}

is the simple root system of R for the lexicographic ordering of (cg)* with respect to the above
basis, which is contained in the positive root system. Then the Satake diagram of (g%, h?, a)
coincides with that of (g, b, a) and the Satake diagram of (gd, he, fgqd) is described as follows.

€l ~fn+1 én+l €2 en —€p
Note that the restricted root system of (g¢, h%) with respect to a coincides with that of (g, h)

including their signatures of restricted roots. We obtain v-cohom = 3n — 1.
3) (g,h)* = (sl(2n,R), sl(n, C) + s0(2)). We take a maximal abelian subspace

at = {(g _OA) ‘ A = diag(ay, ...,an),a; € R}

of p N gq%. Then a“ is a maximal abelian subspace of g% and its dimension is equal to n. We
take a maximal abelian subspace

A 0\| A=diaga.....a.
a._ .a
B =0 +{(0 A)‘ ai €R, TrA =0

of p. Then a and aj; are contained in ¢. We choose
(Er — Ent1s -, En — Eony Eng1 — Eony oo, E2p—1 — E2p)
as a basis of cg. Then

fei—eir1|1<i<n—1}U{eppiv1 —enri |1 <i <n—1}U{e, — e}
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is the simple root system of R for the lexicographic ordering of (cg)* with respect to the above
basis, which is contained in the positive root system. Since ¢;(A) = —e,+;(A) holds for all
A € a% e; —ej+1 and e,4;+] — ep4; are joined by a curved arrow. Therefore the Satake
diagram of (g, h*, a®) is described as follows.

e —e € —e3 €p—1 —én

C:E :@Q o

If AY (1 < i < n) is the linear form on a“ defined by A{(A) := e;(A) for all A € a“,
A% = {0 £ )Jj [1<i<j=<nU{£2A] |1 <i < n}is the restricted root system with
respect to a“. Then we have A9 = {A! j:k? 1 <i<j=<nfU{2A |1 <1i < n}and
V(A" = {Af —=2f 11 =i < n—1}U({227}. Therefore we have the Dynkin diagram of
A? as follows.

a a a
) M2

O—
Moreover, we obtain (m*()»,.“ + )»?), m~ (A £ )»?)) = (1, 1), (m+(2kf.’), m~(20)) = (1,0)

forany 1 <i < j < n, and v-cohom = n.

—A\a N
Fn—1 225

@) (g, h)* = (su(n, n), s0*(2n)). We take the same a“ as a maximal abelian subspace
of p?¢ N q?¢. Then a is a maximal abelian subspace of p®?. We take a maximal abelian
subspace

W@t 4 A 0 A = /—1diag(ay, ..., an),
! 0 A aieR, TrA=0

of q°¢ containing a®. Then a‘;ad is contained in c. We choose

(El - Ei’l+la'~-7 E, — Ey, E| — E, +En+1 —Ey,....,Ey1 —E; +Ezp1 — EZn)
as a basis of cg. Then
lei—eipi |1 =i=n—1}U{enyiv1i —enti |1 =i =n—1}Ufe, —en}

is the simple root system of R for the lexicographic ordering of (cgr)* with respect to the
above basis, which is contained in the positive root system. Then the Satake diagram of
(g4, h*¢  a%) coincides with that of (g¢, h%, a®) and the Satake diagram of (g%¢, h*<, aflad) is

described as follows.

el —e e n+2 ~ n+1

Note that the restricted root system of (g?¢, h®¢) with respect to a® coincides with that of
(g%, b?) including their signatures of restricted roots. We obtain v-cohom = 2n — 1.
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(5) (g, h)4% = (su*(2n), sl(n, C) 4+ s0(2)). First, we consider the case where n(= 2m)
is even. We take a maximal abelian subspace

ad® .= { Z ai(Ein+1-i) — Eqr1-i)i — Etiy@n+1-i) T EQn+1-i)(n+i))

1<i<m

ai € \/— IR}
of p4% N %%, We also take maximal abelian subspaces

0 —-A

da ._ qda 4 A 0 A = diag(ay, ..., am, am, ..., a1),
ple A)| aeR TrA=0

A 0 .
aiﬁa = qde 4 {( ) ‘ A = +/—1diag(ay, ..., am,am,...,a1),a; € R} and

a

)

of g% and p9“ containing a??, respectively. If we put

V=1
T:=Ad (CXP 1 Z (Eiga1-i) + Et1-ii + Etiy@nt1-i) + E@n1-inti) | »
1<i<m
we have
A 0 .
T(a%) = {(O —A) ‘ A = diag(ay, ..., am, —am, ..., —a1),a; € R} ,

where Ad is the adjoint representation of SL(2n, C) and exp is the matrix exponential func-

tion. Moreover, 7 fixes each vector of £%¢ N a‘éf}a and h% N aﬁ‘ja. Hence r(a‘éf}a) and r(a‘éga)

are contained in ¢. We choose

(E1 — E, — En+l + Exy .o By — En+]fm - En+m + E2n+]fms
E+E, — En+l —Ey,....Ey+ En+l—m - En+m - E2n+l—m’
Eny1— Eon, ..., Eon—1 — E2n)

as a basis of cg. Then
lei —eont1-i |1 =i <npU{entivi —enpi—i |1 <i <n—1}

is the simple root system of R for the lexicographic ordering of (cgr)* with respect to the

above basis, which is contained in the positive root system. Since ¢;(A) = —e,41—i(A) =
—en4i(A) = e2,41-i(A) holds for all A € t(a%?), e¢; — e2,11—i is denoted by a black circle
and ez, 41—i — ei+1 and e,4+i4+1 — ep+1—; are joined by a curved arrow. Therefore the Satake

diagram of (t (099, T(h9%), T (a??)) is described as follows.
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em —e Cn+m+2 ~ €m

..] : D en+m+l ) e’"+l

Since ¢; (A) = —e,4i(A) forall A € f(aﬁﬁa), the Satake diagram of (r(gd“), t(hd“), r(a‘cllfja))

is described as follows.

€l —¢€;m em e Cn+m+2 ~ €m

@ @ en+’ﬂ+l ) em+1

If Af“ (1 < i < m) is the linear form on t(a%?) defined by Xfl“(A) = ¢;(A) forall A €
7(ad%), Ade .= {:I:Xf“ :l:)»j.l“ |1 <i<j<m}U {:EZA?“ | 1 < i < mj} is the restricted
root system with respect to 7(a%®). Then we have Aﬁir“ = {Af“ + )\?“ |1 <i < j <
myU {204 | 1 < i < m}and ¥ (A%) = {Ad* =299 |1 <i <m—1}U {224}, Therefore
we have the Dynkin diagram of A%? as follows.

da da da
A4 =25 M

O_

_sda
2 " Pm—1 e

We also have (m* (149 & ,\;?“), m~ (149 £ ,\;?“)) = @4, 4), m @28, m=(2x8) = (1,3)
forany 1 <i < j < m, and v-cohom = 2n — 1.

Next, we consider the case where n(= 2/ + 1) is odd. We take a maximal abelian
subspace

bda

= { Z ai(Einr1—iy — Eqt1-di — Eqriy@ent1—-i + E@ur1—iy(n+i))

1<i<l

a; € N — IR}
of p9¢ N q9¢. We also take maximal abelian subspaces

0 —-A

—pda (A 0| A=diaglar.....a.a0.a.....a1),
’ 0 A aieR, TrA=0

A
bégﬂ = pda o {( 0 ) ‘ A = /—1diag(ay,...,a;,a0,q;, ...,a1),a; € R} and

d
b4,
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of q?@ and p9 containing b, respectively. If we put

=1l
p=Ad <6XP 7 Z (Eits1-iy + Equa1-iji + Equiiy@nt1-i) + E@ni1-iynti)) | -
1<i<l
we have
A 0 .
p(69%) = {(o _A) ‘A:dlag(al,...,al,o, —ay, ..., —ay), d GR} )

Moreover, p fixes each vector of £4¢ N b‘;ja and h9¢ N bﬁ;’a. Hence p(bd“ ) and p(bd“ ) are

contained in ¢. We choose

(El - En - En+1 + E2na e El - En+1—l - En+l + E2n+1—la
E\+Ey,—Eyy1 —Eop, ..., Ej+ Epp1—1 — Eny1 — Expy1-1, Er41 — Eiq 140,
Eni1 — Eon, ..., Ezp1 — Eoy)

as a basis of cg. Then
{ei —eant1-i |1 <i <n}Ufentit1 —eny1-i |1 <i <n—1}

is the simple root system of R for the lexicographic ordering of (¢g)™ with respect to the

above basis, which is contained in the positive root system. Since ¢;(A) = —ep41-i(A) =
—en+i(A) = eap+1-i(A) holds for all A € p(699), ¢; — exn+1—i 1s denoted by a black circle
and ez, 4+1—; — e;j+1 and e,4i+1 — e,41—; are joined by a curved arrow. Therefore the Satake

diagram of (p (@9%), p(h99), p(b9%)) is described as follows.

ey — e

Since e€;(A) = —epyi(A) for all A € bd“ ), the Satake diagram of
(0 (g%, p(h%), p(bd )) is described as follows.

€n+1-1 ~ €l+1

€] —€m €m €2 €n+1—1 ~ €l+1

@: } ez+l 762”7]
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If ue (1 < i < 1) is the linear form on p(b9%) defined by ud9(A) := e;(A) for all A €
p(b), [da = (gpda :l:Mf“ |1 <i < j<lu{pds,£2uda|1 <i <I}is the
restricted root system with respect to p(69¢). Then we have Ff“ = {uf“ + ,u”jl“ |1 <i<

JEBUR 21 < i < Dand W) = (ud - pff 11 < i< L= 1)U ()

Therefore we have the Dynkin diagram of 1'% as follows.

d d da _  da d
ny =gt Pi—o My it

We also have
d d —¢,d d d —d
(m™ (i Z + 15, md (e £ p49) = m*(ui, m=(ui") = 4,4,
(m*2ud*), m~2ui*) = (1,3)
forany 1 <i < j <[, and v-cohom = 2n.
6) (g, f))d“d = (su(n, n), sp(n, R)). First, we consider the case where n is even. We

da

take the same a?? as a maximal abelian subspace of p?*?Nq?e?. We also take maximal abelian

subspaces

gdad . da+{(A 0)‘ A = /—1diag(ay, ..., am, am, -..,a), } and

gdad 0 A aieR, TrA=0
A 0 .
az(dladd Z:Clda—i-{(() _A)‘A:dlag(a17"'7am7am7"'1al)1aiGR}
of q9%¢ and p9? containing a?, respectively. Then r(a‘é%ld) and r(a‘égf,{j) are contained in c.
We choose

(Ey — Ew — Eny1+ E2ny oo, Emp — Ent1—m — Entm + E2nt1-m,
Ey—-E,—Enr1+Ei+Env1 — Enpm — Engmse1 + Eop, - -,
Ey—En— Enq1 + En+ Eng1 — Engm — Engm1 + Eon,

Eyn— Eon, ..., Eop—1 — E2p)

as a basis of cg. Then

{eivi —em—i—1 |1 <i <2m =3} U{epyit1 —en—i | 1 <i <2m -2}
Uler — e, en1 —en,en — eng1, e, — ep—1}

is the simple root system of R for the lexicographic ordering of (cr)* with respect to the
above basis, which is contained in the positive root system. Then the Satake diagram of
(z(g9ed), T (h?ed) v (a?)) coincides with that of (z(g?%), T(h%%), T(a??)) and the Satake di-
agram of (t(g%?), t(h9e9), r(a‘égfd)) is described as follows.

€n—1 —é€n €2n ~ €n—1
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Note that the restricted root system of (t (gd“d ), T(h44?)) with respect to 7(a?) coincides
with that of (7 (gd 4, r(bd %)) including their signatures of restricted roots. We obtain v-cohom
=n-—1.

Next, we consider the case where n is odd. We take the same b%¢ as a maximal abelian
subspace of p?@? N q?e_ We also take maximal abelian subspaces

plad . pda | (A O)| A=v-ldiagar, ... a5 a0, ....a1), ond
gdod * 0 A)| ¢, eR TrA=0

A 0 .
b‘é%’d = bd”+{(0 —A) ‘A:dlag(al,...,al,ao,al,...,al),ai eR}

dad dad

of q9%¢ and p?@? containing b, respectively. Then p(b‘éj,fﬂ) and p(bz‘jfd) are contained in c.

‘We choose

(Ey — En — Epy1+ Eony ..., Et — Eny1—1 — Ent1 + E2ng1-1,
E\-2E +E+En 1 —2Ey 11— Eoy, ... El—2E1 (1 +Ej 0+ Epy —2E 11— Eng42,
El+1 - EZna En - E2na ey E2n—l - E2n)

as a basis of cg. Then

leivi —em—i—1 |1 i <21 =2} U{epqivr —en—i | 1 i <201}
Uler —ex, en1 —en,en — €n+1,€2n — em—1}

is the simple root system of R for the lexicographic ordering of (¢g)™ with respect to the
above basis, which is contained in the positive root system. Then the Satake diagram of
(p (g%, p(h?ad), p(699)) coincides with that of (p(g??), p(h%%), p(69?)) and the Satake
diagram of (p (g9ed), p(hdad), p(bz%j)) is described as follows.

€n—1 —é€n €n — €2p—1

Note that the restricted root system of (p (gd“d), p (%)) with respect to 0(69) coincides
with that of (p(gd“), p(hd9)) including their signatures of restricted roots. We obtain v-
cohom=n — 1.

By the results of (1) — (6), we give the Satake diagrams and the restricted root systems
with respect to toroidal-type maximal split abelian subspaces. For example, by the result of
(g, h)4? we give the Satake diagram and the restricted root system of (g, h) with respect to
toroidal-type maximal split abelian subspace as follows.

(1Y (g,h) = (sl(2n, R), sp(n, R)). Recall that we have

Eﬂh:édadmhdad, pmthdadmbdad’
tN q :\/—_l(pdad N qdad) , pNg= \/__1(Edad quad).
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First, we consider the case where n (= 2m) is even. We take +/—1a%“ as a maximal
abelian subspace of £MNg. We also take maximal abelian subspaces +/— adgfd and /—Ta%% +

dad
pdad

(g, b, v/—1a%%) (resp. (g, b, v/— adjfd)) coincides with that of (z(g4%?), t(h%?), T (a??))
(resp. (t(g?ed), T(hdad), r(adjfd))). If & (1 <i < m) is the linear form on 7(yv/—1a%%)
defined by 4;(A) := /—lei(A) forall A € t(v/—1a%%), A := {(Fh; £4; |1 < i <

m}U {:I:Z)A»i | 1 <i < m} is the restricted root system with respect to 7(v/—1a?). Then Ais
isomorphic to A9 Moreover, we have

m* Gy £4;),m™ (i £4)) = (m~(Ade £ 2490, mt (e £ 2490)) = (4,4),
(m*(24), m™(24)) = (m~(2a%9), m* (2249)) = 3, 1).

N b4 of q and p containing «/—1a??, respectively. Therefore the Satake diagram of

)dad

Since the t-cohomogeneity of (g, ) is equal to the v-cohomogeneity of (g, b , we have

t-cohom=n — 1.
Next, we consider the case where n (= 2] + 1) is odd. We take /— 169¢ as a max-

imal abelian subspace of £ N q. We also take maximal abelian subspaces /— bdf}i, and

=164 4 bdﬁfd N h444 of q and p containing ~/—1b9¢. Therefore the Satake diagram of

(g, b,/ — bd“) (resp. (g, h,~/— bddad)) coincides with that of (t(g?e?), (h944), T (69%))
(resp. (r(gd“d) r(bd“d) t(bddad))) If i (1 < i < 1) is the linear form on 7 (v/—169%)
defined by 1;(A) := /—le;(A) for all A € t(v/—1699), I = {0 + ajll <i<
IYU {£/;, 2/ | 1 < i <1} is the restricted root system with respect to (+/—16%?). Then
[is isomorphic to %@ Moreover, we have

(™ (R £ ), m™ (B £ 1)) = (m™ (W £ pg, m¥ (£ 149 = 4,4,

(m* (i), m= (L)) = (m~ (ud®), m*(ud) = 4,4),

(m* 1), m™ 1)) = (m~Qud*), mT2ud*) = (3, 1)
and t-cohom = n — 1.
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TABLE 1. Satake diagrams

(g, h) Satake diagram of (g, b, a) Satake diagram of (g, b, aq)

Bn—1

b

“m—1 @ “m—1 oy
(sl(n, C), sl(n,R))
O

(n =2m) n=2m+1)

W

>
|

(sl(n.R) + sl(n, R), sl(n, R))

I

oy Bn—1
—5

(sl(n, C),so(n, C)) Bru1)
n—

By

(sl(2n, C), su*(2n))

bl

n—1

(su*(2n) + su™(2n), su*(2n))

- 0—e —0O
@, Bn—1

(sl(2n,C), sp(n, C)) Pan—1)
( n—

@, Bn_1

(sl(n, C), su(p,n — p))

4

Y Ly Y A
|

] ?N?g%?“ Y TTYY 7Y

Bn—1

(su(p,n — p) +su(p,n— p), su(p,n — p))

b~

QT

n=2p) (n > 2p)

AR AAA:
A
Cr

(sl(n, C), sl(p,C) + sl(n — p,C) + C) Post Prpi fan
@21, :
(n=2p) (n > 2p) (n=2p) (n > 2[))
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TABLE 1. (continued)

(g, ) Satake diagram of (g, b, a) Satake diagram of (g, b, aq)
(s1(n, R), s0(p.n — p) 8 % o SR/
o Ap—1 o ap
(su(p,n — p),so(p,n — p)) P { : 8_ _ﬁnél
(n=2p) (n>2p)
(sl(n,R), sl(p,R) +sl(n — p,R) +R) @y @j
O— -
(n=2p) (n > 2p) (n =12p) (n > Zp)

a _ Bu—
(su*(2n), sp(p.n — p)) ._CB_._ i’bl_. ._g_._ _"O]_.

o ap—1 o op
Bn—
(5u@p. 201 = p)). sp(p.n — p)) Q}w ( : o o 5o

[ 202 S5
(n=2p) (n>2p)
¥p-1 Bap—1
(su*(2n), su*(2p) + su*(2(n — p)) +R) ?j‘ @y ?‘ 557 ﬁ éy (di zd'_Y
(n =2p) (n > 2p) n =2p) (n > Zp)
(s1(2n, R), sp(n, R)) o o 5o o o 5o

Bop—1

(su*(2n), s0% (2n)) O o -Ble

]

Un—1

Bop—1
—0

b
a
1 Bu—1
B
O_
-

m1 f Br1
Q’] @ n
m
(n=2m) nm=2m+1)

(su(n,n), sp(n, R)) @)7 é ._ﬁd_._%]_.
[ e T [ Yoy

(n =2m) (n=2m+1)

(su(n,n), s0*(2n))

S

T

(sI(2n, R), sl(n, C) + 50(2))

(su*(2n), sl(n, C) + s0(2))

%“‘%f




144 KURANDO BABA

TABLE 1. (continued)

(g.h) Satake diagram of (g, b, a) Satake diagram of (g, b, aq)
"‘p|+q| B Prita
O—- —O—‘ o o4
(p1 <qpandq) < pp) (py <gpandqy < pp)
pitp B P
(su(py +p2, 91 +92), !
su(pr,q1) +su(p2, q2) + 50(2)
(py = 112 and pp < q1) (p1 < qpand py < g,k =min(p| +q1,p2 +42))
o P1tq1—1 ﬁp|+qu
@D"mﬂn ( By +41
O—
(p1 =g and py =q1) (pl =gy and py =q1)

(su(n, n), sl(n, C) + R)

1 B Bp—1
; DBn

T

(s0(2n, C), s0*(2n))

o—
(s0%(2n) + s0*(2n), s0*(2n)) @

(n=2m) (n=2m+1)

oam
«
(so(2n, C), sl(n,C) +C) P P
n
Bm1 Byl
(Yo == [ So¥ =

(n =2m) (n=2m+1) (n =2m) n=2m+1)

@JQ}»

oim&
v
Pos
¢
e
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TABLE 1. (continued)

(g, b) Satake diagram of (g, b, a) Satake diagram of (g, b, aq)

p.n— p:even
n=2m

Pm—1

B B LN
.
o p :even
n—p:odd
n=2m+1

(sa(n,C),sa(p,n — p))

(n =2m) (n=2m+1)
o
o
p.n—p:odd
n=2m-+1)
ap—1
@ g « ap—1 _ap
=2 =2
(n=2p) . (n=2p+1) a1
« « ap i B Pmot Bw
(so(p.n— p)+so(p,n—p).
so(p,n—p))
-—e
(n=2(p+1) (n=20p+k+1) (n = 2m) (rn=2m+1D
(n=2p+k,k=1
ap Bp—1
o a Uy 1 _am B B Bp—1  Bp
C i: (o {J<‘§ O =38
Bp+1 Pap— Bpy1 Pap—1 P2p
(n=2p) (n=2p+1) (n=2p) (n=2p+1)
ap B
@ @ ap B B B,
- - - e=>e o @\/‘;) & - So e
(so(n, C), s0(p. C) + so(n — p,C))
B2
Bp+1 Bp+1 P2p
= O @@ [OS -0
(n=2p+1) (n=2(p+k+1 (n=2p+1) (n=2p+k+1)
&8 4<: B Be <
Bp+1 P2p

(n=2p+k).k=1) (n=2(p+k),k=>1)
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TABLE 1. (continued)

(g, h)

Satake diagram of (g, b, a)

Satake diagram of (g, b, aq)

(s0*(2n), su(p,n — p) +50(2))

(s0(2p.2(n — p)), su(p,n — p) + s0(2))

(s0%(2n), 50*(2p) + 50*2(n — p)))

(so(n,n),so(n, C)

(s0*(2n), so(n, C))

(so(n,n),sl(n,R)+R)

am
a p.n— p:even
n=2m
@
p :even
._8_._.. n—p:odd
n=2m+1
a @ p.n—p:odd
.d. n=2m+1)
ap
«
.d._.v (n=2p)
._6_._ " (m=2p+1)
._‘6_._._06_._._.._< (n>2p+1)

ohe - (n=2p)

«
._‘6_._@ (n=2p+1)

ole - Beoe ,< n>2p+1)

am

._"d_._(ﬁ (n = 2m)
o

._6_._ @ (n=2m+1)

o
a
._d_._% (n =2m)
oam
oo @ (n=2m+1)

Bm
{ (n =2m)

B

@ (n=2m+1)

(n =2m)

%
B
@ (n=2m+1)

Bap—1
ﬂd_ (n=2p)
’ bap
Bap
B
O - (n=2p+1)
B hrp
(_J)__O_._ (n>2p+1)
B

n_1

b
Bn—1
B
67 bn
B
._8_._ &f (n =2m)

._8_._ (n=2m+1)
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TABLE 1.

(continued)

147

(g,h) Satake diagram of (g, b, a)

Satake diagram of (g, b, aq)

« pitq-1

d; . (p1=gpand py = q1)
P11

“pita)

4 (m=qzmdm<ql>
atp=p+mp+l

4% 1<

« Ui +p) ( pr=qand py <q )
d---0=0 a+n=p+p+l

@ “pitp pr<qandpy <q
O D a0 (

prtp+ar+qp:odd
o Ypitqp

o %pitqy

pr<qandpy <q
p1t+p2+q+qpeven

(s0(p1 + P2, 41 +9)s
50(p1.q1) +50(p). 4))

( pr<qandqy < p) )
PL+ P2 tq1taqyieven

pr<qandqy <p)
pr+p+41+q):odd

¢

P

(50%(4n), su*(2n) + R)

(sp(n, C), sp(n,R))

Q"_\‘*q)s
=
|
=3

a

(sp(n,R) +sp(n, R), 5p(n, R))

e

I

a

2
=

(sp(n, C),sl(n,C)+C)

:

-1
ﬂd— 4(@1’1*’41
P11
Bpi+q)
6 {@
ﬁd— Bpitpy

%_ Bp+py

g_&_{

ﬁd fk}*ﬁo

Bl <

By Ppi+q
A .

(pr=q and py =qy)

(p|=qzandpz<ql)
antan=p+tmn+l

pr=qandpy <q;
P1tp2+qr+qyeven

(m:qzandm<q1)

antp=ptptl
pr=qand py <q;
pr+pr+qr+qp:odd

pr<qandpy <q;

k=min(p; +q1, p +q1)
pi+p2+q1+qpeven

pr<qandpy <q

k =min(p; +q1, p1 +41)
P+ g+ todd

pr<qandq <p)
pLtp2tar+qyeven

( pr<qandgy < p) )
p1+p2+41+qp:odd

p

Bu=t P

0---0&<0

p

Bu=1 P

0---0<0

ﬂd_ ) Buzt

But1 Po—1 By
G- 0=8
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TABLE 1.

(continued)

(. b)

Satake diagram of (g, b, a)

Satake diagram of (g, b, aq)

(sp(n, C), sp(p,n = p))

(sp(p,n— p)+sp(p,n—p),sp(p,n—p))

(sp(n,C), sp(p, C) +spn — p,C))

(sp(n, R), su(p,n — p) + s0(2))

(sp(p,n— p), su(p,n— p)+s0(2))

(sp(n,R), sp(p,R) +sp(n — p,R))

(sp(n, n), sp(n, €))

(sp(2n,R), sp(n, C))

(sp(n,n), su*(2n) +R)

?,... Y—1  ap B Bn—1 B
o p—1 «
Z f B Buc1 B
(n=2p)
0{5« gﬁ«o— Rl @ I gUE o
oOe - Dee - -ece
n>2p
oap_|

R

58

B Bp— Bp

Bp+1 Bap—1 B2
n=2p) (n=2p)
a a B B
’f,‘ o - -0<=0 .‘d‘._ _CS_._._ - -@<<=0
Bp+1 By
O - -Oe-e -0 o - -0<=0
(n>2p) (n>2p)
D(d_ op—1 og 6_ Bn—1 Bn
o “p—1 ap
(n=2p) B P18
e B el
.—d—.— -(5—.—.— B =]
(n>2p)
Yy Tlact Be Blecs
(n=2p) (n=2p)
o o
0o Beoe oo olle . Bee -ece
(n>2p) (n>2p)
« [ B Bp—1 Bn
° d. _nO_.@ad .—d—.— -"O-.<:O
a [ B Bn—1 B
1: <:°6 ° d P _O_." <:(5

8

Q ﬂé_ Bap—1 /j%n
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TABLE 1. (continued)

(@b Satake diagram of (g, b, a) Satake diagram of (g, b, aq)
B ﬂ[:1+q]
(p1 =gz and py = q1)
*p1tqi
(p1 =g and py = q1) £ __ﬂl’gf%_._ o=

“pi1p (p1 =gz and py < q1)
(sp(p1+p2.q1 +4q2), o P1tP2
sp(p1.q1) +5p(p2. 2)) o1 < o and py < 8 B
P1=q2 P2 <4q1) - > o9
o k =min(py + 41, p2 +42)
Do Do -oce pi<qrand py < g
(p1 <g2andq; < py)
B Bpy+a;

o - -0=0
(p1 <gqrandqy < p3)

Bty s

p—1 a¥

Ay B Bu—1
::: ; I
E:

(sp(n,R), sl(n,R) +R)

(sl(n, C) + sl(n, C), sl(n, C))

C

O_

b4

a UIn—1 _ay ﬂ! Bn—1 Bm
(so(n,C) +so(n,C),s0(n, C)) Byt Bom—1 ﬁ%fn
(nm=2m+1) (n=2m+1)

(sp(n,C) + sp(n, C), sp(n, €))
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TABLE 2. Dynkin diagrams of restricted root systems

(g, H)
(87,99

(nl+()~i) m+(2)~i))
m~ () mT(2A;)

(sl(n, C), sl(n,R))
(self dual)

(sl(n,R) + sl(n, R), sl(n,R))
(sl(n, C), s0(n, C))

(sl(2n, C), su*(2n))
(self dual)

(su*(2n) + su*(2n), su*(2n))
(s1(2n, C), sp(n, C))

(sl(n, C), su(p,n — p))
(self dual)

(su(p,n — p) +su(p,n— p),su(p,n— p))
(sl(n,C),sl(p,C)+sl(n—p,C)+C)

(sl(n,R), so(p,n — p))
(self dual)

(su(p,n—p),s0(p,n—p))
(sl(n,R), sl(p,R) +sl(n — p,R) + R)

(su*(2n), sp(p,n — p))
(self dual)

2 0 2 0

2 0 2 2
Asi<m/2-1 @(=I[n/2)

2 0 0 0

2 0 2 0
(I=i=<[2]-1) (@(=I[n/2D

1 0
1 0
(I<i<n-1)
2 0 2 0
2 0 0 0
(l<i<n-1) (i=n)
4 0

4 0
(I=i=n-1

G o G

(i #p) @i =p)

2 0 2(n—=2p) 1
2 0 2(n—=2p) 1

(I<i<p-1 @i =p)
2 0 1 0
2 0 1 0

(I<i<p-1 (i=p)

6o o)

(i #p) @i =p)

1 0 n—2p 0
1 0 n—2p 1

(l<i<p-1 i=p)
1 0 0 0
1 0 1 0
(l<i<p-1 (i=p)

6o G o)

i #p) @i =p)
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(g.h)
(4. b

(mm,-)
m”~(A;)

mT(24;)
m=(2A;)

(sup,2(n — p)), sp(p,n — p))
(su*(2n),
su*(2p) +su*2(n — p)) +R)

(sl(2n,R), sp(n, R))
(su*(2n), s0*(2n))

(su(n, n), s0*(2n))
(sl(2n,R), sl(n, C) + s0(2))

(su*(2n), sl(n, C) + s0(2))
(su(n,n), sp(n, R))

(su(pr + p2.q1 + 92,
su(py,q1) +su(p2, q2) +50(2))
(su(py +4q1. P2 +92).
su(py, p2) +su(q, q2) +50(2)

(su(n, n), sl(n,C) + R)
(self dual)

(s0(2n, C), s0*(2n))
(self dual)

(s0*(2n) + s0*(2n), s0*(2n))
(so(2n, C), sl(n,C) + C)

Y(a)
A Ap—1 A
SRR G,

(n>2p)

S

(n=2p)

i Ay
Wl

(n:even)

A tpidgr-l
O--"~0=0
*p1tay
(p1 < g andq < p3)
A

s p1+py—1
O- =00

Ap1+p2
(p1 =gz and pp < q1)

A kpl-%—q]—l
O -~0=0

*p1tay
(p1 =gz and py = q1)

An—1

&"'{Qz

(n:o0dd)

v

-1 M4

¥

(n:even)

4 0 4n—-2p) 3
4 0 4(n—2p) 1

(I=i=p-1D

4 0
4 0
(I=i=p-1

G o)

(i=p

3.0
1 0

(i=p)

(l1<i<n-1)

(i o)

(l1<i<n-1)

G o)

(1=<i=<[n/2]-1)

S

(I=i=<[/2]-1

G o)

@ # p1.p1+4q1)

1 0
0o 0

(i=n)

4 1
4 3
(i =n/2)
1 0
3 0
(i =1n/2)

0 o) 2(p2 —q1) 1)
20 2q2—-p1) O

@@= py)

@i =p1+aq1)

2 0 0 0 2(q1 —p2) 1
0 0 2 0 2(q2—p1) O

G #pr,p1+p2) (@(=pp
2 0 0 0
0 0 2 0
G#p1.r1+q) (@ =p1)

G o)

(l<i<n-1)

G o)

(i #n)

4 0
4 0
(I <i<[n/2]-1)

4 0
4 0
(I <i<[n/2]-1)

(i=p1+p2)
1 0
0 0

@i =p1+q1)

(i o)

(i=n)

)

@i =n)

4 1
4 1
(i =1In/2D)
1 0
1 0
(i =1In/2D)
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TABLE 2. (continued)

(€:N)) mt () m*(zm)
(@, 5% e (m*(xn m=(24)

2]

A 7]
d——6:>o e 0 o

(peven nfpodd) 0 0 2 0
8_ A @ #[p/2).[n/2) (i =[p/2],[n/2])
odd, n — 20 9.0
(p: n — p:even) 0 0 (2 0
(50(1,C), 50(p,n — p)) N Mg Mg @i #[p/2D @i =[p/2)
(self dual) =0 2 0 0 0 2 0
(p:odd, n — p:odd) 0 0 (2 0 2 0
G #[p/2.n/2]=1) G =[p/2) @ =In/21-1)
MA-
2.0 0 0
. T
A @ #[p/2D i =1[p/2D

(p:even, n — p:even)

A e asizpin atp
(so(n, C), Ap—1 Lo
so(p,C)+so(n—p,C) Ad_ (1 0)
¢ (<i<p)
(n=2p)
A Aen

e %=>o[”'l il 6o (o) 6

(@ #p,n/2)  G=p) @(=I[n/2D)

i 1811 4 0 0 o 0
& =0 (6o (0

,\
=
5]
2
3
S
B
|
=
=]
a
E‘;

0 0

(s0* @), su(p.n — p) + 50(2)) (#pnf2)  G=p)  G=In/2)

(self dual) A

a1 Mg 40 0 0 4

O - 0 0 4 0 4 0

(prodd, 7 — prodd) GEp2)  G=p)  G=n/2)
4 0 0 0

y o 31 s 0 0 4 0 (o 0

3---0e=0 G#p 2D G=p)  G=/2)

A Ap—1 A 2 0 2n—2p) 1
d——OE)(S 2 0 2n—2p) 0
(n>2p) (I=si<p-1 i=p)

8. 5L Co G

(n=2p) (I<i<p-1 (i=p)

(s0(2p, 2(n — p)), su(p,n — p) + s0(2))
(50*(2n), 50*(2p) + s0*(2(n — p)))
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TABLE 2. (continued)
(g, h) mt(y)  mt2hy)
(a9, b V@ (m*(xi-) m= @)
. 1 0 0 o
fn=l 0 0 1 0
A (i #n) (i =n)
(s0(n,n), so(n, C)) d— @<§ (n:0dd)
(self dual) 10 ()
0 0 1o
@ #I[n/2l,n) (i =I[n/2],n)
(n:even)
PR (IS 1] 2 0 2 0
é——6=>0 2 0 2 1
(50*2n). 5001, C)) (n:0dd) (A<i<[n/21-1) G=I[n/2)
(so(n,n), sl(n,R) + R) X
O A I
(I=i<m/2-1) @(=In/2)

(s0(py + p2.q1 +92).
s0(p1.q1) +50(p2.42))
(s0(py +4q1. P2 +92).
s0(p1, p2) +50(q1.92))

(s0*(4n), su*(2n) + R)
(self dual)

(sp(n, C), sp(n, R))
(self dual)

(sp(n,R) +sp(n,R), sp(n,R))
(sp(n,C),sl(n,C)+C)

(sp(n, C), sp(p,n— p))
(self dual)

(sp(p,n—p)+sp(p.n—p),sp(p.n—p))
(sp(n, C), sp(p,C) +sp(n—p, )

(sp(n,R), su(p,n— p) +50(2))
(self dual)

(n:even)

A Aprtg -l
O - ~O=0p +ai

(p1 < gz and gy < pp)

A )‘pl +py—1
O~ B O——0JEy

(p1 =gz and py < qy)

Aprtgr—1
4
P1t41
(p1 =g and py = q1)
A Ap—1 )L?
A =1 An
(5— - —=0<=0
A Ap—1 An
& 6=0

G o C0 (e

G#pr.ri+q) G =p1) G =p1+aq1)
10 0 0 q1—p2 1
0 0 1 0 ¢@p—-p 0
@ #p1,p1+p) (G=p1) (=p1+p2)

G o)

@ # p1)

G o)

(l<i<n-1)

G o)

(i<i<n—1) (i=n)
1 0
1 0
(i<i=<n)
2 0 0 0
0 0 2 0
@i #p) (i=p)
4 0 4(n—2p) 3
4 0 4(n—2p) 3
(I=<i<p-1 @i=p)
4 0 3.0
4 0 3 0
(I=<i=p-1 @i=p)

G o) (0 3)

@ #p) (i=p)
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TABLE 2. (continued)

(a.h)
@, %)

mt () m+(zx,->>
m=(x;)  mT(2%;)

(sp(p,n— p), su(p,n—p)+s50(2)
(sp(n,R), sp(p,R) +sp(n — p,R))

(sp(n,n), sp(n, C))
(self dual)

(sp(2n,R), s5p(n, €))
(sp(n,n), su*(2n) + R)

(sp(p1+ p2.91 +92),
sp(p1.q1) +5p(p2,92))
(sp(p1 +4q1. P2 +q2),
sp(p1. p2) +59(q1.492))

(sp(n,R), sl(n,R) +R)
(self dual)

(sl(n,C) + sl(n, C), sl(n, C))

W (a)
Ap—1 )\S

(n>2p)

9)-’

B ml

(n=2p)

A )‘pl+q1 —1
O--10=0

*p1+ar
(p1 < g2 andq < pp)

a tprtp-l
& o

*p1+py
(p1 =gz and py <q1)

A }‘p1+ql—l
O--~0%=0

*p1+ay
(p1 =gz and pp =q1)

A Ap—1 An
O =0

A Ay
L

An/21-1

A
(s0(n,C) +50(n, C), s0(n, C)) 6___}[»«/21—1 "Fn/ﬂ CS—
Mn/2]

(sp(n, C) + sp(n, C), sp(n, C))

(n:0dd) (n:even)

6_ hn—1 An

0 2(n—=2p) 1
0 2n—2p) 2

(<i<p-1 (i =p)

) 6o

(I=<i=p-1 @i=p)

G o)

(I<isn-1 (i=n)

G (o)

(I=i=nm) (=n)

G o)

(0 0) <4<p27q1) 3)
4 0 4a—r1) O

@#pr.p1+q)  (G=p1) (i =p1+aq1)

(0 0) <4<‘11*P2) 3)
4 0 a2 —r1) O

@ #pr.pr+tp) (G=pp (i =p1+p2)

G o)

@#pr.pi+p)  (=pp) (i =p1+q1)

(l<i<n-1)

2 0
2 0
(I=i=I[n/2])
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(Th1b + Td 1d)g

I+ w1 —uw

(1 +wu

(1 —wuu

(T + w1 —u)

(I +wu

(1 —wu

(d —wydy
I—u—(d—-ug+.dg
(d —wydy

(d —uyd

IT—c/u+t/yd—u+g/d

(@ + )1+ ld)g

I +wa—u)
e

e

(1 +u)(1 —u
(1 +w(1 —ug)
(1 +ug)(1—w
(d —uydg

(1 +u(1 —u
(1 +u)(1 —u
(d —wydg
¢/T+wq—uw

(1b > td pue ¢h = 1d)
(1d — Th)(Td — 1h)g + C°d + 1d

(%d = 1hpue Th = 1d)
b4 1d

[—u
u
ug

I —ug

I —u+(dg—wg+ (dg—ug
d

IT—u

(b > Ud pue ¢h = 1d)
(ld — Th)(%d — 1b)yg+ °d + 1d

(%d = Thpue Th = 1d)
b4+ 1d

| —u
ug

u

1—ug

I —ug

1—u

dy

I —u+(dg—ug+ (dg—ug
[ —u

d

¢/ —dg—wy(dg—uy+1—u

((Q o5 + (Th Td)yns + (1bld)ns
“(Th + 1htd + 1d)ns)

((g ‘wyds “(u ‘uyns)

(@05 + (Q ‘u)1s “(ug) 4ns)
[(LEE X RDIENS: RID)
((ug) 405 *(u ‘wyns)

((ug) 405 *(ug) (M9)

(Y ‘uyds *(q ‘u)19)

((d — u‘d)ds ‘(ug) ,ns)

((d — u*d)yds *((d — u)z ‘dg)ns)

((d — u‘d)ds ‘(ug) ,ns)

((g'd —uwys+ (4 d)s (4 'w)1s)

((d—u‘dyos‘(d —u‘dyns)

(d —wyd /(T + w1 —u) /(1 —dg—w(dg—u)y+1—u 1—u ((d —ud)yos (¥ ‘u)15)

(d —wydg (d —wydy dg dg O+ d—wis+(Q dys (Q u1s)
1—d—u+.d (I + w1 —u 1—u [ —dg+ [(dg—u) ((d —u‘dns (d — u*dns + (d — u‘d)ns)
(d —wdg (T + (1 — u) 1—dg+ (dg—w I—u ((d — u*d)ns ( ‘u)18)

(1 +ug)(1—w (1+ug)(1 —ue (1—uz (1 —ug ((Q ‘wds *(Q ‘ug)19)
(1 + ug)u (1 + ug)(1 — ug) 1—ug 1—up ((ug) yns *(ug) ,ns + (ug) ,n5)

(1 +u))(1 —u) (1 +ug)(1 —ug) I —up 1 —ug ((ug) (s *(Q 'ug)19)
/(@ + w1 —u T+wa—uw (1—-uz 1 —uwuz ((Q wos () w)s)
T/(1— wu (T + (1 —u) T—u T—u (A w18 ‘(g ‘w15 + (A ‘W19)

/(@ + w1 —u) I+ w1 —u 1—u 1—u (w15 (D ‘u)s)
xaput uoIsuawIp Kyroudgowoyoo-2 Kyroua3owoyoo-a (q ‘B)

SQJIPUI PUE SUOISUSWIP ‘SANIUITOWOY0I-7 ‘SANIAUAFowWoyod-a

‘¢ A74dV]
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(b > Ud pue Th = 1d)
(Id — Thy(2d — 1b) + Td + 1d

(1b > Td pue <h = 1d)
(1d — thy(Td — 1b) + Td + 1d

((ChCd)os + (1h*1d)os

<hlb 4+ Udld T+ (b + 1d . .
( ¢ ) (@d 5 bpue b = 1d) (23 hpue s 1d) (@b +1b°td + 1d)os)
164 1d 16+ 1d
o/ (1 —uwyu (1—wu (<1 (<1 (A + (4 w15 " (u*u)os)
(uoAd: 1) [E1¢ . .
/(1 + wu M u (ppo-1) ?Lm_m (Qwyos *(ug) 05)
(UaAd: 1) [£1¢ . e
o/(1 = uyu o Epoy 14100 u (O “wos (uu)0s)
) (s10410) (75 1+1%) o
(d —wdg (1—wu dg +u— (dg - u) (pod — u'dy 4 [9Ea]+ (5] (@05 + (d — ud)ns “(ug) ,05)
(d —uydg (d —uwydy dg dg (((d — u)7) 05 + (d7) 08 ‘(U7) ,05)
(s19U30) [751+15] S )
u—(d—u+,d (1—wu (ppord — u*d) Nimm_im_ dg+u—(dz—uw)  ((Qos+ (d —ud)ns ((d — u)z ‘dg)os)
(d—wd (d — wydg dz dz (Q*d — w)os + (3 *d)os () *u)05)
(s1om0) lgs]+1g] ((r+dz=uy d+(1 -1 ((d —udyos
-/ d—w+¢/d /(1 —uu (poid —u'd) 1 +(9Ta]+19] GraraiZy araiit d—u'dyos b usdyos)
_ _ ((r+dyg=u) d+(1—¥0% (s19420) &l +15] dVos (A
@—und Ya=m G gedi=w  d+(1+D1 (ppo:d —ud)  1+I[7551+15] (@ = widos O mos)
UIAD U u UdAD U u « " "
(1 uwu (1 - wug i S orad [—u O+ QU5 up)0s)
" (1 — ugyu u i S (119) 405 *(u7) ,05 + (u7) ,05)
UDAD:U u, i ‘
(1 — wu (1 — upyu i S u ((19) 405 (D ‘ug)05)
2 i u u QI+ (W15 (u “uns)
xopur uorsudwiIp Kouagowoyoo-7 Kyrouddowoyoos-a (G B)

(ponunuoo)

'€ 4714VL
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(1 + ug)u
/(1 —wu
/(1 —wq—uw
/(1 +wu

(Tb1b + d 1d)y

(1 + ug)ug

(1 —wu

(1 + w1 —ug
(1+wu

@+ W)(1b + ld)y

(1 —-uz

u

(1h > Ud pue Th = 1d)

(1d — T)(Wd — by + °d + 1d

(¢d = 1hpue Th = 1d)

(1—ug
u

(b > Ud pue Th = 1d)

(1d — T)(Td — Wby +Td + 1d

(¢d = 1hpue ¢h = 1d)

((Q ‘wyds ‘(O ‘wyds + (J ‘u)ds)
(D wyos (D ‘uyos + (9 ‘u)0s)
(@ w15 Qw15 + (D ‘W)1s)
A+ @ w1s (g ‘wds)

((ChCd)ds + (1b1d)ds
{(Ch+ 1btd + 1d)ds)

16+ 1d 15+ 1d
(1 +ugu (1 +ugyue ug ug (A + (ug) yns “(u ‘uyds)
(1 —ugyu g u u (© wyds *(y ‘ug)ds)
(1 + ugyu iaid u u (O uyds *(u u)ds)
(d —uydg (d —uydy d d ((q'd —uyds + (f ‘d)ds (g ‘u)ds)
U+ (d—u)+.d I+ wu u d+u+ (dg—u) ((@os+(d —u'dyns*(d — u‘d)ds)
(d —uydg (1 +wu d+u+ (dg—u) u ((Q)0s + (d —u‘d)ns (y ‘u)ds)
(d —uwydy (d —uydg dg dg ((Q'd —wds + () d)ds (O ‘u)ds)
:+NE|5N+NQN (1 + ug)u u km+:+~?~ml5m ((d —u‘d)yds ‘(d —u‘d)ds + (d — u‘d)ds)
(d —wydy (14 ug)u dg+u+ (dg—ug u ((d —u*d)ds ‘(D ‘uyds)
(T +wu (14 wug ug ug O+ O ws(Q wds)
M (1 +ugu u u (M wyds ‘(g ‘wds + (g ‘wds)
1 +wu (1 +ugu u u (g 'wyds (O ‘wds)
(1 —ugyu (1 —ugyug u u (A + (ug) yns *(up) ,09)
Xapur uorsuAWIp Krauagowoyoo-7 Kouagowoyoo-a (G ‘8)

(panunuod)

‘¢ A74dV]
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