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1. Introduction

Let M be a compact 3-manifold such that ∂M is a torus and {λ,µ} a basis of π1(∂M).
Then R = Hom(π1(M), SL(2, C)) is an affine algebraic variety. Let RU be the set of repre-
sentations ρ ∈ R such that

ρ(λ) =
(

l ∗
0 1/l

)
ρ(µ) =

(
m ∗
0 1/m

)

for some l,m ∈ C. Note that any element of R can be conjugated to such a representation
because λ and µ are commutative and that the Zariski closure of the image of the eigenvalue

map ξ : RU → C2 defined by ξ(ρ) = (l,m) is an algebraic subset of C2. Let C1, C2, · · · , Ck

be the one-dimensional components of the closure of ξ(RU ) and g1(l,m), g2(l,m), · · · ,

gk(l,m) ∈ Z[l,m] their defining polynomials which are supposed to be reduced. Then, the
A-polynomial of M is defined by

AM(l,m) = g1(l,m)g2(l,m) · · · gk(l,m) .

When M is the complement of a knot K in S3, we choose {λ,µ} as the pair of the preferred
longitude and the meridian of K . Then, the A-polynomial always has a factor l − 1, and so
we shall compute AK(l,m) = AM(l,m)/(l − 1).

In the study of knot theory, the polynomial invariants, such as Alexander and Jones
polynomials, are very much useful and have been evaluated for a large number of knots.
However, the A-polynomials have been computed for only some simple knots, see [1]. In
particular, except for torus knots, there had been no formulae for the A-polynomials of infinite
series of knots until Hoste and Shanahan found formulae for two infinite families of 2-bridge
knots, including twist knots, in [3].

Inspired by [3], in this paper, we will derive a formula for the A-polynomials of the
(−2, 3, 1 + 2n)-pretzel knots. Let Kn denote the (−2, 3, 1 + 2n)-pretzel knot depicted in
Figure 1, where n is the number of left-handed full twists contained in the box. Note that
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FIGURE 1. Kn.

K0, K1 and K2 are respectively the torus knots 51, 819 and 10124 in the notation of the table
in [6] and K3 is the famous (−2, 3, 7)-pretzel knot, and AK0, AK1, AK2 and AK3 are given by

AK0(l,m) = 1+lm10 , AK1(lm
−4,m) = 1+lm8 , AK2(lm

−8,m) = (1+lm7)(1−lm7) ,

AK3(lm
−12,m) = 1 − lm4 + 2lm6 − lm8 − 2l2m12 − l2m14 + l4m24 + 2l4m26

+ l5m30 − 2l5m32 + l5m34 − l6m38 ,

see [1] and [7].

MAIN THEOREM 1. Put

Bn =



−l2(lm8)3+n(1 − m2)n(1 + lm6)3+n (n > 3) ,

−(lm8)−(2+n)(1 − m2)−(1+n)(1 + lm6)2−n (n < 0)

and define Cn recursively by

α2Cn − αγ Cn−1 − (2α2 + 2αγ − β2)Cn−2 − αγCn−3 + α2Cn−4 = 0 ,

where

α = lm8(1 − m2)(1 + lm6) , β = m2 − lm6 + 2lm8 − 2l2m16 + l2m18 − l3m22 ,

γ = −1 − m4 − 2lm8 − lm10 + lm12 − l2m12 + l2m14 + 2l2m16 + l3m20 + l3m24 ,

with the initial conditions

C0 = − lm8{AK0(l,m)}2

(1 + lm6)2 , C1 = m4(1 − lm8){AK1(lm
−4,m)}2

(1 − m2)(1 + lm6)
,

C2 = −{AK2(lm
−8,m)}2

l(1 − m2)2 , C3 = AK3(lm
−12,m)

l2m4(1 − m2)3 .

Then, AKn(lm
−4n,m) is a factor of BnCn ∈ Z[l,m] for n > 3 and n < 0.

REMARK. In fact, when n ≡ 1 mod 3, BnCn contains the factor 1 − lm8 but it is not a
factor of the A-polynomial of Kn.
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2. Proof of Main Theorem

Since Kn can be obtained from the link L depicted in Figure 1 by the −1/n surgery
along L1, we first consider an ideal triangulation S of the complement of a hyperbolic link L

and then apply the surgery along L1.
Let D be an (1, 1)-tangle presentation of L depicted in Figure 2. Then, we prepare 4

ideal tetrahedra at each crossing of D as shown in Figure 3, where ±∞ denote the poles of

S3. We glue them along the edges of D as shown in Figure 4, and recover Ṁ = M \ {±∞}.
In what follows, for z ∈ C\{0, 1}, we denote by T (z) the ideal tetrahedron in 3-dimensional
hyperbolic space H3 whose vertices are 0, 1, z,∞ in ∂H3 = C ∪ {∞} if it is not degenerate.
We may use T (z) as a symbol even if the corresponding ideal tetrahedron is degenerate. We
assign complex numbers to the corners of D as shown in Figure 2 and identify T (z) with the
tetrahedron corresponding to the corner assigned z. Put

B = {T (a1) ∪ T (d1)} ∩ {T (c9) ∪ T (d9)} .

As Ṁ \ B is homeomorphic to M , we can develop Ṁ \ B in H3, where each tetrahedron

touching B can not specify distinct 4 points in ∂H3 and so is degenerate. In fact,

T (a1) , T (d1) , T (c9) , T (d9)

FIGURE 2.



266 NAOKO TAMURA AND YOSHIYUKI YOKOTA

－∞ －∞ －∞ －∞ 

＋∞ ＋∞ ＋∞ ＋∞ 

FIGURE 3.

FIGURE 4.

are essentially one-dimensional objects and

T (b1) , T (c1) , T (a2) , T (b2) , T (c2)T (d2) , T (a3) , T (b3) , T (d4) , T (d5) , T (d6) ,

T (b7) , T (c7) , T (a8) , T (b8) , T (c8)T (d8)T (a9) , T (b9)

are essentially two-dimensional objects in Ṁ \ B. Thus, we obtain an ideal triangulation S of
M with

T (c3) , T (d3) , T (a4) , T (b4) , T (c4) , T (a5) , T (b5) , T (c5) ,

T (a6) , T (b6) , T (c6) , T (a7) , T (d7) ,

see [5]. The triangulation of ∂N(L1), the boundary of a tubular neighbourhood of L1 in S3,
induced by S is given by Figure 5, where the dotted edges should be contracted and the edges
assigned the same number should be identified. Similarly, that of ∂N(L2) is given in Figure
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FIGURE 5.

FIGURE 6.

6, where the triangulation of the annulus A is given in Figure 7. If S determines a hyperbolic
structure of M , the product of the moduli around each edge in S should be 1. In fact, we can
read

(1) 1 = a4b4c4 = a5b5c5 = a6b6c6

corresponsing to certain crossings of D,

(2) 1 = d3a4c6d7 = c3b4b5b6a7 = c4a5 = c5a6

corresponding to certain faces of D and

(1 − 1/d3)(1 − 1/b4)

(1 − c3)(1 − a4)
= (1 − 1/b6)(1 − 1/d7)

(1 − c6)(1 − a7)
= 1

corresponding to the non-alternating edges of D. Then, as explained in [4], the other equations
should be generated by

1 − a7

1 − c3
= 1 − 1/d7

1 − 1/d3
= t2 ,

(1 − 1/b6)(1 − c5)

(1 − a6)(1 − 1/b5)
= (1 − 1/b5)(1 − c4)

(1 − a5)(1 − 1/b4)
= m2 ,

where t,m denote the eigenvalues of the holonomy representations of the meridians of L1, L2,
and

(3) c3d3a7d7 = 1 ,
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FIGURE 7.

where we have used

c3d3(1 − b6)(1 − c5)(1 − c4)(1 − b5)(1 − a6)(1 − d7)

(1 − 1/a7)(1 − 1/a6)(1 − 1/a5)(1 − 1/b4)(1 − 1/c5)(1 − 1/c6)
= m2c3d3a7d7

modulo the relations above. Furthermore, the left hand side of Figure 7 gives us a nice view

of a fundamental domain of M in H3 from ∞ and we can read the eigenvalues s, l of the
holonomy representations of the longitudes of L1, L2 as

s2 = c3d3(1 − 1/d3)(1 − 1/a7)

(1 − c3)(1 − d7)
= (c3d3)

2 ,

which is the product of the moduli along a holizontal line in Figure 5, and l2m10 is given by

m2PQ, where

P = 1

c3
· 1 − c3

1 − 1/b4
· 1

b4c4
· (1 − c4)(1 − b5)

(1 − 1/a5)(1 − 1/b6)
· 1

b6c6
· (1 − c6)

× 1 − b4

(1 − 1/a4)(1 − 1/b5)
· 1

b5c5
· (1 − c5)(1 − b6)

(1 − 1/a6)(1 − 1/a7)
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is the product of the moduli along a holizontal line in Figure 6. and

Q = 1 − a7

1 − 1/c3
· 1 − c3

1 − 1/b4
· (1 − b4)(1 − a5)

(1 − 1/c4)(1 − 1/b5)
· (1 − c4)(1 − b5)

(1 − 1/a5)(1 − 1/b6)

× 1 − b6

1 − 1/a7
· R · 1 − d7

1 − 1/c6
· (1 − c6) · 1 − b4

(1 − 1/a4)(1 − 1/b5)
· (1 − b5)(1 − a6)

(1 − 1/b6)(1 − 1/c5)

× (1 − c5)(1 − b6)

(1 − 1/a6)(1 − 1/a7)
· R · (1 − 1/d7) · d7c6 · (1 − 1/a6)(1 − 1/b5)(1 − 1/c6)

(1 − c6)(1 − c5)(1 − b6)

× c6d7 · 1

1 − 1/d3
· R

with

R = (1 − b4)(1 − a5)(1 − a6)(1 − b5)(1 − c4)(1 − d3)

(1 − 1/c3)(1 − 1/c4)(1 − 1/c5)(1 − 1/b6)(1 − 1/a5)(1 − 1/a4)
= c3d3

m2

is the product of the moduli along the curve in A depicted in Figure 8(a). Note that

Q = P · (c3b4c4b6c6b5c5c6d7c3d3 · t2 · m−6)2

and m2Q should be equal to the product of the moduli along the curve depicted in Figure 8(b),
that is,

m2Q = (c6d7c3d3 · t · m−3)2 .

Therefore we have

l2m10 =
(

c6d7c3d3

c3b4c4b6c6b5c5 · m
)2

.

(a) (b)

FIGURE 8.
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Now, the equations (1), (2), (3) suggest putting

c3 = a/x, d3 = y/a, a4 = a/m, b4 = b/a, c4 = m/b, a5 = b/m, b5 = c/b,

c5 = m/c , a6 = c/m, b6 = d/c, c6 = m/d, a7 = x/d, d7 = d/y .

Then the hyperbolicity equations for L are given by

(1 − a/y)(1 − a/b)

(1 − a/x)(1 − a/m)
= (1 − c/d)(1 − y/d)

(1 − m/d)(1 − x/d)
= 1 ,

(1 − b/c)(1 − m/b)

(1 − b/m)(1 − a/b)
= (1 − c/d)(1 − m/c)

(1 − c/m)(1 − b/c)
= m2 ,

1 − x/d

1 − a/x
= 1 − y/d

1 − a/y
=t2, lm8 = −bc, s = y/x .

Since the edges in S are nontrivial and M is hyperbolic, we have the following lemma.

LEMMA 1. The moduli of the tetrahedra in S are in C\{0, 1}.

From
(1 − a/y)(1 − a/b)

(1 − a/x)(1 − a/m)
= 1 , we have

a
{a(−mx + by) + bmx − bmy − bxy + mxy}

by(a − m)(x − a)
= 0 ,

where a, b, y, a − m, x − a �= 0 because of Lemma 1, and so we put

Pa = a(−mx + by) + bmx − bmy − bxy + mxy = 0 .

Similarly we have

Pd = d(c − m − x + y) + mx − cy = 0 ,

Pb = b(1 − cm) − c + acm = 0 ,

Pc = c(1 − dm) − d + bdm = 0 ,

Px = adt + x(d − dt) − x2 = 0 ,

Py = adt + y(d − dt) − y2 = 0 ,

Pl = bc + lm8 = 0 , Ps = sx − y = 0 .

Suppose −mx + by = 0. Then from Pa = 0 we have

by(m − b)(y − m)

m
= 0 .

However b, y, b − m, y − m �= 0 because of Lemma 1 and this is a contradiction. Thus we
have −mx + by �= 0 and hence

a = −bmx + bmy + bxy − mxy

−mx + by
.
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By substituting this equation for Pd, Pb, Px and Py, the variable a is eliminated. Similarly
we can eliminate b, c, d, x, y and finally obtain the following two equations.

P1 = (−1 − m4 − 3lm10 + lm12 − l2m12 + 3l2m14 + l3m20 + l3m24)

+(m2 − lm6 + 2lm8 − 2l2m16 + l2m18 − l3m22)(s−1 + s)

+(lm8 − lm10 + l2m14 − l2m16)(s−2 + s2) = 0 ,

P2 = (l2m12 − 2l2m14 + l2m16)(1 + t2s7) + (2lm6 − 2lm8 − 2l3m20 + 2l3m22)(1 + t2s5)s

+(1 − lm8 + lm10 + l2m12 − 4l2m14 + l2m16 + l3m18 − l3m20 + l4m28)(1 + t2s3)s2

+(−m2 + lm6 − lm8 + l2m12 + l2m16 − l3m20 + l3m22 − l4m26)(1 + t2s)s3

+(−lm8 − 2l2m14 − l3m20)(1 + t2s−1)s4 = 0 .

Then the A-polynomial AKn(l,m) is obtained by eliminating s and t from P1, P2 and

(4) t2s−2n = 1 .

Put X = s + s−1 for simplicity. Then, P1 becomes

P ′
1 = αX2 + βX + γ ,

where α, β and γ are given in Main Theorem, and P2 becomes

fn(X) = (l2m12 − 2l2m14 + l2m16)an+4 + (2lm6 − 2lm8 − 2l3m20 + 2l3m22)an+3

+(1 − lm8 + lm10 + l2m12 − 4l2m14 + l2m16 + l3m18 − l3m20 + l4m28)an+2

+(−m2 + lm6 − lm8 + l2m12 + l2m16 − l3m20 + l3m22 − l4m26)an+1

+(−lm8 − 2l2m14 − l3m20)an

by using (4), where an ∈ Z[X] is defined by

an = Xan−1 − an−2 , a0 = 1 , a1 = 1 .

Then fn(X) obeys

(5) fn(X) = Xfn−1(X) − fn−2(X) .

Let X1,X2 be the solutions to P ′
1 = 0 with respect to X. Then, the A-polynomial of Kn is a

factor of

(6) Fn = fn(X1)fn(X2) .

From now on, we evaluate a recursive formula for Fn. First of all, using (5), we can reduce
(6) as

Fn = {X1fn−1(X1) − fn−2(X1)}{X2fn−1(X2) − fn−2(X2)}
= X1X2Fn−1 + Fn−2 − {X1fn−1(X1)fn−2(X2) + X2fn−1(X2)fn−2(X1)} ,
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where

X1fn−1(X1)fn−2(X2) + X2fn−1(X2)fn−2(X1)

= X1{X1fn−2(X1) − fn−3(X1)}fn−2(X2) + X2{X2fn−2(X2) − fn−3(X2)}fn−2(X1)

= (X2
1 + X2

2)Fn−2 − {X1fn−3(X1)fn−2(X2) + X2fn−3(X2)fn−2(X1)}
and

X1fn−3(X1)fn−2(X2) + X2fn−3(X2)fn−2(X1)

= X1fn−3(X1){X2fn−3(X2) − fn−4(X2)} + X2fn−3(X2){X1fn−3(X1) − fn−4(X1)}
= 2X1X2Fn−3 − {X1fn−3(X1)fn−4(X2) + X2fn−3(X2)fn−4(X1)} .

Similarly we have

Fn−2 = X1X2Fn−3 + Fn−4 − {X1fn−3(X1)fn−4(X2) + X2fn−3(X2)fn−4(X1)}
and so

Fn = X1X2Fn−1 + (2 − X2
1 − X2

2)Fn−2 + X1X2Fn−3 − Fn−4 .

From this equation, we obtain

α2Fn − αγFn−1 − (2α2 + 2αγ − β2)Fn−2 − αγFn−3 + α2Fn−4 = 0 .

On the other hand, we can compute directly the initial conditions F0, F1, F2 and F3 from (6):

F0 = − lm8(1 + lm10)2

(1 + lm6)2
W , F1 = m4(1 − lm8)(1 + lm8)2

(1 − m2)(1 + lm6)
W ,

F2 = − (1 − lm7)2(1 + lm7)2

l(1 − m2)2 W ,

F3

= 1 − lm4 + 2lm6 − lm8 − 2l2m12 − l2m14 + l4m24 + 2l4m26 + l5m30 − 2l5m32 + l5m34 − l6m38

l2m4(1 − m2)3
W ,

where

W = (1 + lm4)4(−1 + m2 + lm8)(−1 − lm6 + lm8) .

Note that −1 + m2 + lm8 and −1 − lm6 + lm8 are not a factor of AKn(l,m) because the

curve (−1 + m2 + lm8)(−1 − lm6 + lm8) = 0 does not pass through the points (l,m) =
(1, 1), (1,−1), (−1, 1) and (−1,−1), see Section 2.8 in [1]. Then, we can complete the proof
of the Main Theorem by the following two lemmas.

LEMMA 2. None of 1 + lm6, 1 − m2, 1 + lm4, 1 − lm8 are a factor of AKn(l,m).
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PROOF. Otherwise, we have only finite points of (l,m) from P ′
1 = 0 and fn(X) = 0.

�

LEMMA 3. For any integer n,
BnCn

W
is a polynomial of l,m.

PROOF. This is easily proved by induction on n. �
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