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1. Introduction

Let M be a compact 3-manifold such that 0 M is a torus and {A, u} a basis of w1 (dM).
Then R = Hom(mr; (M), SL(2, C)) is an affine algebraic variety. Let Ry be the set of repre-
sentations p € R such that

l
pm:(o Jl) p(u)=(’g 1;"m>

for some [, m € C. Note that any element of R can be conjugated to such a representation
because A and p are commutative and that the Zariski closure of the image of the eigenvalue
mapé& : Ry — C? defined by £(p) = (I, m) is an algebraic subset of C2. LetCy,Cyp, -+, Ch
be the one-dimensional components of the closure of &(Ry) and g1(/,m), (I, m), -+,
gk(l,m) € Z[l, m] their defining polynomials which are supposed to be reduced. Then, the
A-polynomial of M is defined by

Ayl,m) =g, m)qpl,m)--- g, m).

When M is the complement of a knot K in $3, we choose {, it} as the pair of the preferred
longitude and the meridian of K. Then, the A-polynomial always has a factor / — 1, and so
we shall compute Ag (I, m) = Ay ([, m)/(l — 1).

In the study of knot theory, the polynomial invariants, such as Alexander and Jones
polynomials, are very much useful and have been evaluated for a large number of knots.
However, the A-polynomials have been computed for only some simple knots, see [1]. In
particular, except for torus knots, there had been no formulae for the A-polynomials of infinite
series of knots until Hoste and Shanahan found formulae for two infinite families of 2-bridge
knots, including twist knots, in [3].

Inspired by [3], in this paper, we will derive a formula for the A-polynomials of the
(—2,3,1 4+ 2n)-pretzel knots. Let K, denote the (—2, 3, 1 + 2n)-pretzel knot depicted in
Figure 1, where n is the number of left-handed full twists contained in the box. Note that
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FIGURE 1. K.

Ko, K and K, are respectively the torus knots 51, 819 and 10124 in the notation of the table
in [6] and K3 is the famous (—2, 3, 7)-pretzel knot, and Ag,, Ag,, Ak, and Ak, are given by

Ag,,m) = 1+Im'%,  Ag,(Im™*, m) = 14+Im®,  Ag,(m~%, m) = A+im")(1—Im"),

A, (m™ 2 m) =1 —Im* + 20m® — Im® — 2°m"% — Pm'* 4 1*m®* 4 21%m>®
30 2532 34 6,38
see [1] and [7].
MAIN THEOREM 1. Put

_12(lm8)3+n(1 _ m2)n(1 +lm6)3+n (n>3),
B, =
—(Im®)~ M (1 = m?) (1 4+ 1m®)> " (n < 0)

and define C,, recursively by
@’Cp —ay Comt — (207 + 20y — B)Cpz =y Cp3 + @’ Cyy =0,
where
a=Imd1 —m>)A+1m®, B=m>—1Imb+2m® —2°m'® + Pm'8 — Pm??,
y =—1—m*=2m® —im'0 + Im'2 — 2m'2 + Pm™ 4+ 202m'® + Pm20 4+ Bm?*,

with the initial conditions

co— M Ak (L m)? _om* (1= ImM{Ag, (Im™* m))?
T T T A ymsr 0 T (1 —m2)(1 + Im) :
= _MrUmE my? Ak (T m)

1(1 —m?2)? C Pm*(1—m?)3
Then, Ak, (lm_4”, m) is a factor of B,,C,, € Z[l, m] forn > 3 and n < Q.

REMARK. In fact, whenn = 1 mod 3, B, C,, contains the factor 1 — Im3 but it is not a
factor of the A-polynomial of K,.
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2. Proof of Main Theorem

Since K, can be obtained from the link L depicted in Figure 1 by the —1/n surgery
along L1, we first consider an ideal triangulation S of the complement of a hyperbolic link L
and then apply the surgery along L.

Let D be an (1, 1)-tangle presentation of L depicted in Figure 2. Then, we prepare 4
ideal tetrahedra at each crossing of D as shown in Figure 3, where 00 denote the poles of
S3. We glue them along the edges of D as shown in Figure 4, and recover M=M \ {£o00}.
In what follows, for z € C\{0, 1}, we denote by T (z) the ideal tetrahedron in 3-dimensional
hyperbolic space H*> whose vertices are 0, 1, z, 0o in H> = C U {00} if it is not degenerate.
We may use 7'(z) as a symbol even if the corresponding ideal tetrahedron is degenerate. We
assign complex numbers to the corners of D as shown in Figure 2 and identify 7 (z) with the
tetrahedron corresponding to the corner assigned z. Put

B ={T(a1) UT(d)} N {T(co) UT (do)}.

As M \ B is homeomorphic to M, we can develop M \ B in H3, where each tetrahedron
touching B can not specify distinct 4 points in 9H> and so is degenerate. In fact,

T'(a1),T(d1),T(co), T (do)

FIGURE 2.
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FIGURE 4.

are essentially one-dimensional objects and

T'(b1),T(c1),T(a2),T(b2),T(c2)T(d2),T(a3),T(b3),T(ds),T(ds),T(ds),
T(b7),T(c7),T(ag), T(bg), T(cs)T(dg)T (a9), T (by)
are essentially rwo-dimensional objects in M \ B. Thus, we obtain an ideal triangulation S of
M with
T(c3),T(d3),T(as),T(ba),T(ca),T(as), T (bs),T(cs),
T (as), T (bs) . T(co), T (a7),T(d7) .,
see [5]. The triangulation of N (L1), the boundary of a tubular neighbourhood of L in §3,

induced by S is given by Figure 5, where the dotted edges should be contracted and the edges
assigned the same number should be identified. Similarly, that of 9N (L») is given in Figure
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6, where the triangulation of the annulus A is given in Figure 7. If S determines a hyperbolic
structure of M, the product of the moduli around each edge in S should be 1. In fact, we can
read

(D 1 = a4bscy = asbscs = agbece
corresponsing to certain crossings of D,

(2) 1 = d3asced7 = c3bsbsbear = caas = csag
corresponding to certain faces of D and

A —1/d)A—1/by) (A —1/bg)A —1/d7) _
(I —c3)(d —aa) (I —c6)(1 —az)

corresponding to the non-alternating edges of D. Then, as explained in [4], the other equations
should be generated by

l—a; 1=V _, (- 1/be)(1 —c¢s) _ (1= 1/bs)(1 —ca) _ m2
(I —ae)(1 —1/bs) (1 —as)(1 —1/bs)

l—c3 1-1/d3
where 7, m denote the eigenvalues of the holonomy representations of the meridians of L1, L»,

bl ’

and

3) cydzard; =1,
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FIGURE 7.
where we have used
c3d3(1 = be)(1 — ¢5)(1 — ca)(1 — bs)(1 — ae)(1 — d7) — mesdsandy

(I =1/a7)(1 = 1/as)(1 = 1/as)(1 = 1/b4)(1 — 1/cs5)(1 — 1/co)

modulo the relations above. Furthermore, the left hand side of Figure 7 gives us a nice view
of a fundamental domain of M in H® from co and we can read the eigenvalues s, [ of the
holonomy representations of the longitudes of L1, L, as

2 c3ds(1 —1/d3)(1 — 1/a7)
(I =c3)( —dy)

= (c3d3)?,

which is the product of the moduli along a holizontal line in Figure 5, and /?m!? is given by
m2P 0, where

1 1 —c3 1 (1 —cg)(1 — bs) 1
pP=_. ) ) ) (1 = cg)
c3 1—=1/by bacy (1 —1/as)(1 —1/bs) bece
1 —by 1 (1 —cs5)(1 — be)

(U —1/azy( — 1/bs) bscs (I — 1/ag)(1 — 1/a7)
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is the product of the moduli along a holizontal line in Figure 6. and

o lm@ l-a  d-byi-a) (d—ad—by
1 —=1/cz 1—=1/bs (1 =1/ce)(1 —=1/bs) (1 —1/as)(1 —1/be)
1 — bg 1 —dy 1—by (1 = bs)(1 — ag)
X . . .(1_C6). .
1 —1/a 1 —1/cs (I = 1/ay)(1 —1/bs) (1 —1/be)(1 —1/cs)
A=e(=b) o (= 1ag( = /b1 = 1o
(1 —1/ae)(1 —1/a7) (I —ce)(1 —cs5)(1 — be)
1
X C6d7 . 1_71/613 -R
with
(I =by)(A —as5)(1 —ae)(1 —bs)(1 — ca)(1 —d3) _ca3ds

(1= 1/e3)(d = 1/ea)(A = 1/e5)(1 = 1/be) (1 — 1/as)(1 = 1/as) — m?
is the product of the moduli along the curve in A depicted in Figure 8(a). Note that
O = P - (c3bgcabgcgbscscedicsds £ m_6)2

and m? Q should be equal to the product of the moduli along the curve depicted in Figure 8(b),
that is,
sz = (cedycads - t - m_3)2 .

Therefore we have

2ml0 — cedcads 2
c3bacabgcebscs -m )

(@) (®)

FIGURE 8.
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Now, the equations (1), (2), (3) suggest putting

c3=a/x,dy=y/a, as =a/m, ba =bj/a, ca =m/b, as =b/m, bs =c/b,
cs=m/c,a6 =c/m, be =d/c, ce =m/d, a7 =x/d, d1=d]y.
Then the hyperbolicity equations for L are given by
(l—a/(—a/b) _ (I—c/d)(1—y/d) _
(I—a/x)d—a/m) (A —m/d)(1 —x/d)
d-b/c)d=m/b) (A —c/d)A—m/c) 2
(1—b/m)(1 —a/b) (1 —c/m)(1—bjc)
1—x/d _ 1—y/d _2 im
l—a/x 1—aly

’

’

8

:—bC’ s:y/x.

Since the edges in S are nontrivial and M is hyperbolic, we have the following lemma.
LEMMA 1. The moduli of the tetrahedra in S are in C\{0, 1}.
(I —a/y)d—a/b)

From =1, we have
(I =a/x)(1 —a/m)
{a(—mx + by) + bmx — bmy — bxy + mxy}
a =

by(a —m)(x —a)

O )

where a, b, y,a —m,x — a # 0 because of Lemma 1, and so we put
P, = a(—mx + by) + bmx — bmy — bxy +mxy =0.

Similarly we have

Pi=dc—m—x+y)+mx —cy=0,

P,=b(1—cm)—c+acm =0,

P.=c(l—dm)—d+bdm =0,

Py =adt +x(d —dt) — x> =0,

Py =adt +y(d —d1) — y* =0,

P=bc+Iim*=0, P,=sx—y=0.
Suppose —mx + by = 0. Then from P, = 0 we have

by(m —b)(y —m) _
2 —

0.

However b, y,b —m,y —m # 0 because of Lemma 1 and this is a contradiction. Thus we
have —mx + by # 0 and hence

_ —bmx + bmy + bxy —mxy

a =

—mx + by
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By substituting this equation for Py, Py, Py and Py, the variable a is eliminated. Similarly
we can eliminate b, ¢, d, x, y and finally obtain the following two equations.

Pr = (—1—m* =3Im'" +im'? — Pm'"? +32m'"* + Pm® + Pm**
+(m? —1m® +2im® — 20m"® + *m"® — Pm?)(s™' +5)
+(Um® — Im' 4+ Pm"™ — Pm'0) (2 + 5% =0,

Py = (Pm'? = 2%m"™ + Pm ") (1 + 257) + 2Im® — 2im® — 23m*° + 283m**)(1 + 1%57)s
(1= Im® + 1m0 + 22 — 42m™ 4 P S 4 B — B0 4 ) (1 + 126%)s2
+(=m? +1mb —Im® + Pm" + Pm'® — Bm® + Bm? — *m®%)(1 + 1%s5)s°
+(=Im® = 2Pm" — Pm® )1 + %5 Hs* = 0.

Then the A-polynomial Ak, (/, m) is obtained by eliminating s and ¢ from Py, P, and

4) 257 = 1.

Put X = s + s~ ! for simplicity. Then, P; becomes
Pl =aX*+BX +y,
where «, f and y are given in Main Theorem, and P> becomes
Fu(X) = Pm" =22m"™ + Pm"%Yap s + QIm® — 2im® = 28m™ + 28m**) a3
F(1—1m® 1m0 + P — 42 4+ P 4 Pn'® — B 4 Pn®ya, 0
+(=m? +1mb —Im® + Pm"? + Pm'® — B + Pm?? — l4m26)an+1
+(=Im® = 22m" — Pm*®)a,

by using (4), where a, € Z[X] is defined by

a, = Xap—1 —ap—, a=1, ar=1.

Then f,(X) obeys

4) Fn(X) = Xfu-1(X) = fu—2(X).

Let X, X, be the solutions to Pl’ = (0 with respect to X. Then, the A-polynomial of K, is a
factor of

(6) Fo = fu(X1) fa(X2) .

From now on, we evaluate a recursive formula for F,. First of all, using (5), we can reduce
(6) as

Fp = {X1 fu-1(X1) — fumo(XDHX2 fu—1(X2) — fu—2(X2)}
= X1 XoF 1+ Fpo — { X1 fum1(X1) fn2(X2) + X2 fu—1(X2) fu—2 (X1},
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where

X1 fa1(X1) fu=2(X2) + X2 fn—1(X2) fu—2(X1)
= X{X1fu2(X1) — fu3(XD} fu2(X2) + Xo{X2 fu—2(X2) — fu—3(X2)} fu—2(X1)
= (XT + X3) Fu—z — {X1 fu3(X1) fu—2(X2) + X2 fu—3(X2) fu—2(X1)}

and

X1 fu=3(X1) fa—2(X2) + X2 fu—3(X2) fa—2(X1)
= X1 fu3(XO{X2 fu—3(X2) — fn-a(X2)} + X2 frn3(X2{X1 fu—3(X1) — fu—a(X1)}
=2X1XoF; 3 — {X1 fu—3(X1) fu—a(X2) + X2 fn3(X2) fu—a(X1)}.

Similarly we have
Fp=X1X2F, 3 + Fy—g — {X1 fn—3(X1) fu—a(X2) + X2 fu—3(X2) fu—a(X1)}
and so
Fo=X1X2Fy 14+ Q= X{ = X)) Fy2+ X1X2Fy 3 — Foa.
From this equation, we obtain
o’ Fy —ay Fymt — 20 +2ay — BHFy2 —ay Fy3 + @’ Fyoa = 0.
On the other hand, we can compute directly the initial conditions Fy, F1, F> and F3 from (6):

Im8(1 + Im'0)? ~om*(1 = Im®)(1 4+ Im®)?

Fo=— W, F =
0 (1 + Imb)2 I (1 — m2)(1 + Im5)

1_1721 l72
A=A+

Fy = ,
2 I(1 — m2)2

F3

L —tm* 4 20m® —im® = 22m'2 — P4 4 B4 4 204 m %0 + Pm30 — 280m32 + Pm* — 10m38 W
- 2m4(1 — m2)3

where
W =1+ imH* (=1 +m?> +im® (=1 — Im® + 1m®) .

Note that —1 4+ m? + Im® and —1 — Im® + Im® are not a factor of Ak, (I, m) because the
curve (—1 + m? + lm8)(—1 —Im® + lm8) = 0 does not pass through the points ([, m) =
(1,1), (1, —1),(—=1,1) and (—1, —1), see Section 2.8 in [1]. Then, we can complete the proof
of the Main Theorem by the following two lemmas.

LEMMA 2. None of 1 +Im®, 1 —m?, 1+1m*, 1—1m3 are a factor of Ak, (L, m).
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PROOF. Otherwise, we have only finite points of ([, m) from Pl’ =0and f,(X) =0.
O

Cn

LEMMA 3. Forany integer n, is a polynomial of I, m.

PROOF. This is easily proved by induction on n. a
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